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Ca21-entry in the heart is tightly controlled by Cav1.2 inactivation, which involves Ca21-dependent
inactivation (CDI) and voltage-dependent inactivation (VDI) components. Timothy syndrome, a
subtype-form of congenital long-QT syndrome, results from a nearly complete elimination of VDI by the
G406R mutation in the a11.2 subunit of Cav1.2. Here, we show that a single (A1929P) or a double mutation
(H1926A-H1927A) within the CaN-binding site at the human C-terminal tail of a11.2, accelerate the
inactivation rate and enhances VDI of both wt and Timothy channels. These results identify the
CaN-binding site as the long-sought VDI-regulatory motif of the cardiac channel. The substantial increase
in VDI and the accelerated inactivation caused by the selective inhibitors of CaN, cyclosporine A and
FK-506, which act at the same CaN-binding site, further support this conclusion. A reversal of
enhanced-sympathetic tone by VDI-enhancing CaN inhibitors could be beneficial for improving Timothy
syndrome complications such as long-QT and autism.

T
he inactivation of the L-type voltage-gated calcium channel Cav1.2 plays a central role in controlling
excitation-contraction (E–C) coupling in cardiac myocytes and consists of two independent mechanisms,
CDI and VDI (for reviews, see1–6).

Early studies revealed CDI signaling to be predominantly mediated by Ca21/calmodulin binding to an IQ motif
at the proximal C-tail of the a11.2 subunit of Cav1.27–11. A proteolytically cleaved distal domain has been
suggested to form a non-covalent complex with the proximal C-tail acting like an autoinhibitory motif12.
While CDI has been extensively studied and is well documented, the exact mechanism by which VDI regulates
Cav1.2 remains largely unknown. The importance of VDI became apparent by the discovery of a mis-sense
mutation G406R at the a11.2 pore forming subunit of Cav1.2 that manifests itself in the Timothy syndrome (TS).
In TS, VDI impairment resulted in prolonged QT interval, and severe arrhythmias in the heart, accompanied by
an autism spectrum disorder13,14.

The well documented participation of calcineurin (CaN), a Ca21/calmodulin-dependent protein IIB phospha-
tase, in controlling Ca21 signaling in mouse ventricular myocytes15–20, has prompted a search for CaN binding
site(s) within the a11.2 subunit.

Previous in vitro binding experiments have demonstrated that CaN binds to the C-tail of rabbit a11.2 at a
minimal site spanning amino acids D1943-L197121, and to undefined sites downstream of L197122. Deletion of
large segments comprising 285, 405 or 438 amino acids at the C-terminus, which comprise of the CaN-binding
site, increased channel activity23, are consistent with the elimination of a VDI regulatory interface at the rabbit
a11.2 C-terminus24,25,12.

Here we have combined molecular, electrophysiological, and pharmacological approaches to establish CaN as
a VDI-regulatory protein of the human Cav1.2 channel. Although CaN binding site at the C-tail of a11.2 was
established21,22, the functional effect of CaN on Cav1.2 properties is not known. We show that a single point
mutation A1929P at CaN binding motif accelerates Cav1.2 inactivation and increases the extent of VDI. The
A1929P mutation, previously shown to abrogate binding of CaN to the channel21,22, accelerated channel inac-
tivation most likely by preventing CaN binding to the CaN-binding motif within the C-tail of the channel. The
mutation also restored the impaired voltage inactivation of the Timothy G406R-channel. These results identify
the CaN binding motif as a negative modulator of VDI. VDI restoration by CaN selective inhibitors cyclosporine
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A and FK506 confirm CaN as a regulator of VDI, and implicate the
CaN-binding site in the a11.2 subunit as a potential therapeutic
target for TS and other arrhythmias.

Results
Mutations within the CaN binding motif, A1929P, or H1926A/
H1927A, accelerate the rate of Cav1.2 voltage-dependent
inactivation. The most distal C-terminal domain of rabbit a11.2
comprises a putative CaN minimal binding motif D1943-L197121,

corresponding to D1913-L1941 of the human a11.2 subunit (Fig. 1a,
upper), a phosphatase 2A (PP2A)-binding site at L19352R1941, and
an additional CaN binding-site downstream of R194122. Both CaN
and PP2A sites are located downstream to the PKA interaction
domain26–28.

The functional impact of the CaN binding motif on CaV1.2 prop-
erties was tested in BAPTA-injected Xenopus oocytes, using the two-
electrode-voltage-clamped assay. Both CaN29 and cyclophilin30 are
natively expressed in Xenopus oocytes.

