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ABSTRACT Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell’s
genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope
and composed of proteins termed nucleoporins (or “Nups”), and (2) nuclear transport factors that recognize the cargoes to be
transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory
role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we
summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly
conserved features of this transport system, revealing the structure and function of the NPC; the NPC’s role in the regulation of gene
expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins.
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ALTHOUGH considered “simple,” its amenability to mo-
lecular and genetic interrogation has established baker’s

yeast as an outstanding model system for cell biologists.
Moreover, in the context of the Eukaryota, Saccharomyces
cerevisiae is closely related to humans (both being members
of the opisthokonts). Thus, interrogation of the fundamental
biology of yeast has proven to be not only comparatively
facile, but also highly relevant to human biology, both mor-
phologically and mechanistically. Indeed, yeast has remained
at the forefront of studies on the nucleus—the defining char-
acteristic of eukaryotes—for several decades.

Eukaryotic chromosomes are housed within the nucleus,
which is delimited by the two parallel membranes of the
nuclear envelope (NE). The evolution of this physical barrier
endowed eukaryotes with a critical control mechanism
segregating the sites of gene transcription and ribosome
biogenesis from the site of protein synthesis. This compart-
mentalization allows cells to strictly coordinate numerous
key cellular processes, but it also presents cells with the
challenge of selectively managing the transport of a bewil-
dering number of proteins and RNAs between the nucleus
and cytoplasm. This is accomplished by the presence of “nu-
clear pores,” which arise at points where the inner and outer
NE membranes conjoin to form circular channels across the
nuclear envelope. Within these pores sit large proteinaceous
complexes, appropriately named nuclear pore complexes
(NPCs), which, in conjunction with soluble transport factors,
govern all biomolecular transport into and out of the nu-
cleus. Beyond this fundamental control of transport, the
NPC has adopted a host of other activities by acting as a spa-
tial landmark or anchor site for many of the machineries
that directly control gene activity and transcriptional pro-
cessing (reviewed in Ahmed and Brickner 2007; Hetzer
and Wente 2009). As a transporter, it must allow small mol-
ecules to pass as freely, prevent most macromolecules from
crossing, and permit the quickest possible passage of se-
lected macromolecules bidirectionally across the NE. As an
anchor, it must allow free communication between the at-
tached control machineries and the chromatin or transcripts
that they regulate without hindering nuclear transport. One
can thus also consider the NPC as a major way station in
eukaryotes, interacting with and regulating DNA, RNA, and

membranes and communicating between the cytoplasm, nu-
cleoplasm, and ER lumen. Because of this, the subject of the
nuclear pore complex and nuclear transport is a huge one,
far beyond the scope of any single review. Our aim here is
therefore to give an overview, including references to many
excellent reviews that detail particular areas of study.

Structure and Composition of the NPC

Tomographic electron cryomicroscopy and high-resolution
scanning electron microscopy on rotary-shadowed speci-
mens have shown that the yeast NPC shares its overall
architectural features with those studied in other eukar-
yotes, although it is somewhat smaller, being �100 nm in
diameter and �40 nm in height as compared with �130 nm
· �80 nm for its vertebrate counterpart (Yang et al. 1998)
(Figure 1). The core of the NPC consists of an octagonally
symmetrical cylinder, the axis of which lies perpendicular to
the plane of the NE. This core is made of coaxial inner, outer,
and membrane rings surrounding a central channel (or “cen-
tral transporter”) of �40-nm diameter through which virtu-
ally all nucleocytoplasmic trafficking occurs (membrane
proteins excepted). The circular membrane of the nuclear
pores actually passes between the membrane ring and the
outer/inner rings, thus anchoring the NPC firmly into
the NE. Eight short filaments can be seen to project from
the core into the cytoplasm, and, similarly, eight filaments
extend �50 nm into the nucleoplasm, where they conjoin
distally to form a structure said to resemble a “basket” on
the nuclear face of the NPC (Fahrenkrog et al. 1998; Yang
et al. 1998; Kiseleva et al. 2004) (Figure 1). Starting in
1990, researchers took advantage of yeast genetic screens
as well as cross-reacting monoclonal antibodies made
against vertebrate NPCs to identify the first NPC compo-
nents (termed nucleoporins or “Nups”) in yeast. Genetic
and biochemical methods then steadily and rapidly filled
in the list of yeast Nups (reviewed in Wente and Rout
2010), ultimately culminating in the yeast NPC being the
first to have its composition cataloged (Rout et al. 2000).
Nevertheless, the precise definition of what constitutes
a “Nup” remains somewhat arbitrary, as many proteins that
associate with the NPC do so transiently, with varying dwell

856 J. D. Aitchison and M. P. Rout



times, and some NPC-associated proteins also extend their
functions and localizations beyond the NPC (Arib and Akhtar
2011).

The sheer size and flexibility of the NPC make it difficult to
fully solve its molecular architecture by conventional techni-
ques. Therefore, an orthogonal approach has been taken; large
and diverse sets of proteomic data were amassed and a
computational method for using these data was developed to
define the relative positions and proximities of the yeast NPC’s
constituent proteins. A corresponding average protein density
map represents the position of every Nup with a precision of
�5 nm, sufficient to resolve the molecular organization of the
entire NPC (Alber et al. 2007a,b) (Figure 2A). The resulting
map agrees with complementary data in both yeast and verte-
brates (reviewed in Strambio-de-Castillia et al. 2010).

Overall Composition

Computational fold predictions and biochemical domain
mapping have analyzed the fold composition of every Nup
(Devos et al. 2004, 2006; Dokudovskaya et al. 2006), show-
ing that the NPC is surprisingly simple in terms of fold com-
position, consisting of a few, highly repetitive fold types
(Figure 3). This finding, supported by recently solved crystal
structures for several Nups (Figure 2B) (see below), indi-
cates that the bulk of its structure has evolved through ex-
tensive gene duplication from a simple precursor set of only
a few proteins. Indeed, each spoke can be divided into two
parallel columns, in which every Nup in the first column
carries a similarly positioned homolog in the adjacent col-
umn (Figure 2A). This pattern has been interpreted as
resulting from at least one (and likely more) ancient ge-
nome duplication events, which gave rise to the two col-
umns composing each spoke. S. cerevisiae is one of several
related yeast that have undergone a whole-genome duplica-
tion with subsequent gene loss (Wolfe and Shields 1997;
Kellis et al. 2004). Yeast-specific homologous Nup pairs such
as Nup116p/Nup100p, Nup157p/Nup170p, and Nup53p/
Nup59p, which exist only as single proteins in vertebrate
NPCs (Cronshaw et al. 2002), are segregated pairwise into
the two columns in each spoke and so enhance the partition-
ing of Nups to these columns, although the functional rea-
son for maintaining these proteins as homologous pairs in
yeast is still not clear (Figure 2). Most of the motifs, domains
and even domain arrangements, and Nup types found in
yeast NPCs are also found in vertebrate NPCs, and even in
the NPC from the most divergent eukaryote studied so far
(Trypanosoma; member of the kinetoplastida), albeit with
some variations (DeGrasse et al. 2009). This implies strongly
that the basic structural elements of the NPC are conserved
across all eukaryotes and that the NPCs of the last common
ancestor of all eukaryotes had most of the major attributes
of modern NPCs. It also means that studies of the yeast NPC
are reasonably representative of the Eukaryota as a whole
and are relevant for medically significant organisms, includ-
ing ourselves.

Figure 1 Visualizing the yeast NPC. (A) Transmission EM transverse
sections of the NE revealing cytoplasmic filamants (large arrows), nu-
clear baskets (arrowheads), and interbasket connections (small arrows)
(Rout and Blobel 1993). (B) Scanning EM showing a bird’s eye view of
cytoplasmic filaments (top, arrow) and the nuclear basket (bottom, ar-
rowhead) (Kiseleva et al. 2004). (C) En face slice of the mass density
distribution from a cryoEM map of the yeast NPC (Yang et al. 1998).
Two equivalent peaks per spoke unit are seen for the outer rings (1–3)
and the inner rings (2–4) (see Figure 2). (D) En face surface-rendered
view from a cryoEM map of the yeast NPC (Yang et al. 1998). (E)
Projections of Nup mass density, derived from the combined Nup local-
ization volumes (Alber et al. 2007b). (F) The structured nucleoporin
domains of the NPC, represented by a density contour approximated
to the combined volume of the 456 nucleoporins composing the NPC
(Alber et al. 2007b).
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Figure 2 (A) Major structural features of the yeast NPC (based on the architectural map of Alber et al. 2007a,b); see main text for details. (B) Map of
protein positions in the yeast NPC (based on the architectural map of Alber et al. 2007a,b), with examples of the atomic structures of pieces of Nups
where known: Nic96 (2RFO) (Schrader et al. 2008), Nup84/Nup145C/Sec13 (3IKO) (Nagy et al. 2009), Nup85/Seh1 (3EWE) (Brohawn et al. 2008),
Nup116 (2AIV) (Robinson et al. 2005), Nup120 (3F7F) (Seo et al. 2009), Nup133 (3KFO), Nup145N (3KEP) (Sampathkumar et al. 2010), Nup159 (1XIP)
(Weirich et al. 2004), and Nup170 (3I5P) (Whittle and Schwartz 2009).
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Membrane Ring

The first class of NPC components is the set of three
membrane proteins, called “poms,”which compose the mem-
brane ring forming a distinct subcomplex in the NPC (Alber
et al. 2007b; Onischenko et al. 2009) (Figure 2). All are pre-
dicted to carry transmembrane a-helices, which likely help
to anchor the NPC in the NE, interact with core components
and one another, and have functional redundancy perhaps as

membrane domain anchors and stabilizers (Chial et al. 1998;
Miao et al. 2006). This is consistent with a network of inter-
actions formed between these three proteins (Onischenko
et al. 2009). The first to be discovered and largest pom is
Pom152p, a type II transmembrane protein (Wozniak et al.
1994; Tcheperegine et al. 1999). Secondary structure predic-
tions reveal numerous repetitive motifs in the lumenal do-
main that are strongly indicated to form a series of cadherin
folds (Devos et al. 2006) (Figure 3). This cadherin domain is

Figure 3 Map of major fold-type positions in the yeast
nucleoporins [adapted from Devos et al. (2006)]. Here,
for the sake of clarity, we define Nups as proteins that
appear stoichiometrically and stably associated with the
NPC. The sequence of each yeast Nup is represented to
scale as a thin black horizontal line. Predicted transmem-
brane helices are shown in dark green, cadherin domains
are in dark blue, coiled coils and a-helical coils are shown
in red. b-Propellers are shown in cyan, a-solenoid domains
are in magenta, the autoproteolytic domain is in yellow,
and the RRM is shown in orange. Unstructured regions are
shown by an empty box, except for the FG-repeat regions,
which are colored blue-green for low-DERK (Asp, Glu, Arg,
Lys) regions and light green for high-DERK regions; the
position of each FG repeat is shown as a short green
vertical line below each horizontal black sequence line.
Representative models are shown on the left of the Nup
domains and are colored according to the fold type. Dark-
gray bars below each horizontal sequence line mark the
position of crystal structures solved for yeast Nups (e.g.,
N-terminal region of Nup159). Position of folds is based on
Devos et al. (2004, 2006); and position and type of FG
repeat is based on Yamada et al. (2010).
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predicted to form homophilic binding interfaces (Bryant and
Stow 2004) and likely explains the oligomeric lumenal ring.
Much less is known about Pom34. It is a small protein con-
taining two transmembrane helices and two small domains
both facing into the core scaffold. As yet, no function has been
assigned to Pom34—even cells lacking both Pom34 and
Pom152 are viable—and no nonfungal homolog has yet been
found. However, like Pom152, Pom34 genetically interacts
with several core scaffold proteins in ways that suggest these
poms’ functions partially overlap (see below) (Madrid et al.
2006; Miao et al. 2006). Ndc1p (nuclear division cycle 1) is
also a pom but was named differently because it was actually
first characterized due to the effect of one of its mutants on
the assembly of the spindle. Indeed, it turns out that, like
several other Nups, Ndc1p plays at least two roles in the cell:
in the case of Ndc1p, one in the NPC and one in the spindle
pole body (SPB)—themitotic spindle organizer. In yeast, both
macromolecular assemblies are embedded in the NE, and it
seems that Ndc1p helps to insert and attach both into their
respective nuclear pores. Ndc1p has (at least) six transmem-
brane helices and a carboxy-terminal domain that interacts
with the core scaffold and other poms (Alber et al. 2007b;
Onischenko et al. 2009) and has confirmed homologs in both
Schizosaccharomyces pombe [i.e., cut11, also with known roles
in spindle assembly and an NPC component (West et al.
1998)] and metazoa [i.e., NDC1 (Lau et al. 2004; Mansfeld
et al. 2006; Stavru et al. 2006)]. Dissecting the NPC function
of Ndc1p from its SPB function has been difficult, but several
lines of genetic (Lau et al. 2004) and molecular biological
(Onischenko et al. 2009) evidence suggest that Ndc1p plays
an important role, with the help of the other poms, in NPC
assembly (see also below).