Figure 1 | Single and double amino acid mutations within the CaN binding motif at the C-tail of a11.2 subunit restore VDI of Cav1.2. (Ba) Schematic

presentation of: the minimal CaN-binding site (upper), Ala 1929 (middle) and His1926, His1927 residues within this minimal CaN- binding domain

(lower). (b), Schematic illustration of channel mutants: a11.2/A1929P (right, upper), and a11.2/H1926A/H1927A (right, lower). (c) Normalized IBa

records from representative oocytes expressing Cav1.2 (wt) and Cav1.2A1929P (left) and Normalized IBa records from representative oocytes expressing

Cav1.2 (wt) and Cav1.2H1926A/H1927A (right) (d) Steady-state inactivation was recorded in stimulated oocytes according to a multistep protocol of

VDI (inset). Smooth curves were generated from a single Boltzmann function of wt and the mutated channels as indicated. Values are displayed as mean 6

S.E.M (n510212). Peak currents were: For HH/AA experiment: a11.2, 21140698 nA (n512); a11.2/HH/AA, 215606162 nA (n514); The A1929P

experiment: a11.2, 2398 6 58 nA (n58); a11.2/A1929P, 2316633 (n521).
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Previously we showed that a truncated human a11.2, in which the
CaN binding motif was deleted by a premature stop codon inserted at
G1911, led to an increase in VDI (data not shown). To define a
specific correlation between CaN-binding site at the human a11.2
and VDI, we used a single point mutant of a11.2 (Fig. 1a, middle). In
vitro studies, carried out in rabbit a11.2, showed that mutating Ala to
Pro (A1959P) at the CaN-site abrogated CaN binding21,22. According
to these studies, the corresponding human Ala1929 is located within
a minimal CaN binding site spanning L1920 and L1935 of the human
a11.2 tail (Fig. 1b, upper).

Whole-cell currents were recorded from oocytes injected with
cRNA corresponding either to the human a11.2/A1929P or the
full-length human a11.2 subunit together with the auxiliary subunits
a2d1 and b2b.

Depolarization produced decaying inward barium current (IBa) in
both Cav1.2 and Cav1.2/A1929P (Fig. 1c, left). Superimposed exem-
plary IBa traces showed that A1929P mutant was inactivated faster
than Cav1.2 (Fig. 1c, left). Quantitatively, the smaller ratio of inward
current at the end of a 1,000 ms test pulse relative to the peak current
(r1000) was 0.43 6 0.06 for Cav1.2/A1929P compared to 0.6260.01
for the wt channel, which indicates faster inactivation of the mutant
channel (Supplementary Table S1 online).

The steady-state voltage inactivation of A1929P mutant was tested
and compared to wt channel (Fig. 1d, inset). The CaV1.2/A1929P
mutant exhibited virtually complete voltage-dependence of IBa inac-
tivation, compared to VDI of Cav1.2 (Fig. 1d, left, Table 1). The
Boltzmann curve of the A1929P mutant was shifted to hyperpolariz-
ing potentials, compared to the full-length native Cav1.2 (Table 1). A
plausible explanation for a stronger VDI is that the A1929P mutation
interferes with CaN-binding to the a11.2 C-tail21,22, and alleviates an
inhibitory effect of CaN on VDI.

To further confirm the CaN binding site a VDI-negative regula-
tory site, we examined two neighboring vicinal His residues, H1926,
H1927, positioned within the minimal CaN binding domain21,22 for
their effect on VDI (Fig. 1a lower; Fig. 1b lower).

Whole-cell IBa were recorded from channels co-expressing either
wt a11.2 or a11.2/HH/AA together with the auxiliary a2d1 and b2b.
Superimposed exemplary IBa traces showed that Cav1.2/HH/AA was
inactivated faster than Cav1.2 (Fig. 1c right). Similar to the enhanced
inactivation displayed by the A1929P mutant, the smaller ratio of
inward current at the end of a 1,000 ms test pulse to the peak current
(r1000) of Cav1.2/HH/AA indicated 0.3760.02 compared to
0.6260.01 of wt channel, showing faster inactivation than the wt
Cav1.2 (Supplementary Table S1 online). The CaV1.2/HH/AA
mutant exhibited virtually complete voltage-dependence of inactiva-
tion, compared to the partial VDI of Cav1.2 (Fig. 1d, right; Table 1).
Although the effect of the H1926A/H1927A mutation on CaN

binding was not shown through a direct binding, it seemed to up
regulate VDI, similar to A1929.

Direct inhibition of CaN increases the extent of voltage
inactivation. To confirm that CaN operates as a VDI-regulatory
protein, we employed a pharmacological approach, using
cyclosporin A (CsA), a potent and selective CaN inhibitor31. CsA
was used in a concentrations range of 0.01–2 mM, since at a level
of 20 mM it increases the probability of channel openings32.

The ICa of wt Cav1.2 decayed fast, as shown by the current traces
(Fig. 2a left), and by the nearly complete voltage-dependent steady-
state inactivation at 110 mV (Fig. 2b, left). The presence of 2 mM
CsA did not change the inactivating profile (Fig. 2a, left;
Supplementary Table S1 online) or the extent of ICa inactivation
(Fig. 2b, left). Hence, 2 mM CsA does not affect the wt channel, when
it is fully inactivated by the combined action of CDI 1 VDI.

In the absence of CDI, when Ba21 is the charge carrier, the Cav1.2
currents decayed slowly, driven by the limited VDI mechanism
(Fig. 2b, right). The presence of 0.6 mM or 2 mM CsA dramatically
increased this partial inactivation of wt Cav1.2 (Fig. 2b, right;
Supplementary Table S1 online), and shifted the Boltzmann curves
towards hyperpolarizing voltages (Fig. 2b, right; Table 1). This shift
was not seen in the channel mutants and could be mediated by CsA
inhibiting an additional CaN binding motif21. Hence, the presence of
CsA imposed a full VDI upon the native Cav1.2. In contrast with the
considerable effects on inactivation, the activation kinetics of wt
channel was only marginally affected by 0.2 or 1 mM CsA (ICa)
(see Supplementary Fig. S1 online). Current amplitude was
decreased in the presence of 2 mM CsA (IBa), but there were no
significant changes in the time constant of activation, or I/Imax
(see Supplementary Fig. S2 online).

The A1929P mutation at the CaN-binding site restores
inactivation of the Timothy channel. A single missense mutation,
G406R in exon 8a of the cardiac L-type calcium channel (CACNA1C,
Cav1.2, a11.2) was shown to cause the Timothy syndrome (TS),
which is as characterized by a prolongation of QT intervals
(designated LQT8) due to a significant loss of voltage inactivation
of Cav1.213,14,33–35.

Since the major effect of the G406R mutation on the TS channel
was a loss of VDI, we tested VDI regulation by this well-defined CaN-
regulatory site in the TS channel

Initially, the a11.2/G406R subunit of the Timothy channel was
mutated to a11.2/G406R/A1929P, and the kinetics of inactivation
were tested, using voltage-clamped oocytes (Experimental Proce-
dures; Fig. 3a).

Representative normalized ICa or IBa traces showed faster inactiva-
tion of Cav1.2/G406R/A1929P compared to unmodified TS Cav1.2/

Table 1 | Steady-state inactivation parameters of wt CaV1.2 and TS channel CaV1.2G406R

Charge Carrier Alpha subunit Cmax (%) V1/2 (mV) n p value

Ca21 a11.2 9563.3 230.6 6 2.1 10
a11.2/A1929P 9363.2 225.863.8 9
a 11.2/HH/AA 9962.6 230.561.6 8
a 11.2 /G406R 3864.3 230.2 6 1.5 10
a 11.2/G406R 1 0.05 mM CsA 7666.0 275.7 6 33.1 8 , 0.005
a 11.2/G406R/A1929P 7162.9 29.9 6 1.5 8 , 0.005
a 11.2/G406R/HH/AA 7764.5 221.1 6 2.2 8 , 0.005

Ba21 a 11.2 5862.4 1.34 6 2.4 14 -
a11.2/A1929P 9163.2 212.1 6 3.6 8
a 11.2/HH/AA 9163.5 21.1 6 3.3 21 , 0.005
a 11.2/G406R 2962.2 230.3 6 3.5 10–12 -
a11.2/G406R/A1929P 6165.0 214.1 6 5.5 13 , 0.005
a 11.2/G406R/HH/AA 6161.1 217.4 6 9.2 12 , 0.005
a 11.2/G406R 1 0.08 mM CsA 6364.8 244.8 6 5.4 8 , 0.01

V1/2, midpoint of steady-state voltage inactivation; Cmax, maximal steady state inactivating current; n5number of oocytes; Student’s t test (two population) was performed for Cmax.
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G406R (Fig. 3b, (Supplementary Table S1 online). Similarly, the
steady-state inactivation of both of ICa and IBa, displayed elevated
Cmax values and a shift in V1/2 towards positive potentials (Fig. 3c,
Table 1). Hence, a single point mutation that abrogates CaN bind-
ing to the C-tail of a11.2 subunit, significantly restored VDI of TS
channel.