Core Scaffold: Inner and Outer Rings

The second class of NPC components comprises the core
scaffold proteins. This scaffold is composed of an inter-
locking lattice of roughly a dozen evolutionarily conserved
structural proteins that link together to form a core layer
giving the NPC shape and strength (Figure 2). Fold compo-
sition analyses revealed that the core scaffold consists of
Nups composed of only two fold types in three arrange-
ments: consisting almost entirely of a b-propeller fold, or
almost entirely of a-solenoid-like/helix-turn-helix repeat
folds, or a b-propeller followed by an a-solenoid-like domain
(Figure 3). These fold types together are characteristic of
components of the clathrin, COPI and COPII membrane ves-
icle-coating complexes (reviewed in Field and Dacks 2009),
and related complexes such as the intraflagellar transport
complex (Jekely and Arendt 2006) and the HOPS/CORVET
complexes (Nickerson et al. 2009). The latter b-propeller/
a-solenoid combination is particularly characteristic of this
family, as these protein types interlock in a variety of related
ways into a lattice forming their vesicle coats. These simi-
larities were recently further underscored by atomic struc-
tures solved for several core scaffold Nups (Figure 2B)

(Boehmer et al. 2003; Berke et al. 2004; Hsia et al. 2007;
Jeudy and Schwartz 2007; Brohawn et al. 2008; Debler et al.
2008; Schrader et al. 2008; Brohawn and Schwartz 2009;
Leksa et al. 2009; Nagy et al. 2009; Seo et al. 2009; Whittle
and Schwartz 2009) as well as clathrin (reviewed in Owen
et al. 2004) and COPII and COPI components (Stagg et al.
2006; Fath et al. 2007; Lee and Goldberg 2010; reviewed in
Stagg et al. 2007, 2008). This fold similarity, analyzed ini-
tially in yeast, led to the “protocoatomer hypothesis,” which
proposes that a simple membrane-curving module, made
primarily from b-propeller and a-solenoid folds, was a com-
mon ancestor for NPCs and coated vesicles that originated in
the precursors to the ancient last ancestor common to all
eukaryotes (Devos et al. 2004, 2006; Alber et al. 2007a,b).
This protcoatomer gave these ancestors the ability to gener-
ate internal membrane systems by invagination of the
plasma membrane and then to manipulate and elaborate
these systems, eventually leading to the evolution of the
ER, Golgi, and nucleus that characterize modern eukaryotes
(Field and Dacks 2009).

The core scaffold somewhat resembles a vesicle coat, as it
forms a discrete layer completely following the curve of the
pore membrane, effectively coating it (Figure 2). Thus, it
defines the size of the central tube/transporter of the NPC
and the height of the NPC core, and all other Nups and poms
are attached to either the inner or the outer face of this coat
(Figure 1). Biochemical studies have shown that the core
scaffold Nups compose several subcomplexes that appear
to function as “building blocks” during NPC assembly and
can even exchange with a soluble pool in mature NPCs
(Lutzmann et al. 2002; D’Angelo et al. 2006; Makio et al.
2009). Morphologically, the scaffold is made of two inner
rings, sandwiched between and interconnected with two
outer rings, such that the nuclear and cytoplasmic halves
of the NPC have one inner and one outer ring each (Figure
2). Although there is still some debate on the matter, a con-
sensus remains that in both yeast and vertebrates these in-
ner rings are compositionally, as well as morphologically,
distinct (Tran and Wente 2006; Alber et al. 2007b).

Four large Nups, each just under 200 kDa in size, compose
the inner rings: Nup188p and Nup192p (primarily composed
of a-solenoid-like folds) and the homologous Nup170p and
Nup157p (Figure 2) (made from the clathrin-like pattern of
an amino-terminal b-propeller followed by an a-solenoid-
like domain), proteins proposed long ago to be core compo-
nents of the NPC (Aitchison et al. 1995b). The inner rings
are adjacent to each other at the equator of the NPC in the
same plane as the three poms of the membrane ring with
which they interact extensively to anchor the core scaffold
to the NE (Alber et al. 2007b; Onischenko et al. 2009). Nu-
merous mutations in all four proteins demonstrate extensive
genetic interaction networks with each other and with the
membrane ring components, which likely underscore the
functional importance of the inner ring in being a keystone
of the core scaffold and in anchoring the NPC to the pore
membrane (Aitchison et al. 1995b; Tcheperegine et al. 1999;
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Miao et al. 2006). Moreover, on both the nuclear and cyto-
plasmic sides of each spoke, one copy of the Nup Nic96p is
anchored through Nup192p and a second copy through
Nup188p, linking the inner ring to the other internal struc-
tures of the NPC (Figure 2) (see below).

Structurally, the most extensively studied set of core
scaffold proteins are the seven Nups that compose the
yeast outer rings, first identified and characterized by the
Hurt laboratory; Nup133p, Nup120p, Nup145Cp, Nup85p,
Nup84p, Seh1p, and Sec13p form a discrete complex that
can be biochemically isolated and is termed the Nup84 com-
plex (Figure 2B) (Siniossoglou et al. 1996, 2000; Lutzmann
et al. 2002; Flemming et al. 2009). Importantly, the evolu-
tionary link between NPCs and vesicle-coating complexes is
supported by the fact that Sec13p is shared with the Sec13/
31 COPII vesicle-coating complex (Siniossoglou et al. 1996;
Salama et al. 1997; Devos et al. 2004). Moreover, just
like the inner-ring proteins, all Nup84 complex proteins
are formed almost entirely by a b-propeller fold (Seh1p,
Sec13p), an a-solenoid-like fold (Nup85p, Nup84p,
Nup145Cp), or an N-terminal b-propeller and a carboxy-
terminal a-solenoid-like fold (Nup133p, Nup120p), again
common to vesicle-coating complexes (Devos et al. 2004,
2006) (Figure 2B and Figure 3). Excitingly, crystal structures
primarily from the Blobel and Schwartz laboratories have
begun to piece this complex together at the atomic level
(Figure 2B) (Hsia et al. 2007; Brohawn et al. 2008; Debler
et al. 2008; Brohawn and Schwartz 2009; Leksa et al. 2009;
Nagy et al. 2009; Seo et al. 2009; Whittle and Schwartz
2009). Electron microscopy studies have shown that the
Nup84 complex formed an extended Y structure (Siniossoglou
et al. 2000; Lutzmann et al. 2002; Kampmann and Blobel
2009), and pioneering work from the Hurt laboratory re-
constituted this complex from bacterially expressed pro-
teins and showed that the two short arms of this Y are
composed, respectively, of Nup120p and Nup85p+Seh1p,
while Nup133p, Nup84p, and Nup145Cp/Sec13p form the
main stalk (Siniossoglou et al. 2000; Lutzmann et al. 2002).
There is evidence that this complex is flexible (Kampmann
and Blobel 2009), perhaps reflecting the known flexibility
of the NPC in response to changes in NE shape and during
its assembly (see below).

Few interactions have been found between the compo-
nents of the Nup84 complex and the rest of the NPC, al-
though it connects with the inner rings through, for
example, a Nup157p–Nup120p connection (Lutzmann et al.
2005; Alber et al. 2007a,b). Mutations in any of these seven
Nups are often characterized by temperature sensitivity,
messenger RNA (mRNA) and pre-ribosomal export prob-
lems, and aberrant NPC assembly. In particular, a so-called
“clustering” phenotype was first described in mutants of
the Nup84 complex components in which the NPCs can be
seen to cluster into one or a few patches in the NE (Doye
et al. 1994; Aitchison et al. 1995a; Heath et al. 1995; Li
et al. 1995; Pemberton et al. 1995; Goldstein et al. 1996;
Siniossoglou et al. 1996). That outer-ring Nup mutants

cause mislocalization of otherwise reasonably functional
NPCs in the plane of the NE may point to a role for this
structure in keeping the NPC stably located in the pore
membrane. The outer rings are strategically placed at the
point where the pore membrane joins the coplanar outer
and inner NE membranes, and it seems reasonable that a
major role for them is to ensure the smooth transition of the
pore membrane into the inner and outer NE membranes
(Figure 2) (Alber et al. 2007b).

Phenylalanine-Glycine Nups

It was the field’s catalog of the composition of the yeast NPC
that led to a surprise. No homologs of mechanochemical
proteins or NTPases of any kind that could physically drive
a gating process were found as components of the NPC.
Instead, strikingly, the cataloging revealed that over one-
third of Nups in the NPC shared a highly characteristic
repetitive motif, consisting of multiple repeated phenylala-
nine-glycine (FG) pairs spaced by �20 mainly polar amino
acids (Figure 3). Although these proteins are found in all
eukaryotes studied, once again they were first sequenced
from yeast (Hurt 1988; Davis and Fink 1990; Nehrbass
et al. 1990), and the yeast “FG Nups” remain the best stud-
ied. On the basis initially of work in yeast, two flavors of FG
Nups were described: FxFG Nups typified by Nsp1p and
GLFG Nups typified by Nup100p (on the basis of the typical
sequence of their FG repeat), the former having some
charged amino acids in their spacers and the latter having
relatively uncharged spacers (reviewed in Rout and Wente
1994). These two flavors of FG repeat also appear to be
conserved (Figure 3), although by examination of orthologs
in syntenic yeasts it was shown that the spacer sequences
between each of the FG repeats evolved more rapidly than
did other Nups (Denning and Rexach 2007), a situation
common to the FG-repeat regions of all eukaryotes
(DeGrasse et al. 2009). On the basis of various physical
measurements of purified and bacterially expressed pro-
teins, a consensus has emerged that the FG-repeat regions
of FG Nups take on a natively unfolded structure both in vitro
and in vivo, such that they form long, disordered flexible
filaments (Denning et al. 2003; Denning and Rexach
2007; Lim et al. 2006a,b, 2007a, 2008; Patel et al. 2007;
Yamada et al. 2010); the lack of structural constraints there-
fore likely explains the lower evolutionary constraints on
sequence conservation of these repeat regions (Denning
and Rexach 2007).

FG Nups also usually carry small structured domains,
which serve to anchor them to the NPC (Alber et al. 2007b).
These are generally predicted to be coiled-coil or a-helical
by fold analysis and comparison to vertebrate homologs
(Melcak et al. 2007), in addition to b-sandwich and (oddly)
RNA recognition motif (RRM) folds (Figure 3) (Devos et al.
2006). Nup82p and Nic96p seem to serve as linkers to at-
tach many of the FG Nups to the core scaffold (mainly
through the inner-ring Nups), such that the inner surface
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of the scaffold is lined with FG Nups whose filamentous FG-
repeat regions fill the central channel and extend into the
nucleoplasm and cytoplasm (Figure 2). On both the cyto-
plasmic and nucleoplasmic sides of each spoke two copies of
Nic96p carry the FG Nups Nsp1p, Nup57p, and Nup49p and
another two copies form interactions to additional copies of
Nsp1p, such that these FG Nups face both the nucleus and
the cytoplasm. At the cytoplasmic side, Nup82p associates
with Nsp1p as well as with the cytoplasmically facing FG
Nups Nup159p, Nup116p, Nup100p, and Nup42p (Grandi
et al. 1995; Belgareh et al. 1998; Bailer et al. 2000, 2001;
A. K. Ho et al. 2000; Rout et al. 2000; Alber et al. 2007a,b).
There are also the FG Nups Nup145Np, Nup1p, and Nup60p
found on the nucleoplasmic side, connecting mainly to the
inner-ring Nups. In addition, Nup53p and Nup59p are at-
tached to Nup170p and Nic96p, and both face the pore
membrane (Figure 2). The latter two Nups may also belong
to the class of FG Nups, as they can bind transport factors
and carry degenerate FG-repeat regions that are predicted to
be natively unfolded (Marelli et al. 1998; Fahrenkrog et al.
2000b; Lusk et al. 2002; Makhnevych et al. 2003; Alber et al.
2007b). One FG Nup, Nup145p, uniquely cleaves itself in
half at its Phe605-Ser606 peptide bond to produce two sep-
arate Nups, Nup145Np (carrying the FG-repeat region and
the autoproteolytic b-sandwich domain at its new carboxy-
terminus) and Nup145Cp (a mainly a-solenoid-like protein
that forms a major component of the Nup84 complex) (Fig-
ure 3) (Wente and Blobel 1994; Teixeira et al. 1997, 1999;
Rosenblum and Blobel 1999). Although not essential in
yeast (Emtage et al. 1997), this cleavage event appears con-
served in vertebrates (Fontoura et al. 1999; Hodel et al.
2002; Sun and Guo 2008). Nup145Cp and Nup145Np re-
main linked as a dynamic complex such that Nup145Np can
shuttle between the NPC and the nuclear interior, as does its
vertebrate counterpart (Griffis et al. 2002; Ratner et al.
2007). The entirety of Nup145Np is highly conserved with
the homologous yeast nucleoporins Nup100p and Nup116p,
neither of which undergoes autoproteolysis as they lack a ho-
mologous counterpart for Nup145Cp. It seems that lineage-
specific gene duplications of an ancestral Nup145N-like
gene gave rise to the truncated versions Nup100p and
Nup116p, and likely other FG Nups also originated from
such, sometimes more ancient, duplication events (Mans
et al. 2004; Devos et al. 2006).