The HH/AA double mutation at the CaN-binding site of the
Timothy channel restores voltage-dependent inactivation. The
double mutation HH/AA, inserted in the native human a11.2
subunit of Cav1.2 channel resulted in a distinctive increase in VDI
(see above). To consider the effects of the HH/AA mutation on TS,
we mutated the a11.2/G406R subunit to a11.2/G406R/HH/AA
(Fig. 4a). Representative normalized ICa or IBa traces showed faster
inactivation of Cav1.2/G406R/HH/AA compared to the unmodified
Cav1.2/G406R channel (Fig. 4b; Supplementary Table S1 online).
Similarly, the steady-state inactivation of both of ICa and IBa,
displayed elevated Cmax values and a shift in V1/2 towards positive
potentials (Fig. 4c, Table 1).

Consistent with a previous study36, the ratio of inactivation rates of
inward currents (ICa/IBa) based on exemplar normalized traces was
significantly different between wt and G406R channels (see
Supplementary Fig. S3 online). In contrast, there was no significant
difference in ICa /IBa of wt and the channel mutants, G406R/H1926A/
H1927A or G406R/A1929P. This data suggests that in the Timothy
channel the motif(s) that regulate CDI proceed independently of
VDI regulation by the CaN-binding motif. Since the A1929P and
HH/AA mutations in the G406R background, change the Ica/IBa ratio
back to the WT levels, it further suggests that the A1929P and HH/

AA mutations also affect the net CDI. A small effect on net CDI was
also visible in wt channel mutants (see Supplementary Fig. S3
online).

CaN inhibitors increase VDI of Timothy channel. Finally, to
further confirm VDI regulation by CaN-binding motif and to
establish a prospective strategy for TS treatment, we evaluated the
effects of CsA and FK-506 (Tacrolimus) two structurally unrelated
CaN inhibitors, on Cav1.2G406R inactivation. The normalized ICa

and IBa of the Timothy channel showed marked acceleration of
inactivation in the presence of 1 mM CsA (Fig. 5a). Moreover, the
steady-state voltage-dependence of ICa and IBa inactivation of the TS
channel (Fig. 5b) was greater in the presence of CsA. The effects of
CsA, at the concentrations as indicated, were accompanied by a
strong shift of the Boltzmann curves towards negative voltages
(Fig. 5b, Table 1). When plotted against CsA concentration, the
Cmax of Cav1.2/G406R at 110 mV displayed an apparent Kd of
27 nM for ICa, (Fig. 5c, upper) and 37 nM, for IBa (Fig. 5c, lower).
These values correspond to the physiological affinity constant of CsA
for CaN31.

The effects of CsA on maximal inactivation of wt channel (Fig. 2)
and TS channel were compared (Fig. 5d). From these results it
appears that the CaN binding site is a distinct and specific negative
regulator of VDI.

A good control for the convergent effects of CaN using the muta-
tions (A1929P or HH1926-1927AA) or CsA is the lack of additive
effect on VDI. In the mutated channels only one of the CaN binding
sites is eliminated, while an additional CaN binding site21, could still
bind CaN. Therefore, combining CsA with A1929P or HH/AA

Figure 2 | Cyclosporine A (CsA) increases VDI of Cav1.2. (a) Normalized IBa and ICa records from representative oocytes expressing Cav1.2 (wt) in the

presence of 2 mM CsA (ICa) (left), or 0.6 and 2 mM of CsA (IBa)(right). (b) The voltage-dependence of Cav1.2 inactivation in the presence or absence of

CsA (protocol in Fig 1d). Normalized ICa (left) and IBa (right) were fitted to the Boltzmann equation. Values are displayed as mean 6S.E.M (n510212).

Peak currents for: ICa, a11.2, 2700 6 57 nA (n513); a11.2 12 mMCsA, 2625 6 76 nA (n512); IBa, a11.2, 2774 6 34 nA (n510) ;a11.2 12 mMCsA,

2670 6 69 nA (n58).
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mutants might show an effect mediated either by a second CaN
binding site, or by CsA binding at another site.