Collectively, the anchored FG Nups form the business end
of the NPC, as the FG-repeat domains form low-affinity, high-
specificity interactionswith transport factors involved in active
transport through the NPC and so actually form the selective
barrier in and around the central tube by providing the
binding sites for transport factors that facilitate their exchange
across the NE while excluding the passage of macromolecules
not destined for nucleocytoplasmic transport. In one sense, the
NPC can be considered a framework that provides the correct
positioning of the FG repeats, flanking and filling the central
tubewhile defining the upper diameter of the central tube and
the cargoes that transit through it (Figures 1 and 2) (Rout and

Aitchison 2001; Rout et al. 2003; Hetzer and Wente 2009;
Walde and Kehlenbach 2010).

Cytoplasmic Filaments and Nuclear Basket

While not as morphologically prominent as their vertebrate
counterparts, both cytoplasmic filaments and nuclear bas-
kets have been seen to project from the yeast NPC (Figure 1)
(Kiseleva et al. 2004). Nup159p, Nup82p, and Nup42p seem
to contribute to the cytoplasmic filaments (Kraemer et al.
1995; Hurwitz et al. 1998; Strahm et al. 1999; Rout et al.
2000; Alber et al. 2007b) and function in the last stages of
export from the NPC (below). Curiously, the protein Dyn2p,
a light chain component of the dynein microtubule motor,
binds to Nup159p and helps form a rigid filamentous struc-
ture that may stiffen the cytoplasmic filament projecting it
out from the core scaffold (Stelter et al. 2007). Yeast lack an
obvious homolog of the vertebrate Nup358, which is be-
lieved to produce the more prominent cytoplasmic filaments
in the latter (Wu et al. 1995; Matunis et al. 1998). In verte-
brates, the bulk of the nuclear basket seems to be made of
Tpr (Cordes et al. 1997; Hase et al. 2001; Frosst et al. 2002;
Krull et al. 2004; Qi et al. 2004). Tpr is a conserved �200-
kDa protein made mainly of extensive coiled-coil domains
that dimerize into long rods forming the basket struts. Two
Tpr homologs, Mlp1p and Mlp2p, exist in yeast and localize
to the region of the nuclear basket (Strambio-de-Castillia
et al. 1999). Unlike metazoa, no lamina lies interwoven
between NPCs beneath the NE, but both Mlp1p and Mlp2p
spread out along the inner face of the NE to form a delicate
network interconnecting yeast NPCs, although they are ex-
cluded where the dense crescent of the nucleolus presses
against the NE (Strambio-de-Castillia et al. 1999). Mlp2p
is additionally associated with the SPB (Niepel et al.
2005). In yeast, Mlp2p is the result of the specific genome
duplication; however, a spindle organizer-specific copy of
Tpr homologs has been independently reinvented several
times in evolution for reasons that are still unclear (Jimenez
et al. 2000; DeGrasse et al. 2009). Overall, a bewildering
array of functionalities have been ascribed to the Mlp net-
work, including roles in recruitment of transport factors, late
processing of transcripts, and epigenetic regulation of gene
expression, as will be discussed below.

Shuttling Nucleoporins

The definition of nucleoporins becomes more difficult when
one considers the dynamics of some of the classically defined
nucleoporins. Nup2p, for example, was defined as a nucleo-
porin as early as 1993 on the basis of its localization to the
NPC; however, fluorescence microscopy, subcellular frac-
tionation, and experiments monitoring its dynamics in vivo
(Dilworth et al. 2001) revealed that Nup2p actually cycles on
and off the nuclear basket and in this sense behaves more like
a soluble transport factor. Similarly, Yrb2p (yeast ran binding
protein 2; a.k.a. Nup36p) is primarily nuclear, but contains
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FG repeats, yet it only transiently associates with the NPC
(Floer and Blobel 1996). So far, all such rapidly “shuttling”
nucleoporins belong to the FG Nup family. As well as an
FG-repeat region, both Nup2p and Yrb2p carry a consensus
Ran-binding motif and may have a role in promoting the
disassembly of transport cargos; in this way, shuttling nucle-
oporins may act as mediators between the stationary and
soluble phases of transport (see below) (Dilworth et al.
2001, 2005; Gilchrist et al. 2002). In vertebrates, the dynam-
ics of Nups have been comprehensively examined, revealing
varying half-lives of each Nup on the NPC, and it seems likely
that this will be borne out in yeast (Tran and Wente 2006).
For example, Nup145Np has a localization that is biased to,
but not exclusively on, the nuclear face, while Nup116p
and Nup100p are similarly biased to the cytoplasmic face
(Suntharalingam and Wente 2003). This variation compli-
cates efforts to define a “stoichiometry” for components of
the NPC, as any number for these more dynamic Nups will be
an average of what may be a stochastic variation in Nup
number and location. We expect that, the closer we look,
the more difficult it will be to consider the NPC an autono-
mous structure; rather, perhaps it should be considered a dy-
namic assembly of proteins which to varying degrees, cycle
between the stationary and soluble phases during transport
and assembly, and functionally link the NPC to numerous
other dynamic cellular activities (see below).

NPC Assembly

NPCs are not static structures. They are assembled, and their
components appear to be capable of turning over during the
NPC’s lifetime. In many organisms, NPCs disassemble upon
NE breakdown at the beginning of mitosis or meiosis and
reassemble coordinately with the NE around the newly seg-
regated chromosomes at its end. However, yeast has a
“closed” mitosis in which the NE remains intact, such that
the NPCs remain assembled throughout the life cycle of the
cell and negate the need for NE and NPC disassembly—in
sharp contrast to the elaborate mitotic nuclear disassembly
and reassembly processes seen in metazoans (Suntharalingam
and Wente 2003). Careful analyses of serially sectioned
yeast confirmed that NPC assembly occurs continuously
throughout the entire cell cycle with a typical haploid NE
containing between �70 NPCs just after mitosis to �140
NPCs in late anaphase (Winey et al. 1997). How this assem-
bly occurs is still unclear, despite much work in both yeast
and vertebrate model systems, with most of that work in
metazoan cells (because researchers generally studied the
synchronized assembly of NPCs in mitosis), and some of the
details are only just beginning to emerge (as reviewed in
Fernandez-Martinez and Rout 2009; Hetzer and Wente
2009). Nevertheless, the processes of NPC and NE assem-
bly—and the reasons why some species opt for a closed
mitosis while other related species opt for variants of an
open mitosis [compare the ascomycetes Saccharomyces and
Aspergillus (De Souza et al. 2004; Osmani et al. 2006; Liu

et al. 2009)], remain somewhat mysterious. Work in verte-
brate cell-free systems has established, finally, that new
NPCs are indeed inserted de novo into the NE (rather than,
e.g., “budding off” from existing NPCs) (D’Angelo et al.
2006). In yeast, it is primarily genetic approaches that have
given some of these insights. As a yeast cell grows, the nu-
cleus also grows in volume and the NE enlarges its surface
area, during which time new NPCs are inserted into the NE
(Winey et al. 1997). Although not proven, it seems likely
that this process in yeast is similar to interphase NPC assem-
bly in vertebrates, which has been shown to occur through
de novo assembly of precursor building blocks recruited from
both the nucleoplasm and cytoplasm into the regions of the
NE between pre-existing NPCs (D’Angelo et al. 2006). The
continued assembly of the NPC and NE throughout the yeast
cell cycle has been used as a basis for genetic screens, select-
ing for mutants that caused mislocalization of tagged Nups.
Initially, mutants in various Nups produced phenotypes that
(if not lethal) gave a puzzling collection of different pheno-
types that were difficult to interpret in terms of NPC assem-
bly. Some made the NPCs cluster (above), whereas others
led to herniations of the NE extending over the cytoplasmic
face of NPCs to seal them (Wente and Blobel 1993, 1994).
However, more recent approaches have given more inter-
pretable phenotypes. By using a photoconvertable Dendra
tag in cells blocked and then released in NPC assembly, it
was shown that some pre-assembly Nup complexes congre-
gate on both the inner and the outer membranes of the NE,
including cytoplasmic-facing Nups on the cytoplasmic face
of the NE and nucleoplasmic/basket Nups on the nuclear
face, whereas symmetrically disposed Nups were found to
accumulate on both NE faces (Makio et al. 2009; Oni-
schenko et al. 2009). These pre-assembly complexes might
correspond to the discrete complexes found to compose the
NPC, such as the Nup84 complex (see above). Targeting of
these pre-assembly Nups to the NE seems to require certain
soluble transport factors normally used to chaperone and
power the transport of cargoes through the NPC (see be-
low), as genetic screens for conditional mutants in NPC
assembly identified Ran, RanGEF, RanGAP, and Ntf2 (see
Figure 4 and below) (Ryan and Wente 2002; Ryan et al.
2003, 2007). The karyopherin (Kap) Kap95p was also iden-
tified in these screens, and another karyopherin, Kap121p,
seems to aid Nup53p in assembling into a complex with
Nup170p (Lusk et al. 2002).

Interestingly, these mutants correspond to two key com-
ponents of the cargo-carrying transport factor pathways,
namely the b-karyopherins Kap95p and Kap121p and Ran
cycle components [Ran, RanGAP, RanGEF, and Ntf2 (re-
sponsible for transporting RanGDP into the nucleus)] (Lusk
et al. 2002; Ryan and Wente 2002; Ryan et al. 2003, 2007).
The reasons for the functional associations between NPC as-
sembly and transport factors are still being elucidated, but
similar connections have been seen in vertebrates (D’Angelo
et al. 2006). In yeast, Kap121p has been proposed to target
Nup53p to the NPC, where it is attached to the core scaffold
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component Nup170p. Indeed, recent work has revealed the
importance of the core scaffold to the early stages of NPC
assembly. Thus, when the C-terminal domain of Nup170p
is overexpressed, what appear to be intermediates of NPC
assembly accumulate both in the cytoplasm and at the NE
(Flemming et al. 2009). Similarly, in strains lacking both
Nup53p and its paralog Nup59p, depletion of Nup170p or
either of two transmembrane nucleoporins that connect
with Nup170p—Pom152p or Pom34p—also caused the ac-
cumulation of such intermediates in yeast cells (Onischenko
et al. 2009).

For an NPC to be inserted into the intact NE, both the
inner and the outer NE membranes must approach at a site
and fuse to give rise to the pore membrane, upon which the
core scaffold and the rest of the NPC can then assemble. It is
curious, therefore, that two of the three poms (Pom152p
and Pom34p) are not essential and so are dispensable for
NPC assembly and that all three poms (including Ndc1p) are
not required for NPC assembly in the closely related fungi,
Aspergillus (Liu et al. 2009). Taken together, this suggests
that there must be other transiently or dynamically associ-
ating membrane proteins that play key roles in initiating the
NPC assembly process and fusion of the inner nuclear mem-
brane (INM) and outer nuclear membrane (ONM) to form
the pore membrane.

Indeed, there has been a growing cadre of proteins that,
while not strictly Nups, play a key role in yeast NPC assembly.
As well as Ran, Ran cofactors, and the Kaps (above; Lusk
et al. 2002; Ryan et al. 2003, 2007), the two yeast reticulons
Rtn1p and Rtn2p and their interacting partner Yop1p have
been implicated in NPC assembly (Dawson et al. 2009). Rtns
and Yop1/DP1 proteins can deform and mold membranes,
having been shown to have roles in both dynamically restruc-
turing and maintaining tubular ER (De Craene et al. 2006;
Voeltz et al. 2006; Hu et al. 2008) and, in metazoans, even in
postmitotic NE shaping (Anderson and Hetzer, 2008b). Retic-
ulons have a segment that can insert into one leaflet of a
membrane, which may promote or induce membrane curva-
ture (Oertle et al. 2003; De Craene et al. 2006; Voeltz et al.
2006; Shibata et al. 2008); indeed, they are depleted in
regions of flat membrane, such as the NE between NPCs,
and are found to concentrate in curved membrane regions
such as tubular ER (De Craene et al. 2006; Voeltz et al. 2006;
Anderson and Hetzer, 2008a,b). The apparent absence of
these proteins in the mature NPC suggests that they play only
a transient role at the beginning of the assembly process,
perhaps helping the first NE membrane curving and fusion
step to make the pore membrane. Similarly, the NE/ER pro-
teins Apq12p and Brr6p are genetically linked to each other
and are necessary for normal NPC assembly and distribution.
This work indicates that both proteins are involved in main-
taining lipid homoeostasis in the ER, which is necessary for
proper NPC insertion and distribution in the NE (Scarcelli
et al. 2007; Hodge et al. 2010).

Another candidate NPC assembly factor is Pom33p, iso-
lated in a genetic screen for genes that are essential in cells

lacking Nup133p (Chadrin et al. 2010). The transmembrane
protein Pom33p and its paralog Per33p are found in both
the ER and the NE, although Pom33p shows a preferential
dynamic localization at NPCs. Pom33, but not Per33, genet-
ically interacts with Nup84 complex components and the
interacting proteins Nup170p and Ndc1p and physically
forms a direct complex with Rtn1p (Chadrin et al. 2010).
These data, plus the fact that depletion of both Nup170 and
Pom33 significantly impaired assembly of NPCs, point to
a role for Pom33p in NPC assembly or maintenance of the
NE (Chadrin et al. 2010). Pom33p thus potentially links the
reticulon membrane bending and manipulation machinery
with the assembling NPC, which together possibly either
help the transmembrane nucleoporins during the initial
membrane fusion event required for the start of NPC assem-
bly or facilitate the stabilization of the nascent nuclear pore.
Following this initial pore formation, assembly to form the
mature NPC must proceed extremely rapidly, as no naturally
occurring intermediates have been found.

Of course, the NPC core scaffold is composed almost
entirely of homologs of vesicle-coating proteins, whose
function is to mold and fuse membranes into curved
vesicles. On the basis of this similarity it has been suggested
that the Nup84 complex and the Nup170 inner-ring complex
(which interacts directly with poms) could be directly in-
volved, after recruitment to the NE, in forming a coat some-
what like those in coated vesicles that produces the nascent
pore membrane and pinches the inner and outer NE mem-
branes together in a manner analogous to pinching off
a curved vesicle (reviewed in Fernandez-Martinez and Rout
2009; Hetzer and Wente 2009).

In summary, there appear to be several main steps to
NPC assembly. Initially, accessory factors collaborate with
transmembrane and inner-ring NPC components to accu-
mulate on both the inner nuclear membrane and the outer
nuclear membrane to warp the latter into a fused pore. The

Figure 4 The nuclear transport cycle for karyopherins and their cargoes.
See Fig. 5 legend and main text for details.
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recruitment of the inner-ring components would recruit the
outer-ring components, permitting the assembly of the en-
tire membrane-coating core scaffold in the pore (Alber et al.
2007b). Rapid association of the remaining FG Nups, other
NPC components, and the nuclear basket would then com-
plete the process. However, this sequence of events remains
strictly speculative, and much remains to be understood
about the mechanism of NPC assembly in yeast or in any
other eukaryote.

It seems possible that other NE-associated structures share
at least some aspects of the NPC’s assembly process. Curi-
ously, Nup60p and Pom152p are also required for the assem-
bly and repair of the SPB (Greenland et al. 2010). Recall that
the pore membrane component, Ndc1p, has been shown to
be a shared component of both the NPC and the SPB and is
required for the assembly of both (Chial et al. 1998; Lau et al.
2004). The functional connection between the SPB and NPC
is underscored by the putative nuclear basket component
Mlp2p, which may associate with Nup60 (Zhao et al. 2008)
and connects to both NPCs and SPBs (Niepel et al. 2005). It
seems that several proteins are found at both locales, raising
the possibility that, as both NPCs and SPBs are inserted into
a membranous grommet formed from the fusion of the inner
and outer nuclear membranes, there are some commonalities
in their assembly mechanisms.

Turnover of NPCs

No repair mechanism, as such, has been found for the NPC.
Rather, it seems that a combination of some pre-emptive
replacement of components by constant turnover and di-
lution of “old” NPCs by new ones through cell growth and
division are the tactics taken to rejuvenate the NPC popula-
tion in a growing yeast population. The turnover rates of
yeast Nups are not yet precisely known, although certainly
some FG Nups exchange very quickly (Dilworth et al. 2001;
Tran and Wente 2006). Moreover, there is some uncertainty
about how “old” and “new” NPCs are partitioned between
the mother and the daughter cells upon budding. While evi-
dence was originally presented that the old NPCs are re-
tained preferentially in mother cells, potentially ensuring
that the daughters receive a fresh supply of new NPCs
(Shcheprova et al. 2008), more recent work indicates instead
that new and old NPCs partition equally betweenmother and
daughter at mitosis (Khmelinskii et al. 2010, 2011). As NPC
segregation and turnover have direct implications for aging
studies (Kaeberlein 2010), this and related topics will doubt-
less be areas of intensive future investigation.

Soluble Phase of Transport: Transport Signals
and Carriers

While NPC-mediated gating does not require an energy
input, nucleocytoplasmic transport and the accumulation
of cargoes in the nucleus and cytoplasm are driven by
the formation and maintenance of concentration gradients

across the NE by GTPases and ATPases in the nucleoplasm
and cytoplasm (Figures 4 and 5) (reviewed in Rout et al.
2003; Strambio-de-Castillia et al. 2010). Moreover, as is typ-
ical for protein sorting throughout eukaryotic cells, proteins
synthesized in the cytoplasm that are destined for the nu-
cleus carry targeting signals [generally termed nuclear lo-
calization signals (NLSs)] that are recognized by soluble
receptors, which mediate their transport. The first transport
factors to be identified and purified to homogeneity were
karyopherin a, karyopherin b, and a small Ras-like GTPase
called Ran. Through classic biochemical fractionation com-
bined with in vitro import assays, these proteins were puri-
fied to homogeneity from mammalian systems and shown
to mediate transport of reporter proteins carrying an NLS
from the SV40 large T antigen (reviewed in Pemberton and
Paschal 2005; Wente and Rout 2010). Because the yeast
genome had recently been completed, it was then a straight-
forward matter to identify orthologs in yeast (reviewed in
Wozniak et al. 1998), and soon work on the mechanisms of
nucleocytoplasmic transport was progressing in both yeast
and mammalian systems. These studies established that kar-
yopherin a (Kap60p in yeast) binds to the NLS and that
karyopherin b (Kap95p in yeast) enhances (or stabilizes)
the interaction and in turn binds to FG-repeat-containing
nucleoporins. Ran-GTP provides an important source of en-
ergy to the reaction by binding to karyopherin b as it enters
the nucleus with karyopherin a and cargo in tow, releasing
the cargo to the nucleoplasm (Figures 4 and 5). Importantly,
the versatility of yeast as a model system rapidly led to
complementary approaches and insights beyond those im-
mediately possible in mammalian systems.

It was clear that not all proteins destined for the nucleus
contain an NLS typified by SV40 large T antigen. The
diversity of cargoes and complexes that traverse the NPC is
huge, ranging from proteins to RNAs and ribonucleoproteins
(RNPs), including mRNPs and ribosomes, to viruses. Analysis
of the yeast genome revealed family transport factors
structurally related to karyopherin b (and more distantly to
karyopherin a). Other eukaryotes studied, even the most
evolutionarily divergent, seem to retain this same family of
Kaps (DeGrasse et al. 2009; Mason et al. 2009). Members
of the b-Kap family are generally large (molecular weight
of 100–125 kDa) proteins that share�20% sequence identity
with each other. Each is typified by the presence of up to�20
HEAT repeats (amphipathic helix-loop-helix motifs) that
form a large helical solenoid (with a single extended hydro-
phobic core) (Figure 5) (Cansizoglu et al. 2007). There are
apparently 14 Kaps in S. cerevisiae and at least 19 Kaps in
humans (Stewart 2003), all of which differentially bind dif-
ferent classes of nuclear transport signals, FG-repeat nucleo-
porins, and Ran; unlike the Kap60p:Kap95p dimer, all other
b-Kaps bind directly to their cargos (Figure 4).

Karyopherins responsible for importing cargoes are often
called importins, and exporters are called exportins. The
direction of transport for each karyopherin is dictated by its
differential interaction with cargoes and Ran (Figure 4). In
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cells, Ran primarily exists in two forms: in the nucleus, Ran is
maintained in its GTP-bound form by a GTP exchange factor
(RanGEF; RCC1, Prp20p, or Srm1p in yeast); this protein is
chromatin bound, thus signaling to the nucleocytoplasmic
transport system the position of the nucleoplasm by virtue
of generating a cloud of RanGTP around it. In contrast, the
Ran GTPase-activating protein (RanGAP) is localized to the
cytoplasm, so that Ran in the cytoplasm predominates in
the GDP form. Karyopherins exploit this property during
transport. As mentioned above, during an import cycle, Kaps
bind to their cargoes in the cytoplasm, and when they reach
the high Ran-GTP in the nucleus, are induced to release their
cargoes. In contrast, exportin binding to cargoes is enhanced
by the formation of a trimeric complex that includes Ran-
GTP. Thus, as this complex meets the RanGAP in the cyto-
plasm, the GTP is hydrolyzed and the complex falls apart.
Indeed, the direction of karyopherin-mediated transport
through the NPC can be reversed by inversion of the Ran
gradient (Nachury and Weis 1999). Most karyopherins are
thought to be recycled to their original compartments empty,
but in a few instances they are believed to chaperone another
cargo on their return journey (Figure 4).

Studies of prototypical interactions among constituents
of these transport pathways have shed considerable light on
the structural basis of transport (Figure 5). In the classical
pathway, the NLS binds to a long region on the inside of
the Kap60 superhelix, made of alternating a-helical turns.
Kap95p, which is also made of alternating a-helical turns,
forms a spiral with two surfaces, and the inner surface wraps
around an extended N-terminal domain of Kap60p (Figure
5) [a.k.a the importin b-binding (IBB) domain] (Cingolani
et al. 1999). The interaction of Kap95p with FG Nups is
mediated as the repeated Phe residues on the FG-repeat
regions (see below) insert into complementary repeated
pockets formed from the crevices between adjacent a-helical
repeats all along the outer surface of Kap95p’s spiral.
RanGTP binds to Kap95p (Lee et al. 2005) on the inner sur-
face of Kap95’s amino-terminal solenoid spiral, which causes
conformational changes that lead to release of Kap60p (and
cargoes) (Figure 5).

During Kap60p export, Kap60p and RanGTP are bound to
the inner surface of the Cse1p spiral (Matsuura and Stewart
2004). In this form, the IBB domain is held tightly against
the side of Kap60p, inhibiting NLS binding and leaving the
outer surface free to interact with FG repeats and thereby
carrying the complex through the NPC out of the nucleus
(Figure 5). Once in the cytoplasm, the RanGTP hydrolyzes
to RanGDP, causing the complex to dissociate. Kap60p
remains bound to its IBB even when free in the cytoplasm,
but binding to an NLS exposes the IBB and allows Kap95p to
bind, initializing another round of import.