We showed that 0.2 mM CsA did not affect the rate of inactivation
of G406R/A1929P mutant, measured using Ba21 as the charge carrier
(Supplementary Table S1 online). Also Cmax values, 6165% com-
pared to 60 6 7% or V1/2, -14.165.5 mV compared to 16.6 6
6.8 mV, were not affected by the addition of CsA. No additive effect
of VDI was observed when 80 mM CsA was applied to the HH/AA/
G406R mutant, using Ca21 as the charge carrier (Supplementary
Table S1 online). Similar to G406R/A1929P and G406R/HH/AA
mutants, CsA changed the Ica/IBa ratio of G406R back to WT level,
and appeared to have an effect also on net CDI (see Supplementary
Fig. S3 online).

Together, these results support the view that CsA acts through
inhibiting CaN-binding at the C-tail of a11.2 to restore the VDI of
the channel.

Unlike the strong effects on inactivation, CsA only marginally
affected the ICa current amplitude and activation properties of
Cav1.2/G406R (see Supplementary Fig. S1 online). CsA displayed
a significant increase in the rate of activation of IBa, slightly affecting
I/Imax (see Supplementary Fig. S2 online).

Like CsA, FK-506 accelerated ICa inactivation of the Timothy
channel (Fig. 6a). It increased current amplitude (Fig. 6b) without
shifting the I/Imax ratio (Fig. 6c) and accelerated activation (Fig. 6d).
Similar to CsA, with Ca21 as the charge carrier, FK-506 displayed no

effect on the steady-state inactivation of the wt channel (Fig. 6e, left)
but increased the steady state of IBa voltage-inactivation of the TS
channel (Fig. 6e, right). The restoration of VDI of the Timothy
channel by yet another CaN inhibitor, further confirms that this site
is a CaN-specific binding motif that acts as a negative regulatory-
motif of Cav1.2.

Discussion
Tandan et al21 identified a CaN-binding sites on the CaV1.2 N- and
C- termini. The inhibition of CaN by cyclosporine (CsA) induced an
immediate potentiation of CaV1.2 currents in neonatal myocytes.
This led the authors to suggest that the channel is a CaN substrate
where CaV1.2 is affected directly by CaN binding rather than through
a transcriptional regulation.

The present study identifies the CaN binding-site within the
Cav1.2 C-terminus as a regulatory domain of voltage-dependent
inactivation (VDI). First, the CaN binding site is demonstrated as
a negative regulatory site of normal cardiac channel inactivation, and
secondly, the slow VDI, which is a hallmark of Cav1.2 channels
bearing the Timothy syndrome (TS) mutation, can be converted into
faster wt like VDI by selective inhibition of CaN.

The impact of the distal C terminus on VDI of CaV1.2 was tested
initially by deleting 227 amino acids from the C terminus of the
human a11.2 subunit (data not shown). The slight increase in VDI

Figure 3 | Single point mutation at CaN binding motif of a11.2/G406R subunit increases VDI of the Timothy channel. (a) Schematic illustration and

location (b) of the G406R Timothy mutation, and the A1929P mutation within the CaN binding motif of the human a11.2 subunit (c) Normalized ICa

(left) and IBa (right) recordings from representative oocytes expressing Cav1.2/G406R and Cav1.2/G406R/A1929P (d) The voltage-dependence of

inactivation of Cav1.2G406R and Cav1.2G406R/A1929P in Ca21 (left) and Ba21 (right). Values are displayed as mean 6 S.E.M (n510212). Peak currents

for ICa, a11.2/G406R, 2493 6 74 nA (n513); a11.2/A1929P 2661 6 115nA (n58); IBa, a11.2, 2643 6 57 nA (n516); a11.2G406R/A1929P,

21132618 nA (n521).
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observed could result from multiple effects due to the deletion of
several regulatory sites, known to reside at the C-terminal of the
a11.2 subunit1. Therefore, a more specific target was chosen, which
is located within the CaN binding site, previously identified by direct
biochemical experiments21,21. In these studies mutating Ala to Pro
(A1959P) within the minimal CaN binding site L1920-L1935, at the
C-tail of a11.2, abrogated CaN binding. In the present work, the
CaV1.2/A1929P mutant exhibited virtually complete voltage-
dependence of inactivation, compared to the partial VDI of
Cav1.2. The importance of this CaN site in regulating VDI was
further confirmed by mutating two vicinal histidine residues, which
are located within the CaN minimal binding domain at the a11.2 C-
terminus. Although no direct effect of the HH/AA mutation on CaN
binding was reported, the CaV1.2/HH/AA mutant displayed almost a
complete voltage-dependence of inactivation similar to that of the
A1929P mutant. Hence, the accelerated rate of inactivation and the
increase in the extent of VDI demonstrated by the single and the
double mutants, results from interference of CaN binding to the
mutated CaN-binding site at the a11.2 C-tail. Furthermore, it
demonstrates that mutating two His residues can prevent CaN func-
tion, consistent with it’s being part of the minimal binding site for
CaN21. The stronger VDI establishes the CaN-interaction site as a
VDI-negative regulatory motif of Cav1.2. Moreover, like the truncated

channel, these results suggest a relief of an inhibitory component,
reminiscent of the auto-inhibitory, PKA-dependent regulation of the
cardiac channel37.