Karyopherins and Their Cargoes

The apparent presence of a family of karyopherins, and the
knowledge that there are numerous classes of cargoes that

must be transported across the NPC, led researchers to begin
to identify cargoes for each of the karyopherins. Again, yeast
has been a tremendous model system for investigating this
fundamental question. The mainstay approach for doing so
has been to take advantage of homologous recombination
techniques to genomically tag karyopherins with an epitope
tag (like protein A) and to isolate the Kap and its associated
cargoes (Aitchison et al. 1996). Genetic perturbations of the
Kap genes have then been used to explore the consequences
with respect to the potential cargo. This approach was first
applied to Kap104p to establish that it is responsible for
importing a subclass of RNA-binding proteins (Nab2p and
Nab4p/Hrp1p) (Aitchison et al. 1996). These proteins are
major mRNA-binding proteins essential for mRNA process-
ing and export (Anderson et al. 1993). They appear to ac-
company the mRNA out of the nucleus, and upon reaching
the cytoplasm, they are recycled for another round by
Kap104p (Lee and Aitchison 1999). Mtr10p/Kap111p also
appears dedicated to this essential function; it imports
Npl3p, another essential mRNA biogenesis factor. Interest-
ingly, while both Kaps import essential proteins, neither is
essential (under the same conditions) by itself. This suggests
that Kaps must have the capability to compensate for one
another and bind to their cargoes with some promiscuity.
This was first made obvious upon examination of Kap123p.
Deletion of Kap123 is virtually without phenotypic conse-
quences in laboratory strains of yeast. Yet, Kap123p is per-
haps the most abundant of the Kaps in yeast, conserved
throughout the Eukaryota, and it binds to Lys-rich NLSs
shared by a host of ribosomal proteins and ribosome assem-
bly factors, which leads to their import into the nucleus prior
to their assembly into ribosomes (Rout et al. 1997;Leslie
et al. 2002; Timney et al. 2006)—an essential process if ever
there was one! Indeed, a host of genetically interacting
Kaps appear to be involved in the import of proteins critical
to ribosome assembly (e.g., Kap108p/Sxm1p, Kap119p/
Nmd5p, Kap121p/Pse1p) (Rosenblum et al. 1997; Rout
et al. 1997; Sydorskyy et al. 2003; Caesar et al. 2006), and
it has been shown explicitly that, in the absence of Kap123p,
Kap121p can bind to Kap123p substrates and import them
into the nucleus (Rout et al. 1997).

Perhaps it is not surprising that structurally related Kaps
can bind to structurally related NLSs, but it also appears that
Kaps can recognize more than one type of NLS. For example,
while Kap121p was originally shown to bind to noncanon-
ical Lys-rich NLSs (Rout et al. 1997; Kaffman et al. 1998b;
Leslie et al. 2002), it, like Kap104p, also imports proteins
through rg-NLSs, which are reminiscent of structurally dis-
tinct RNA-binding motifs (Dreyfuss et al. 1993; Lee and
Aitchison 1999; Leslie et al. 2004) characterized by repeats
of Arg and Gly amino acid residues. Moreover, multiple
cargo domains exist in Kap114p, and it has been proposed
that this Kap is capable of importing multiple cargoes simul-
taneously (Hodges et al. 2005).

Although some of the cargoes for many Kaps have been
defined, there are an estimated 1500–2000 proteins that
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transit the NPC during their life cycle, and as a field, we
have identified only a handful of the cargoes that they each
recognize. So, while it has been proposed many times that
evolution has likely exploited their overlapping specificities
and potential complexity to regulate classes of cargoes by
regulating the karyopherins, it remains for the field to more
comprehensively define Kap-cargo complexes to demon-
strate how much this is the case and to fully appreciate
how they may have done so.

Protein export from the nucleus is mediated by at least
three b-karyopherins. The first (“classic”) nuclear export
signal was defined in vertebrate cells in HIV-Rev protein.
Rev binds specifically to unspliced and singly spliced HIV
mRNA and ensures that it is exported efficiently. Studies
to define this process identified a short leucine-rich region
within Rev that is necessary and sufficient for nuclear ex-
port. This sequence is recognized by the karyopherin Xpo1/
Crm1 (Stade et al. 1997). As it turns out, there are many
proteins that contain variants of the prototypical sequence
and are exported by Xpo1p. These include the proteins of
the 40S and 60S preribosomal subunits (J. H. Ho et al. 2000;
Stage-Zimmermann et al. 2000; Moy and Silver 2002); nu-
merous transcriptional or signaling proteins (Ferrigno et al.

1998; Jensen et al. 2001; Menezes et al. 2004; Chang et al.
2006; Martin et al. 2006; Azevedo et al. 2007; Pelaez et al.
2009); key regulators of the cell cycle [Cdc14p (Bembenek
et al. 2005)], which control exit from mitosis; and certain
small RNAs (Gallardo et al. 2008; Thomson and Tollervey
2010). Xpo1p/Crm1p is also, at least indirectly, required for
normal mRNA production and export (Feng et al. 1999;
Strasser et al. 2000; Hammell et al. 2002; Dong et al. 2007).

Msn5p has also been shown to act as a nuclear export
factor, exporting phosphorylated nuclear transcription fac-
tors (Kaffman et al. 1998a; DeVit and Johnston 1999;
Gorner et al. 2002; Queralt and Igual 2003; Durchschlag
et al. 2004; Ueta et al. 2007), the HO endonuclease (Bakhrat
et al. 2008), and Whi5p, the yeast ortholog of Rb (Taberner
et al. 2009). A consensus nuclear export signal (NES) for
Msn5p has been elusive, but its preference for phosphory-
lated proteins suggests a role for regulated export. Indeed,
regulation of transport provides an exquisite mechanism to
control gene expression. Perhaps the best-characterized ex-
ample of such regulation in yeast comes from studies of
Pho4p. Pho4p is a transcription factor that induces the tran-
scription of phosphate-responsive genes. When cells lack
phosphate, Pho4p is imported into the nucleus by Kap121p.

Figure 5 The transport cycle of
Kap60 and Kap95 is shown dia-
grammatically in the center, with
relevant atomic structures shown
in the surroundings. (A) The ex-
tended NLS attached to a GFP re-
porter [green; PDB 1EMA (Ormo
et al. 1996)] binds to a long re-
gion on the inside of the Kap60
superhelix [dark blue; PDB 1EE5
(Liker et al. 2000)], made of alter-
nating a-helical turns. (B) The
characteristic superhelical sole-
noid of Kap95 (light blue), made
of alternating a-helical turns in
a related fashion to Kap60, forms
a spiral with two surfaces. The
inner surface wraps around the
extended N-terminal IBB domain
of Kap60, which links it tightly to
Kap95 [PDB 1QGK (Cingolani
et al. 1999)]. (C) As Kap95 passes
through the NPC, it interacts
with FG Nups. The repeated Phe
residues on the FG-repeat region
(red) insert into complementary
repeated pockets formed from
the crevices between adjacent

a-helical repeats, all along the outer surface of Kap95’s spiral [PDB 2BPT (Liu and Stewart 2005)]. By transferring between the multiple FG repeats
in the NPC, Kap95—together with Kap60 and its NLS-GFP cargo—cross the NPC. (D) In the nucleus, binding of RanGTP (orange) to Kap95 [PDB 2BKU
(Lee et al. 2005)] causes a conformational change in the latter, which releases Kap60, and, in doing so, Kap60 is made to release its NLS cargo into the
nucleoplasm. In either its Ran bound or free form, Kap95 can bind to FG Nups and thereby cross the NPC to continue the transport cycle. (E) Kap60 is
exported from the nucleus by the RanGTP-bound form of the karyopherin Cse1 [magenta; PDB 1WA5 (Matsuura and Stewart 2004)]. In this state, the
IBB domain is held tightly against the side of Kap60, inhibiting NLS binding. Both Kap60 and RanGTP are once again held to the inner surface of the
Cse1 spiral, leaving the outer surface free to interact with FG repeats and carry the complex through the NPC out of the nucleus. Once in the cytoplasm,
GTP on Ran is hydrolyzed to form RanGDP, causing the complex to dissociate. Kap60 remains bound to its IBB even when free in the cytoplasm, but
binding to an NLS exposes the IBB and allows Kap95 to bind, initializing another round of import. (F) As a result of the import cycle, NLS-GFP
accumulates in the nucleus over time, shown here by fluorescence microscopy (Timney et al. 2006).
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However, in the presence of excess phosphate, Pho4p is
phosphorylated adjacent to its NLS, inhibiting Kap121p
binding and consequently its import. In addition, phosphor-
ylation at two different sites promotes the factor’s nuclear
export(Kaffman et al. 1998b; Komeili and O’Shea 1999). A
similar shuttling activity has been described for Tor1p (a
target of the immunosuppressant rapamycin), which is a pro-
tein kinase that controls growth in response to nutrients
through the regulation of diverse cellular processes in the
cytoplasm and nucleus. Interestingly, PolIII transcription is
also regulated by transport; Maf1p, a global inhibitor of
PolIII, is exported by Msn5p when cells are shifted to con-
ditions that favor growth and high PolIII activity (Towpik
et al. 2008).

Msn5p appears to be the most versatile of the Kaps. It
has also been shown to import proteins into the nucleus
(Yoshida and Blobel 2001), and both Los1p and Msn5p
have been shown to be capable of exporting transfer RNAs
(tRNAs) from the nucleus. Both appear to bind double-
stranded RNA directly (Shibata et al. 2006), and (at least)
Los1p appears to play a proofreading role, ensuring that its
tRNA substrates are appropriately structured prior to their
export to the cytoplasm (although splicing per se appears not
to be proofread by Los1p binding (Arts et al. 1998; Lipowsky
et al. 1999; Cook et al. 2009; Hopper et al. 2010). The
coupling of transport to function of the cargo is certainly
not limited to the tRNA example; import Kaps such as
Kap114p, Kap104p, and Mtr10p release their cargoes in
the nucleus in concert with their cargoes binding to DNA
and RNA. In effect, nuclear-binding sites compete with Kaps
for their cargoes upon import, suggesting a mechanism for
controlled release and intranuclear targeting.

Competition as a Major Factor in Nuclear Transport

Similarly, competition effects play a major role in the
behavior of nuclear transport. Using an in vivo assay and by
manipulating the amounts, types, and affinities of Kaps and
cargos, it was shown that import rates in vivo are governed in
a straightforward manner by the concentrations of Kaps and
their cargo and the affinity between them and that the main
limiting factor for import (accounting for the fact that nu-
clear accumulation of transported cargo was much slower
than expected) was the poor ability of Kaps and cargoes to
find each other in the cytoplasm in a background of over-
whelming nonspecific competition. In other words, the key
rate-limiting step of the transport cycle is not transiting
through the NPC itself, but is instead the formation of the
Kap/cargo complex within the cell’s crowded environment
(Timney et al. 2006). The importance of competition seems
to extend to the mechanism of the NPC. A recent computa-
tional model indicated how the selectivity of the NPC could
be enhanced by the exclusion of nonspecific molecules by
specific ones, due to competition for binding sites and limited
space inside the channel. By using recombinant purified full-
length yeast FG Nups and transport factors, it was shown that

FG Nup-functionalized nanopores behave as a nanoselective
filter, reproducing key features of trafficking through the
NPC. It was also confirmed that competition between trans-
port factors and nonspecific proteins is a major factor in the
transport mechanism (Jovanovic-Talisman et al. 2009).

Not Just Karyopherins: RNA Export

Many small RNAs, such as small nuclear RNA and tRNAs,
are exported using the same RanGTP-powered karyopherin-
dependent pathways used by exporting proteins, although
some karyopherins seem to specialize in this function, such
as the tRNA exporter Los1 (reviewed in Köhler and Hurt
2007). However, the process is considerably more compli-
cated for mRNAs and ribosomal RNAs. All such large RNAs
are transcribed and assembled into RNP complexes, and
each RNP can be considered an intermediate along an as-
sembly line as proteins flit on and off the assembling struc-
tures to trim and assemble the RNA. Consider the ribosome.
Over 200 proteins are believed to be involved in the assem-
bly of ribosomes as they mature during their complex bio-
genesis. Similarly, each mRNA is assembled into an RNP
(mRNP) particle involving a series of complex assembly
intermediates, which associate with each species of RNA in
a dynamic fashion to allow for precise transcript maturation
(Fatica and Tollervey 2002; Hopper and Phizicky 2003;
Vinciguerra and Stutz 2004).

Surprisingly, mRNA uses a Kap- and Ran-independent
mechanism for export (Santos-Rosa et al. 1998; Katahira
et al. 1999). Moreover, mRNP assembly and export involve
strict surveillance mechanisms to ensure that only fully ma-
ture and functional RNPs are transported to the cytoplasm
(Palancade et al. 2005; Schmid and Jensen 2008; Skruzný
et al. 2009). In addition, there are many different species of
mRNA, each potentially with its own particular maturation
pathway. This is a topic that has been both extensively
researched and comprehensively reviewed, so we will
only summarize these findings briefly and refer the reader
to these reviews (Rondon et al. 2010; Stewart 2010;
Rodriguez-Navarro and Hurt 2011).

Upon being processed and packaged into mRNP particles
in the nucleus, the non-Kap transport factors Mex67p and
Mtr2p associate with and chaperone the mRNP through the
NPC (Figure 6). These factors are co-transcriptionally
recruited to the maturing mRNP by a highly coordinated
process that couples transcription, post-transcriptional pro-
cessing, mRNP assembly, and docking to the nuclear basket,
beginning in many cases even before the nascent transcript
has left the gene; and once again, research in yeast has
pioneered much of our understanding of these processes.
Thus, co-transcriptional recruitment of the THO/TREX com-
plex to the nascent mRNA of intron-containing transcripts
ultimately leads both to correct 39-end processing and to
recruitment of (among other proteins) Yra1p, which in turn
recruits the Mex67p-Mtr2p heterodimer (reviewed in Rodri-
guez-Navarro and Hurt 2011) (Figure 6). Another complex,
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TREX-2, associates with the mRNP at the NPC, apparently
assuring that it is correctly packaged for its journey across
the NPC. The Mex67p-Mtr2p heterodimer, by binding both
the mRNP and the FG Nups, mediates the actual mRNP
transport event, which can be surprisingly rapid; recent
work in vertebrates has suggested that the actual translo-
cation event, even for a multi-megadalton mRNP complex,
lasts only milliseconds (Grunwald and Singer 2010; Mor
et al. 2010). After transiting the NPC’s central channel,
the mRNP encounters Dbp5p, an ATP-driven RNA helicase
tethered to the cytoplasmic filament protein Nup159p. Reg-
ulated by Nup42p-tethered Gle1p and the small molecule
IP6 (inositol hexaphosphate), Dbp5p’s action on the exiting
mRNP serves to release the transport factors Mex67p and
Mtr2p as well as mRNP proteins such as Nab2p, both actions
preventing re-import of the mRNP (and thereby helping to
confer directionality to export) and preparing the mRNA
for translation (Figure 6) (reviewed in Carmody and Wente
2009; Rodriguez-Navarro and Hurt 2011).

Ribosomal subunit export is still a little less well
characterized, and while clearly differing from both protein
and mRNP export, oddly shares elements from both (Hage
and Tollervey 2004; Zemp and Kutay 2007; Henras et al.
2008; Lo and Johnson 2009). Three transport factors have
been implicated in yeast in the export of the large ribosomal
subunit: Mex67p-Mtr2p (Yao et al. 2007), Crm1p (which
docks to the large subunit adaptor protein Nmd3p (J. H.
Ho et al. 2000; Gadal et al. 2001), and the noncanonical
receptor Arx1p (Bradatsch et al. 2007; Hung et al. 2008).
Fusions of Mex67p, Los1p, Mtr2p, Cse1p, or Msn5p to
Nmd3p, lacking its Crm1p-dependent NES, all function in
export, suggesting that there may not be a fundamental re-
quirement for any specific export receptor for the large sub-
unit, in contrast to the specific export factors required for
mRNAs (Lo and Johnson 2009). There is some evidence that
up to a dozen a-solenoid proteins, possibly resembling Kaps,
such as Rrp12p and Nog1p, may also aid ribosomal subunit
export (Oeffinger et al. 2004; Pertschy et al. 2007). The

Figure 6 Diagrammatic representation of mRNA export, adapted from Strambio-de-Castillia et al. (2010). The SAGA complex is recruited to the promoter
of a subset of inducible genes and promotes their transcription. SAGA and the NPC-associated TREX-2 complex may help the genes move to the vicinity of
the NPC. The nascent transcripts recruit shuttling mRNA-coating factors, THO, TREX, and, subsequently, the mRNA export factors Mex67p and Mtr2p,
resulting in the formation of an export-competent mRNP (Rodriguez-Navarro and Hurt 2011); the association of the maturing mRNPs with components of
the nuclear basket is strengthened in preparation for nuclear translocation, while nuclear basket-associated TRAMP and exosome complex-associated
mRNP surveillance mechanisms ensure that the mRNP is correctly assembled for export (Fasken and Corbett 2009). After translocation through the NPC,
the release of mRNA export factors from mRNPs is induced by the combined action of Dbp5p and Gle1p, which are docked to NPC cytoplasmic filaments
via interaction with Nup42p and Nup159p, respectively, and are thought to act as mRNP-remodelling factors (Carmody and Wente 2009). It is presumed
that this process drives the directionality of mRNP export while at the same time priming mRNAs for translation initiation.
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export of 40S subunits is still poorly understood, but may be
somewhat simpler than for the 60S subunit (Zemp and
Kutay 2007; Maggi et al. 2008; Perreault et al. 2008; Carron
et al. 2011). Two different yeast nonribosomal proteins,
Dim2p and Ltv1p, have been proposed to function as adapt-
ers for Crm1p-mediated 40S export in yeast (Seiser et al.
2006; Vanrobays et al. 2008). Both are late-acting 40S bio-
genesis factors that shuttle between the nucleus and the
cytoplasm.

Mechanism of Nuclear Transport

The molecular details are beginning to emerge as to exactly
how the NPC mediates the active exchange of selected
macromolecules while excluding all others, although this
remains a subject of vigorous debate. Nevertheless, certain
basic features of the NPC as a transport machine are
generally accepted.

First, the NPC defines a tube of defined width and height
that connects between the nucleoplasm and cytoplasm.
These dimensions delimit the upper size of the transport
cargos, defined in vertebrate NPCs as �35 nm, and, on the
basis of morphological maps, are likely to be similar in yeast
and other eukaryotes (reviewed in Strambio-de-Castillia
et al. 2010). Second, the tube is lined with FG-repeat regions
contributed by the �160 copies of the different types of FG
Nups anchored in and around this tube; work in yeast in-
dicated that no ATPases or GTPases are needed as compo-
nents of the NPC, such that the NPC does not appear to open
and shut as a physical gate, but rather behaves as a “virtual”
one (Figures 1 and 2) (Rout et al. 2000, 2003; Peters 2009).
Thus, the power for transport is generated in the nucleo-
plasm and cytoplasm, and the NPC is chiefly responsible
for selectivity. On the basis of mapping and deletion muta-
genesis experiments, an affinity gradient of FG-binding sites
between the nuclear and cytoplasmic faces of the NPC also
does not seem to be essential for nuclear transport in yeast
(Rout et al. 2000; Strawn et al. 2004). As the general ar-
chitecture, distribution, and composition of the FG-repeat
regions are similar throughout the eukaryote (see above),
the mechanism of gating is likely conserved. The FG-repeat
regions do not appear to fold into permanent secondary or
tertiary structures, and indeed it is likely that they never
form such structures. Rather, they appear highly flexible,
allowing them both to assume many possible conformations
and to dynamically switch between those conformations.
Because they are unfolded, the FG-repeat regions fill a vol-
ume many times that of a folded protein of the same size.
This means that they can extend tens of nanometers from
their anchor point, such that the central tube is flanked by,
and filled with, filamentous FG repeats, accounting for the
“cloud” of filaments seen to surround the yeast NPC by elec-
tron microscopy (Fahrenkrog et al. 2000a; Kiseleva et al.
2004). Another advantage of disordered filaments as bind-
ing sites is that only a little protein is needed to fill a lot of
volume—a very economical way of having a small amount

of protein generate a huge binding site. As stated above,
transport factors bind FG-repeat regions, and it is through
this binding that they are allowed selective passage through
the central channel. Regardless of their differing atomic
structures, it seems that all transport factors carry numerous
copies of surface-accessible hydrophobic pockets into which
several of the F residues of an FG-repeat region can bind
(see above). These appear to have low affinity and rapid
exchange rates, although as there are several such interac-
tions per transport factor (at least 14 in the case of the
karyopherin transport factor Cse1), the avidity of transport
factors for FG Nups is expected to be high (Isgro and Schul-
ten 2005, 2007). In a sense, then, the FG repeats can be
thought of as antennae, reaching out in a cloud of binding
sites many tens of nanometers from the nuclear and cyto-
plasmic faces of NPCs to efficiently funnel transport factors
and their associated cargoes into the NPC, while generating
a zone of exclusion for nonspecific materials around the NPC
(Figure 1) (Rout and Aitchison 2000, 2001; Rout et al. 2000,
2003; Macara 2001).

How does it actually work? We still do not know, but
attempts have been made to describe the basic physical
principles of NPC-mediated gating although this has been
done without a detailed description of FG Nup behavior,
considering only the consensus features of the NPC and
making some basic physical assumptions, thus treating the
NPC as a narrow hole lined with binding sites and allowing
that molecules access and transit this hole through normal
diffusion. It has been shown that a narrow channel filled
with FG-repeat regions presents a significant barrier to
passage across the NPC, such that the probability of a
macromolecule translocating through the channel is low.
However, transient trapping by a macromolecule that can
bind to the FG repeats (such as a transport factor) increases
the probability of that molecule remaining in the central
channel and thus enhances its transport through the channel
(Zilman et al. 2007, 2010). Such explanations are similar to
those applied successfully to account for the transport prop-
erties of other channels (e.g., Berezhkovskii and Szabo
2005; Berezhkovskii and Bezrukov 2005). More elaborate
analyses consider some of the proposed biophysical proper-
ties of the FG-repeat regions or invoke others (e.g., Bickel
and Bruinsma 2002; Kustanovich and Rabin 2004). Molecular
dynamics simulations are also beginning to shed considerable
light on the likely behaviors of FG-repeat regions in the NPC
(e.g., Miao and Schulten 2009, 2010), but the sheer complex-
ity of computationally simulating this system remains a signif-
icant challenge. However, the fact that a narrow hole filled
with a selective polymer is, in principle, all that is needed at
the NPC for gating has been demonstrated by chemical ana-
logs (Caspi et al. 2008) and, importantly, by a nanochannel
filled with FG-repeat regions from yeast that exhibited selec-
tive passage of transport factors over control proteins and
even transport of a cargo-carrying karyopherin (Jovanovic-
Talisman et al. 2009). In this system, gating was exhibited
without any other proteins, including an energy-regenerating
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system; thus gating in principle requires only the FG-repeat
regions.