The regulation VDI through the CaN binding site was further
supported pharmacologically, using CsA. This potent and selective
CaN inhibitor significantly increased VDI, suggesting that CsA
alleviates an inhibitory constitutive constraint of CaN on VDI.
Presumably, an altered interaction of the catalytically-inactive
CaN, which remains bound to the CaN-motif at the C-tail21, inter-
fered with the normal constitutive binding of CaN to the C-tail
domain, thereby eliciting complete VDI. The pharmacological
approach thus confirmed the results of mutagenesis (A1929P, HH/
AA), demonstrating the role of CaN as a negative-regulator of VDI
of the cardiac channel. The convergent effects of CsA at the CaN
binding-site at a11.2 C-terminus, further confirms this motif as being
a VDI-regulatory site of Cav1.2. This conclusion is congruent with
previous findings in mouse ventricular myocytes that CaN inhibition
by CaN inhibition by CsA increases the rate of decay of evoked
[Ca21] transients18.

We then explored whether the CaN regulatory effect could be
applied to the slow inactivating Timothy channel13,14,33–35. The mech-
anism by which the G406R mutation decelerates VDI is not yet fully
understood14,38–41,36. Several reports suggested that G406R generates a

Figure 4 | A mutation within CaN binding motif of TS a11.2/G406R subunit increases VDI of the Timothy channel. (a) Schematic illustration and

location (b) of the Timothy a11.2G406R subunit and the His1926A, and His1927A mutations within the CaN binding motif of the human a11.2 subunit

(c) Normalized ICa (left) and IBa (right) records from representative oocytes expressing Cav1.2/G406R and Cav1.2/G406R/HH/AA (d) The voltage-

dependence of inactivation of Cav1.2G406R and Cav1.2G406R/HH/AA in Ca21 (left) and Ba21 (right). Values are displayed as mean 6 S.E.M

(n510212). Peak currents for ICa a11.2/G406R, 2493 6 74 nA (n513); a11.2/G406R/HH/AA, 2338 6 52 nA (n514) For IBa, a11.2/G406R, 2377 6

61 nA (n513); a11.2G406R/HH/AA 2518 6 23 nA (n510).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 366 | DOI: 10.1038/srep00366 6



phosphorylation site for the Ca21/calmodulin–dependent kinase II,
and increases the open probability (Po) of CaV1.2-LQT8 (TS) chan-
nels see also32,39,42. More recent studies have shown that CaV1.2-
LQT8 clusters display a higher probability of coordinated openings
and closings41, and a disruption between activation and inactivation
of the TS channel43.

Similar to A1929P and the HH/AA mutated wt channels, both
the A1929P and the HH/AA mutated Timothy channels showed a
significant increase in the rate and the extent of VDI. The impact
of either the single or the double mutations on the VDI of the wt
and the Timothy channels is consistent with altered CaN binding
to the regulatory motif at the human C-tail of a11.2. These data
support our model, whereby the CaN binding site at a11.2 serves
as a negative-VDI regulatory motif. These results are also consist-
ent with the findings that knockout of the A-kinase anchoring
protein AKAP150, an associated scaffolding protein that targets

CaN to subcellular sites19 could restore arrythmogenic mechan-
isms in LQT836.

Furthermore, because the non-TS mutated channel Cav1.2/HH/
AA showed a similar increase in VDI (Fig. 1), the results favor the
interpretation that the distinct CaN-regulatory inactivation deter-
minant at the a11.2 C-tail acts independently of G406R impairment
of VDI.

Finally, using CaN selective inhibitors also showed an increase in
VDI of the TS. Similar to the wt channel, CsA was very effective in
increasing the rate of inactivation and also FK-506 (Tacrolimus), a
structurally unrelated CaN inhibitor also showed acceleration of
channel inactivation.