Although perhaps not needed to understand many of the
basic principles of NPC-mediated gating, a full understand-
ing of transport will ultimately require an understanding of
how the FG Nups behave at the molecular level. Indeed, in
the absence of any folded structure, the question of the
physical form and behavior of the FG repeats in and around
the NPC’s central channel comes down to what is the precise
balance of the FG-repeat regions’ intramolecular and inter-
molecular forces. Cohesive forces have been measured be-
tween at least some types of FG-repeat regions and even
within individual repeat regions (Krishnan et al. 2008). Con-
versely, repulsive forces resulting from entropic exclusion—
the tendency of the Brownian motion of a disordered polymer
to sweep away other molecules from its vicinity—has also
been measured for FG-repeat regions (Lim et al. 2006b). The
distribution of FG-repeat types has recently been cataloged
and characterized extensively, showing that the FxFG (and
similar) repeat regions are characterized by being highly
charged and in vitro adopt dynamic, extended-coil confor-
mations whereas the low-charge-content GLFG regions have
been reported to form more globular, collapsed coil config-
urations in vitro (Yamada et al. 2010). Nsp1p, Nup159p,
Nup1p, Nup60p, and Nup2p carry mainly charged (FxFG)
regions while Nup100p, Nup116p, Nup145Np, Nup57p,
Nup49p, and Nup42p carry mainly uncharged regions;
however, many of these FG nucleoporins, although pre-
dominantly featuring one type, actually have both types of
regions next to each other, such as Nsp1p, which has an
�190-amino-acid GLFG-like amino-terminus followed by
an �430-amino-acid region that is canonically FxFG-like
(Yamada et al. 2010). The extended regions would tend to
push away from each other and are predicted to be more
mobile, while the more compact regions would tend to be
cohesive and less mobile (Ader et al. 2010; Yamada et al.
2010). Thus, if intermolecular attraction forces dominate—
even rigid, amyloid-like interactions as measured in vitro for
these proteins—then the FG repeats would form a gel; such
a “hydrogel” barrier has been proposed, with the central
channel filled with a gel of FG Nups cross-linked by inter-
molecular cohesion, excluding nonspecific molecules by
sieving but through which the transport factors dissolve
a tunnel by binding to the FG repeats and thereby unzipping
them (Ribbeck and Gorlich 2002; Frey et al. 2006; Frey and
Gorlich 2007; Mohr et al. 2009; Ader et al. 2010). If repul-
sive forces such as entropic exclusion dominate, then the
central channel is filled with a polymer brush. The repulsive
forces exclude nonspecific molecules but can be nullified by
the binding forces of transport factors (Lim et al. 2006b,
2007a,b, 2008; Rout et al. 2000, 2003). If intra- and inter-
molecular cohesions are modulated by entropic exclusion
effects, then various “hybrid” models are possible. One such
model is the “reduction in dimensionality” (“oily spaghetti”)
model that suggests that the FG-repeat regions are more
compact, such that they form a layer around the inner walls

of the central channel (Macara 2001; Peters 2005). Because
they bind, transport factors can enter this layer, allowing
them access to the entire central channel, while nonbinding
molecules can access only the narrow middle region of the
channel, which is devoid of FG repeats. In addition, in vitro
measurements led to the suggestion that the reversible bind-
ing of transport factors causes the FG repeats to collapse and
open a path (Lim et al. 2006b, 2007b, 2008). Similarly, it has
been proposed that the more compact and more elongated
FG-repeat regions are arranged in such a way as to form an
organized but highly dynamic structure, forming a tubular
density within the central region of the NPC (Yamada et al.
2010), and perhaps accounting for the “central transporter”
as seen in electron micrographs and tomographic recon-
structions of the yeast NPC (Yang et al. 1998; Kiseleva
et al. 2004). Different transport factors would have access
to different portions of this transporter, allowing them to
pass by each other to cross the NPC, while entropic exclu-
sion effects prevent nonspecific molecules from crossing
(Akey 2010; Yamada et al. 2010). Certainly, there is signif-
icant evidence that the different classes of FG repeats are
spatially segregated in the yeast NPC (Rout et al. 2000;
Alber et al. 2007a,b).

Interestingly, by taking advantage of the molecular ge-
netic techniques available to yeast, a set of targeted dele-
tions were made of the FG regions of FG Nups, either singly
or in numerous combinations. These experiments showed
that certain of these deletion combinations influenced the
transport of only particular transport factors (Strawn et al.
2004; Terry and Wente 2007), and preferences of transport
factors for certain Nups has been indicated in living yeast
(Marelli et al. 1998; Makhnevych et al. 2003). This prefer-
ence might manifest as spatially distinguished pathways be-
cause recent EM studies in yeast have suggested that mRNPs
traffic mainly through the center of the NPC’s channel
whereas karyopherins pass through the channel’s periphery
(Fiserova et al. 2010). Thus, the different types of FG
repeats might mediate multiple but physically and function-
ally segregated transport pathways through the NPC, per-
haps so that the passage of one transport factor through the
central channel does not adversely affect another (Fiserova
et al. 2010; Yamada et al. 2010). Similarly, the observed
asymmetric distribution of certain FG Nups along the nucle-
ocytoplasmic axis of the NPC (Rout et al. 2000; Alber et al.
2007b), although not required for transport (Strawn et al.
2004), may aid in biasing the directionality of transport by
providing a high-affinity binding site at the far end of a trans-
port factor’s route through the NPC, trapping a transport
factor and its cargo and preventing it from returning
through the NPC until the transport reaction is terminated
(below) (Rout et al. 2000; Rout and Aitchison 2001; Gilchrist
et al. 2002; Gilchrist and Rexach 2003; Pyhtila and Rexach
2003; Strawn et al. 2004; Zilman et al. 2007). Such an idea
agrees with affinity measurements made in vitro, which sug-
gested a correlation of the position of asymmetrically lo-
cated FG Nups with their affinity for certain transport
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factors (Gilchrist et al. 2002; Gilchrist and Rexach 2003;
Pyhtila and Rexach 2003).

While, as discussed above, FG Nups theoretically may be
sufficient for gating the NPC, recent work suggests that
competition by transport factors themselves also plays a key
role in enhancing gating selectivity. Unladen karyopherins,
for example, exchange rapidly back and forth across the NPC
(Ribbeck et al. 1999), thus occupying space and binding
sites in the channel. Therefore, while nonspecific molecules
could also bind weakly to FG Nups and in principle pass
through the channel, the exchange of transport factors across
the NPC, either cargo-laden or free, would sweep these non-
specific molecules out of the central channel, the more
strongly binding transport factors effectively out-competing
the weaker binding nonspecific molecules. This competition
effect has been both predicted theoretically (Zilman et al.
2007, 2010) and measured experimentally in an artificial
yeast NPC (Jovanovic-Talisman et al. 2009). In effect, the
transport factors may be acting as bouncers at the NPC gate,
excluding nonspecific macromolecules and so appearing to be
important components of the selectivity barrier. Clearly, com-
petition effects cannot be ignored and likely play a significant
role in the gating behavior of the NPC.

Accessory Transport and Processing Factors
at the NPC

While the FG-repeat regions serve to concentrate transport
factors in the central channel, thereby aiding their nucleo-
cytoplasmic exchange, various more peripherally localized
Nups also harbor specific and dynamic binding sites for
various accessory transport factors—proteins required to
modulate the efficiency, directionality, or energetics of trans-
port but which do not themselves carry cargoes across the
NPC (Figure 6). At first, some of these factors were identi-
fied as potential Nups, for example, both Gle1p and Gle2p in
yeast, but all of these factors are also found free in the
cytoplasm and nucleoplasm. The function of these binding
sites seems to be to produce a concentrated cloud of the
factors around the entrances of the NPC to make the various
processes of cargo loading and release more efficient
(reviewed in Strambio-de-Castillia et al. 2010; Wente and
Rout 2010). Like the shuttling Nups and gatekeeping trans-
port factors, then, these clouds blur the distinction between
Nup and transport factor and underscore how the environ-
ment in and around the NPC is maintained to be very dif-
ferent from the surrounding nucleoplasm and cytoplasm.

A major factor in the efficiency of cellular processes is the
rate at which macromolecules in a given process can
interact. As the cell size goes up, so the rate of diffusion of
a macromolecule across the cell exponentially decreases
(Fick’s law), potentially decreasing the efficiency of cellular
processes. This effect can be offset by increasing the local
concentration of macromolecules that are part of the same
process either by compartmentalizing them (as in eukaryotic
internal membranes) or, as here, by providing anchored

binding sites. The binding sites for accessory transport fac-
tors found on the yeast NPC seem less numerous and diverse
than those on vertebrate NPCs; the vertebrate Nup358, car-
rying up to half a dozen such sites (reviewed in Wente and
Rout 2010), is absent in yeast. This may be because verte-
brate cells are usually significantly larger than yeast cells.

Starting from the nuclear face of the NPC, the nuclear
basket has been implicated by numerous experiments to
interact directly with exporting ribonucleoprotein com-
plexes (Figure 6). The best characterized of these interac-
tions to date is between the major basket protein Mlp1p and
the essential yeast RNP-binding protein Nab2p, which reg-
ulates poly(A) tail length and is important for mRNA nu-
clear export. Nab2p’s N-terminal �100 amino acids interact
with the nuclear basket component, Mlp1p, helping to dock
mRNPs as they export the nucleus. The atomic structure of
this N-terminal region has been solved and is typical of
a PWI fold found in numerous RNA-binding proteins (Grant
et al. 2008). Another protein on the nuclear face of the NPC
and associated with the nuclear basket is Nup1p, which is
involved in a number of interactions with transport factors.
As well as being an FG Nup docking site (above), Nup1p
carries a high-affinity binding site for the Kap95/Kap60
complex in its last �40 amino acids; it is believed that this
site increases the translocation efficiency of Kap95p import
complexes across the NPC by trapping them there prior to
Ran-mediated dissociation (Gilchrist et al. 2002; Pyhtila
and Rexach 2003). Nup60p may play a similar role, having
high-affinity sites for the Kap95/Kap60 complex and
Kap123p. Nup60p also carries a binding site for Nup2p,
and the recruitment of this mobile Nup to a Kap95/Kap60
complex binding site may aid in dissociating the cargo from
this complex and in recycling of Kap60p and Kap95p to the
cytoplasm (Denning et al. 2001). In the symmetrical core of
the NPC, the non-FG Nups of the core scaffold may also
interact with transport factors to aid their passage across
the NPC. The Nup84 complex, and in particular Nup85p
within it, appears to be able to bind the RNA export factor
Mex67p and to help it mediate RNA export (Yao et al.
2008). Another possible binding site for RNA is in the
�100-amino-acid RRM-like domains of Nup53p and its ho-
molog Nup59p, although as yet no RNA-binding function
for these has been assigned in vivo (Devos et al. 2006).
Indeed, many RNA-binding and -processing proteins are
found on the cytoplasmic side of the NPC. Thus, a putative
�40-amino-acid redundant RNA-binding domain has
been assigned to the homologs Nup116p, Nup100p, and
Nup145Np (Fabre and Hurt 1994), and Nup116p contains
a binding site for the conserved poly(A)+ RNA export factor
Gle2p. The Gle2-binding site (GLEBS) of Nup116p, at resi-
dues 110–166, is in the middle of the FG-repeat region,
although it is not found in the same region of either
Nup145Np or Nup100p; although removal of the GLEBS
from Nup116p is normally deleterious, placing it instead
in the same site in Nup100p results in a fully viable strain
(Bailer et al. 1998). The precise role of Gle2p in RNA export
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is still unclear, but seems to be required for mRNP export
under conditions of heat shock and has been implicated in
the nuclear export of the small ribosomal subunit (Takemura
et al. 2004). Moreover, as mentioned above, the RNA heli-
cases Dbp5p and Gle1p are attached to the cytoplasmic
filaments and mediate release mRNP proteins such as
Mex67p and Nab2p from the mRNPs exiting the NPC and
drive mRNP transport by restructuring them and helping the
long RNP complexes to roll out of the NPC, thereby impart-
ing directionality to the process (Figure 6) (Snay-Hodge
et al. 1998; Tseng et al. 1998; Tran et al. 2007; Fan et al.
2009).

Balancing the Books

As has been discussed (Rout et al. 2003), the action of the
NPC in transport can be likened to that of an enzyme in
a biochemical reaction. Enzymes function as catalysts, low-
ering the activation energy of a reaction by creating transi-
tion states with lowered energy. In this way, they accelerate
the rate of transition between substrate and product. Like an
enzyme, the facilitation of nucleocytoplasmic exchange by
NPCs also works by lowering the activation barrier, but in-
stead of a chemical reaction, they catalyze the movement of
macromolecules across the NE. In the NPC, the energy bar-
rier is overcome by the binding energy of specific transport
factors, but, as in catalysis, this binding should be neither
too weak nor too strong (Dill and Bromberg 2003). As with
a catalyst, this process does not necessarily favor transport
in any particular direction. Hence, unladen transport factors
can diffuse back and forth across the NE far faster than
similarly sized nonbinding macromolecules. However, to
provide unidirectional transport, other cues are needed. In
the case of nuclear import, NLS cargo accumulates in the
nucleus because it becomes “trapped” there; while the cargo
is allowed to enter the nucleus by virtue of its attachment to
a Kap, the high concentration of RanGTP in the nucleus
causes its dissociation from the Kap and so prevents its re-
exit from the nucleus. Because Kap-cargo complexes con-
stantly form in the cytoplasm and are constantly broken
apart in the nucleus, there is a Kap-cargo complex concen-
tration gradient that drives the complexes into the nucleus
(Rout et al. 2003). Similarly, export Kaps bind RanGTP and
their NES cargoes in the nucleus and diffuse down a concen-
tration gradient into the cytoplasm where RanGAP dissoci-
ates the complexes and releases their cargoes. This builds
a cytoplasmic concentration of free Kaps and RanGDP.
These free Kaps can rapidly exchange across the NPC (Rib-
beck et al. 1998), allowing them to diffuse between the
nucleus and cytoplasm and search for new cargoes (Macara
2001). Thus, the hydrolysis of GTP maintains the diffusion
gradients that ultimately force cargoes to concentrate on
one or the other side of the NE (Figure 4). The accumulation
of other kinds of cargos in the cytoplasm or nucleoplasm
must be driven by analogous concentration gradients; for
example, mRNA export is likely driven by the formation of

mRNP complexes in the nucleus and their ATP-powered
helicase-driven disassembly in the cytoplasm.