Based on these results, we suggest that CsA or FK-506 have the
potential to prevent cardiac associated pathology, and be clinically
beneficial for correcting the cardiac malfunction of Timothy
patients. These highly efficient CaN inhibitors, which are mainly

Figure 5 | Cyclosporine A effectively restores VDI of Timothy channel G406R. (a) Normalized ICa (n510) (left) and IBa (n511) (right) records from

representative oocytes expressing Cav1.2/G406R, in the presence or in the absence of 1 mM CsA. (b) Steady-state inactivation of Cav1.2G406R in the

presence of increasing CsA concentrations, as indicated for ICa (left) and IBa (right). (c) Efficacy of CsA on VDI. Normalized maximal steady-state

inactivating ICa at 110 mV (left) and IBa at 0 mV (right) plotted at increasing CsA concentrations. Data displayed as mean 6 S.E.M (n58212). Peak

currents for ICa a11.2/G406R, 2377 6 40 nA (n513); a11.2/G406R 1 50 nM CsA, 2229 6 43 nA (n511); IBa, a11.2/G406R, 2377 6 61 nA (n512);

a11.2/G406R 1 50 nM CsA, 2194 6 38 nA (n510).
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used as immunosuppressant drugs, increase VDI at low concentra-
tions and hardly alter wt ICa kinetics.

Thus, CsA can be added to the list of proposed treatments to
ameliorate TS related disorders42,44,45. Since TS patients often suffer
from infections that can be fatal, the use of immunosuppressant’s
would seem to be contraindicated. Nevertheless, in light of the rather
small doses needed to enhance voltage inactivation, the shift in V1/2,
the severity of the disease, and the absence of other alternative drugs to
treat this syndrome, CaN inhibitors could be of potential clinical use.

In summary, detailed characterization of the kinetics of Cav1.2
and Cav1.2G406R inactivation has identified the CaN-binding site
at the C-tail of a11.2 as a VDI-negative-regulatory motif. The regu-
lation of VDI by CaN, a cytoplasmic Ca21/calmodulin-dependent

protein phosphatase, is consistent with the model of Findlay4, in
which an on/off phosphorylation-dephosphorylation switch is pro-
posed to be responsible for converting a non-inactivating into an
inactivating channel. These results also provide a novel rational for
‘‘repairing’’ a non-inactivating Timothy channel by targeting the
VDI regulatory motif. The highly selective CaN inhibitors, CsA or
FK-506, which effectively increase VDI, offer pharmacologic oppor-
tunities as potential candidates for treating Timothy patients.

Methods
Reagents. Cyclosporin A (CsA, M.W 1202.61) was purchased from Novartis. CsA
was dissolved in DMSO to a final concentration of 42 mM. FK-506 (Tacrolimus) was
purchased from LC Laboratories. FK-506 was dissolved in DMSO to a final

Figure 6 | FK-506 restores Timothy channel inactivation. ICa was elicited in oocytes expressing a11.2G406R/a2d1/b2b (Cav1.2G406R) from a holding

potential of -80 mV to various test potentials in 5 mV increments, in response to 1200 ms pulse (a) representative ICa traces elicited in the absence and in

the presence of 0.1, 1.0 and 10 mM FK-506 (b) Current–voltage relationship of G406R in the absence and in the presence of FK-506, at the indicated

concentrations (c) Peak current amplitudes normalized to maximum current (taken from (b)) shown as I/Imax ratios of inward currents of G406R

channel in the presence and in the absence of FK-506 are plotted against test potentials and displayed with a Boltzmann fit (mean 6 S.E.M; n 5 10–12;

more details in supporting online text) (d) The time constant of activation (tact, mean6S.E.M., n510), fitted by a single exponent (e) Steady-state

inactivation recorded in stimulated wt (left) and G406R channel (right) with or without 1 mM CsA, according to a multistep protocol of VDI

measurements (Fig. 1C inset). Normalized currents were fitted to the Boltzmann equation (Methods).
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concentration of 10 mM. CsA and FK506 were diluted in the appropriate Ba21 or
Ca21 solutions to the desired concentration prior to the experiment.

cDNA Constructs. The full-length human a1C wt channel (accession # Z34815), the
full-length human a1C G406R, rabbit a2d1 (accession # NM_001082276) and rabbit
b2b (accession # X64298) were all cloned in the expression vector pSPORT expression
vector. These constructs all were a kind gift from Dr. M. Sanguinetti (University of
Utah).

Single mutation. The A1929P mutation was introduced via site-directed mutagenesis
of the human a11.2 or a11.2/G406R using the following primers: Forward Primer TTG
CAT CTG GTT CAT CAT CAG CCA TTG GCA GTG GCA GGC CTG AGC, reverse
primer: GCTCAGGCC TGC CAC TGC CAA TGG CTG ATG ATG AAC CAG ATG
CAA.