Regulation of Transport by the NPC

As an understanding of the principles governing transport
across the NPC has emerged, so has our understanding of
the regulation of transport. As discussed above, transport is
clearly regulated at the level of transport factor recognition
and binding in the soluble phase of transport. However, the
NPC itself also regulates transport. Earlier work in verte-
brate cells indicated that the functional diameter of the
channel changes as cells progress through the cell cycle
(Feldherr et al. 1984). In yeast, the potential for NPC-regu-
lated transport has been most extensively studied in the
context of Nup53p. In contrast to the FG motifs present on
numerous Nups, which bind somewhat indiscriminately to
multiple members of the b-karyopherin family with low af-
finity, Nup53p contains a 30-amino-acid residue segment
that binds specifically and with relatively high affinity to
Kap121p. Detailing this interaction has led to a model
in which cell-cycle-dependent phosphorylation of Nup53p
causes molecular rearrangements in the NPC during M
phase that expose the high-affinity binding site for Kap121p
and that retard Kap121p movement through the NPC (Mar-
elli et al. 1998; Makhnevych et al. 2003). While other trans-
port pathways function normally throughout the cell cycle,
the mitosis-specific inhibition of Kap121p-mediated import
and the reinitiation of import in G1 phase are predicted to
regulate the subcellular distribution of molecules required
for progression through mitosis. Because of the redundancy
of the mulitple Kap transport pathways operating in yeast, it
is predicted that only a subset of the repertoire of Kap121p
cargoes would be specifically affected by this transient trans-
port block; however, these cargoes remain to be discovered.
Similarly environmental perturbations in yeast lead to dif-
ferential phosphorylation of nucleoporins (Saleem et al.
2010). Morevover, phosphorylation-triggered changes in
the NPC alter nuclear transport in Aspergillus nidulans (De
Souza et al. 2004; De Souza and Osmani 2007), and Nup
phosphorylation is correlated with mitotic NE assembly and
disassembly in mammalian cells (Hetzer and Wente 2009).
These results suggest that the NPC may be a suitable target
for drugs designed to control the cell cycle or specific cell-
cycle-regulated transport events.

Beyond Transport: The NPC as a Platform for Other
Nuclear Processes

While the NPC is the nexus of communication between
the nucleus and cytoplasm, its function is not limited to
macromolecular movement transport. The unique position-
ing of NPCs has also provided evolution with the opportu-
nity to exploit this structure as a scaffold or positional
beacon. It is no great surprise, then, that NPCs have been
implicated in a host of nuclear processes.

Yeast Nuclear Transport 873

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005572
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002366
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006090
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003090
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004762
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004762
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004925
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004762
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004925
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004925
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004925
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004925


The nucleus is a complex, highly organized subcellular
compartment, and the chromatin contained within the
organelle is not uniformly distributed. In yeast and meta-
zoans alike, heterochromatin often appears concentrated at
the nuclear periphery under the nuclear envelope. In many
eukaryotes, heterochromatin is readily observed as electron-
dense material in electron micrographs. In yeast, regions
of silent chromatin associated with the nuclear periphery
include telomeres and the mating-type loci (Cockell and
Gasser 1999), and silencing of these domains requires periph-
eral localization. Indeed, repositioning normally repressed
telomere proximal genes to distal positions along chromo-
somes leads to their inappropriate expression (Maillet et al.
1996), and physically tethering transcriptionally active
genes to the nuclear periphery induces gene silencing
(Andrulis et al. 1998). It is proposed that the peripheral
domain of the nucleus is rich in Sir proteins—silencing fac-
tors that promote deacetylation of histones and alter chro-
matin structure (Gotta et al. 1996; Maillet et al. 1996). Thus,
genes that are positioned near telomeres, which themselves
are generally tethered to the periphery, are exposed to high
concentrations of histone deacetylases and are silenced,
while genes distal to telomeres are potentially active. How
chromosomal regions come into association with the periph-
ery has been the subject of some debate, but NPC proteins
are certainly central to the picture (Figure 6); the basket
proteins such as Nup60p, Mlp1p, and Mlp2p, and the mo-
bile nucleoporin, Nup2p, function in the repression of the
HMR locus and other subtelomeric genes (Galy et al. 2000;
Feuerbach et al. 2002; Dilworth et al. 2005).

In addition to their roles in the formation and mainte-
nance of the peripheral silencing apparatus, NPC compo-
nents are also linked to the activation of gene expression
(Figure 6). For example, while ChIP-chip experiments have
revealed that Nups associate with silent mating-type loci
and subtelomeric genes, Nups have also been detected in
association with active genes (Brickner and Walter 2004;
Casolari et al. 2004; Cabal et al. 2006; Taddei et al. 2006;
Sarma et al. 2007). NPC-associated genes have been shown
to be enriched with the binding site for the transcription
factor Rap1p, which, together with its coactivators Gcr1p
and Gcr2p, is proposed to link transcriptional machinery
to the Nup84 complex (Menon et al. 2005) in a process
termed “reverse recruitment.” Furthermore, highly ex-
pressed genes appear to be recruited to the periphery when
activated (Brickner and Walter 2004; Casolari et al. 2004;
Cabal et al. 2006; Taddei et al. 2006; Sarma et al. 2007).
Once localized to the periphery, this positioning is main-
tained to ensure the potential for rapid reactivation of the
gene, providing an important advantage to cells exposed to
changing environmental conditions. This transcriptional
memory, which can persist through several yeast cell divi-
sions, involves the incorporation of the histone variant,
Htz1p, into nucleosomes. Htz1p is known to be required
for the rapid and robust activation of many environmentally
responsive genes (Guillemette et al. 2005; Zhang et al.

2005; Wan et al. 2009) and, in the context of the NPC,
functions to retain genes at the periphery and to promote
their reactivation (Brickner et al. 2007; Brickner 2009).

Further obscuring the distinction between the gene-
activating and gene-repressing functions of the NPC, some
NPC components, for example, Nup2p, have been shown to
harbor “boundary activity.” This activity is defined by the
ability of a protein, when bound to DNA, to prevent the
spread of transcriptional repression into adjacent genes by
a mechanism that, at least in the case of Nup2p, involves
chromosome association with the NPC (Ishii et al. 2002). In
this case, the NPC appears to both prevent and promote
gene expression, and the nuclear periphery appears to
define different territories—both gene activating and repres-
sing. Reconciling these apparent contradictions, it is attrac-
tive to think that the association of chromatin with NPCs
represents a transient interaction, perhaps reflecting a role
for the NPC in transitioning between states, and that these
transcriptional states are further defined by chromosome
movement between subnuclear territories, a model sup-
ported by observations associated with Nup2p (Dilworth
et al. 2005). Nup2p has been shown to function in establish-
ing boundaries between active and inactive genes, in tran-
scriptional memory, and in transitioning genes between
active and inactive states (Ishii et al. 2002; Dilworth et al.
2005; Brickner et al. 2007) but, unlike typical nucleoporins,
Nup2p is not stably associated with NPCs. Rather, this pro-
tein transits between the nuclear interior and NPCs, suggest-
ing that Nup2p-dependent recruitment and/or maintenance
of genes at the periphery does not dictate stable NPC asso-
ciation. This emerging view is exemplified by recent work in
higher eukaryotes, where non-NPC-associated pools of cer-
tain nuclear pore complex proteins were shown to associate
with, and aid in, the expression of transcriptionally active
genes deep within the interior of the nucleus (Capelson et al.
2010; Kalverda et al. 2010). Thus, a direct association with
the NPC at the nuclear periphery is not a requisite element
in mechanisms of gene regulation by NPC components.

The function of NPCs and nuclear basket-associated
structures in chromatin organization is not limited to
transcriptional regulation. The myriad of physical and ge-
netic interactions observed between DNA repair factors,
components of the Nup84 complex of the NPC and the Mlp
proteins in yeast indicate that this nuclear subdomain
also acts in the maintenance of telomere length and repair
of DNA double-stranded breaks (Galy et al. 2000; Zhao
et al. 2004; Zhao and Blobel 2005; Therizols et al. 2006;
Palancade et al. 2007; Nagai et al. 2008). Taken together,
this convergence of functions at NPCs—in the regulation of
transcription, in the stabilization and repair of DNA ends, and
in transcript quality control through mRNA surveillance—
suggests that the NPC serves as a nexus to inextricably link
these processes (Figure 6) (reviewed in Strambio-de-Castillia
et al. 2010).

We now have an impression of the NPC as a large
multimeric structure that not only plays a pivotal role in
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transport but also operates to facilitate nuclear organization,
gene expression, and chromosome maintenance. In many
cases, these functions are positionally linked to NPCs and the
extended structures emanating from the nuclear basket, but
it is becoming increasingly clear that NPC components exert
control far beyond this nuclear microenvironment. A well-
studied means by which NPCs exert far-reaching control is
through regulated sequestration. The most well-understood
examples of this mechanism come from the study of cell cycle
regulation in yeast. The overarching theme in these mech-
anisms is that NPCs and their associated structures provide
a scaffold at the nuclear periphery capable of acting as a
switchable molecular reservoir, or sink, for proteins tempo-
rally regulated through the cell cycle. One example is the cell
cycle regulation of septin sumoylation at the bud neck in
yeast. Septins are sumoylated by Siz1p prior to anaphase and
desumoylated by Ulp1p at cytokinesis (Johnson and Blobel
1999; Makhnevych et al. 2007). Septin sumoylation by Siz1p
occurs earlier in mitosis, preceding desumoylation by Ulp1p,
and is also controlled by sequestration; however, in this
case, Siz1p is sequestered in the nucleus by NES masking.
Phosphorylation of Siz1p during mitosis renders the protein
competent for nuclear export by Msn5p/Kap142p and, as a
result, Siz1p relocalizes to the cytoplasm where it mediates
septin sumoylation (Makhnevych et al. 2007). Ulp1p is nor-
mally sequestered at NPCs, but is specifically released during
mitosis, allowing temporally regulated desumoylation of sep-
tins at the bud neck (Takahashi et al. 2000; Makhnevych
et al. 2007).

Another cell-cycle-regulated process that employs NPC-
mediated sequestration is the spindle assembly checkpoint
(SAC), which functions to prevent premature chromosome
segregation during mitosis in cells that lack a properly
formed mitotic spindle. This conserved mechanism involves
the mitotic-arrest-deficient proteins, Mad1p and Mad2p,
and components of the NPC and nuclear basket-associated
structures (reviewed in Wozniak et al. 2010). In this exam-
ple, the Mad proteins are sequestered during interphase at
NPCs but transiently associate with kinetochores during mi-
tosis until SAC has been passed (Iouk et al. 2002; Scott et al.
2005, 2009; Lee et al. 2008; De Souza et al. 2009).

Summary

Starting from the early work to define the both the yeast
nuclear pore complex composition and architecture, and also
the mechanism of transport factor-mediated translocation,
studies in yeast have led to fundamental and far-reaching
discoveries in how the NPC actively participates in transport
and many other cellular processes, including chromatin
silencing, gene regulation, and control of the cell cycle. In
higher eukaryotes, major pathological cellular processes are
associated with altered NPCs, and many viruses target
components of the nucleocytoplasmic transport pathway to
usurp it (Faustino et al. 2007; Chahine and Pierce 2009).
Hence, nucleoporins and transport factors are key potential

targets for drug therapy. But they have been almost entirely
neglected so far because only recently, through much of the
pioneering work in yeast, have we inventoried both the trans-
port factors and the molecular constituents of the NPC and so
have begun to gain an understanding of the critical parame-
ters of the NPC’s roles in diverse functions. Recent results are
revealing the enormous potential for how we might be able
to specifically control various cellular processes by interven-
tions targeting the NPC. Yet, much remains to be discovered
to understand the molecular mechanisms underlying the
numerous roles that the NPC and nuclear transport play in
sufficient detail to design interventions and to predict their
effects. It is clear that yeast will continue to play a central role
in these discoveries.
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