Double mutation. The H1926A, H1927A mutations were introduced via site-directed
mutagenesis of the human a11.2 or a11.2/G406R using the following primers: Forward
Primer-AGA CAG TCC TGC CCT TGC ATC TGG TTG CTG CTC AGG CAT TGG
CAG TGG CAG GCC TGA G Reverse Primer-CTC AGG CCT GCC ACT GCC AAT
GCC TGA GCA GCA ACC AGA TGC AAG GGC AGG ACT GTC T.

Mutagenesis was performed by PCR of the human template channel using Phusion
enzyme (Finnzymes) followed by cleavage with Dpn I and transformation into XL-10
Gold cells (Startagene).

Two-electrode voltage-clamp recordings in Xenopus oocytes. Stage V and VI
oocytes were surgically removed from female Xenopus laevis performed as
described46. Capped polyA cRNA from linearized cDNA templates encoding wt or
mutant human Cav1.2 subunit a11.2 (5–7 ng), rabbitb2b (2.7 ng), and rabbita2d1 (5–
7 ng) subunits were co-injected into oocytes and whole-cell currents were recorded
using the standard two-electrode voltage-clamp configuration as described
previously46. Briefly Voltage and current 1% agar cushioned electrodes (0.3–0.6-
megohm tip resistance) were filled with 3 M KCl. Prior to recording for 15 min,
oocytes were injected with 40 nl of solution containing 5 mM HEPES, pH 7.0, and
5 mM of the Ca21 chelator 1,2-bis (2-aminophenoxy) ethane-N, N, N9, N9-tetraacetic
acid (potassium salt) final concentration (in oocyte).

Activation kinetics. The activation time constants were determined by fitting the raw
current data with the equation: I(t) 5I max[1-exp(t/tact)], where I(t) indicates the
amplitude of current at time t, I max is the maximum amplitude, and tact is the time
constant for activation. Each trace was fitted separately according to Boltzmann, and
the averaged values were plotted. Cav1.2 activation was fitted to single exponential
function. All quantitative results are given as the mean 6 S.E. (n 5 6–10)46.

Steady-state inactivation. A multistep protocol was used to determine the steady
state of inactivation. A 250 ms control step was applied to 120 mV, followed by a
150 ms repolarization step to -100 mV. Inactivation was tested by applying 4.5 s
conditioning pulses from 2100 mV to 120 mV in 10 mV increments, followed by a
second test pulse of 250 ms to 120 mV.

Voltage-dependence of Ca21 and Ba21 current inactivation was determined with a
two-pulse protocol47. The fraction of the non-inactivating current was recorded at the end
of the pulse at 120 mV, and normalized data were fitted by a single Boltzmann function.

Data acquisition and analyses were performed using pCLAMP9 (Axon
Instruments). Currents were filtered at 2 kHz and digitized at 10 kHz. Data were
fitted to a Boltzmann function to obtain half point (V1/2) and slope factor (k) for the
voltage dependence of CaV1.2 inactivation. Data are presented as mean 6 SEM. The
protocol of voltage inactivation is shown in Fig. 1C inset. The fraction of the non-
inactivating current was recorded at the end of the pulse at 120 mV, and normalized
data were fitted by a single Boltzmann function.

Voltage clamp and data analysis. Inward calcium current (ICa) and barium current
(IBa) were elicited from a holding potential of 280 mV to various test potentials at
5 mV intervals, by a 1500 ms test pulse.

Channel kinetics was recorded using the standard two-electrode voltage clamp
method48. Recordings were made in Ba21 solution (in mM): 5Ba(OH)2, 50 N-methyl
d-glucamine, 1 KOH and 5 HEPES (pH 7.5), titrated to pH 7.5 [(CH3)2SO4] or in
Ca21 solution (in mM): 5Ca(OH)2, 50 N-methyl d-glucamine, 1 KOH and 5 HEPES
(pH 7.5), titrated to pH 7.5 [(CH3)2SO4]48.

Data analysis. Current inactivation. The fraction of peak current remaining at the
end of a 1,000-ms depolarization (r1000) or at 200 ms (r200), divided by the maximal
current was used to quantify the level of inactivation.

Steady state inactivation. curves were fitted by a single Boltzmann distribution with I/
Imax5C/{11exp [V1/22Vm/k]}1(12C), where C5maximal steady-state inactiv-
ating current (Cmax), V1/2 5midpoint of inactivation, Vm is the conditioning voltage
and k5slope parameter.

The software packages used was pClampfit 9.0 (Axon Instruments, Foster City,
CA, USA) and Origin 7.5 (MicroCal).>
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