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Neurons exhibit spatial compartmentalization of gene expression where localization of
messenger RNAs (mRNAs) to distal processes allows for site-specific distribution of
proteins through local translation. Recently, there have been reports of coordination
between mRNA transport with vesicular and organellar trafficking. In this review, we
will highlight the latest literature on axonal and dendritic local protein synthesis with
links to mRNA–organelle cotransport followed by emerging technologies necessary to
study these phenomena. Recent high-resolution imaging studies have led to insights into
the dynamics of RNA–organelle interactions, and we can now peer into these intricate
interactions within subcellular compartments of neurons.
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INTRODUCTION

Messenger RNAs (mRNAs) are distributed throughout subcellular compartments and subject
to locally organized translation for the purpose of protein enrichment or sequestration. One
clear advantage of transporting mRNAs is that the transcript can serve as a blueprint to rapidly
produce multiple copies of the protein when and where the cell needs them. Targeting mRNAs
to specific subcellular sites requires three major components. First, the cis-acting element(s)
within the mRNA, referred to as the “localization element” or “zipcode,” are most frequently
found in the 3′ untranslated region (UTR). Second, RNA-binding proteins (RBPs) function
as trans-acting factors that recognize and bind to the cis-acting elements in a sequence-
specific manner. Third, the resulting messenger ribonucleoprotein (mRNP) complex interacts
with adaptor proteins that mediate active transport, anchoring, or translational silencing

Abbreviations: mRNA, messenger RNA; UTR, untranslated region; RBP, RNA-binding protein; mRNP, messenger
ribonucleoprotein; STED, stimulated emission depletion microscopy; RAVs, ribosome-associated vesicles; EMCCD, electron
multiplying charge-coupled device; TRAP, translating ribosome affinity purification; smFISH, single-molecule fluorescence
in situ hybridization; MERFISH, multiplexed error-robust fluorescence in situ hybridization; seqFISH, sequential FISH;
ExFISH, expansion FISH; proExM, protein retention expansion microscopy.
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(Figure 1). Recent studies have uncovered the complexity among
these components in directing localization in neurons. For
example, the 3′UTR of localized mRNAs can be heterogeneous
as a result of posttranscriptional processes where specific 3′UTR
isoforms may localize to a subcellular compartment in a
length- and sequence-dependent manner (Tushev et al., 2018).
Moreover, multiple RBPs can bind to a 3′UTR, sequentially or
simultaneously, and exert a combinatorial effect on localization,
translation, or degradation of mRNAs (reviewed in Mayr, 2017).
Therefore, the diversity of 3′UTRs and the repertoire of RBPs
on a transcript may be particularly important for neuronal
development and function.

Local protein synthesis in axons and dendrites has been
shown to influence various forms of activity-driven changes
in the synapses, commonly known as synaptic plasticity (Kang
and Schuman, 1996; Martin et al., 1997; Huber et al., 2000;
Miller et al., 2002; Younts et al., 2016; Monday et al., 2020 and
reviewed in Nakahata and Yasuda, 2018). This modification in
the physiological properties of synapses serves as a basis for
experience-dependent changes in the brain, including processes
like long-term memory (reviewed in Mayford et al., 2012;
Monday and Castillo, 2017). While local translation has been
proposed as a ubiquitous regulatory mechanism for rapid
remodeling of synapses in response to external cues, not all
neuronal mRNAs are evenly distributed along the processes, and
not all synaptic proteins are simultaneously present at synapses.
Thus, individual mRNAs may localize and translate with varying
kinetics (Butko et al., 2012; Yoon et al., 2016; reviewed in
Nakahata and Yasuda, 2018; Holt et al., 2019). Recent studies
have found a new mode of mRNA transport, localization, and
translation in axons, where organelles such as endosomes and
lysosomes are involved in these events. In this mini review, we
will discuss current views on mRNA–organelle interactions in
neurons with focus on the single-molecule imaging approaches
that enable access to spatial and temporal information at
the cellular level.

THE LOCAL TRANSLATOME AT
SYNAPSES

Parsimony is a prominent feature to describe the efficiency of
biological systems. For example, local translation of mRNAs
is more efficient than transporting individual proteins made
elsewhere to a distant location. The first line of evidence for
local protein synthesis in postsynaptic compartments came
from the discovery of polyribosomes in or near dendritic
spines (i.e., bases of spines) of hippocampal neurons by
electron microscopy (Steward and Levy, 1982; Steward, 1983).
Enrichment of polyribosomes within dendritic spines of
hippocampal neurons after high-frequency electrical stimulation
(i.e., tetanic stimulation) provided further evidence for activity-
induced local translation in postsynaptic compartments (Ostroff
et al., 2002; reviewed in Harris, 2020). Later on, findings of
polyribosomes and their colocalization with β-actin mRNA in
the growth cones of developing hippocampal neurons suggested
that translation also occurred in presynaptic compartments of

neurons (Deitch and Banker, 1993; Bassell et al., 1998; Zhang
et al., 1999; Hafner et al., 2019; Ostroff et al., 2019).

The identification and quantification of newly synthesized
proteins have also been accomplished by the multi-omics
approaches, characterized by the use of high-throughput
methodologies such as mass spectrometry and mRNA
sequencing. For example, newly synthesized protein can be
identified when labeled with non-canonical amino acids or
aminoacyl-tRNA analogs, as in the stable isotope labeling by
amino acids in cell culture (SILAC) (Dörrbaum et al., 2020),
bio-orthogonal non-canonical amino acid tagging (BONCAT)
(Dieterich et al., 2006), or puromycin-associated nascent chain
proteomics (Aviner et al., 2013). In conjunction with non-
canonical amino acid tagging, mass spectrometry provides a
compendium of the nascent proteome, although with limitations
in compartment-type specificity and temporal resolution (Evans
et al., 2020). Recent development of mouse models such as the
Ribotag (Sanz et al., 2009) and the translating ribosome affinity
purification (TRAP) strategies (Doyle et al., 2008; Dougherty
et al., 2010) offer new ways to identify translating transcripts
and complement proteomic approaches. These approaches
employ cell-specific expression of tagged ribosomal proteins,
which allow isolation and subsequent identification of mRNAs
that are engaged with ribosomes—that is, the translatome. By
analyzing physically and biochemically isolated brain regions
(e.g., neuropil), the focused multi-omics approaches have
finally shed light on the local translatome (Shigeoka et al., 2016;
Ouwenga et al., 2018; Ostroff et al., 2019; Biever et al., 2020).

Although the rationale for local protein synthesis is quite
compelling in neurons, many questions remain. For instance, the
availability of the ribosomes and translation machinery has been
highly debated (reviewed in Kosik, 2016; Biever et al., 2019). One
proposed mechanism is that localized mRNAs are preferentially
are translated by monosomes as opposed to polysomes,
as identified by enrichment of monosome-bound mRNA
populations in purified synaptic neuropil (Biever et al., 2020).
However, it is not clear how the local translation of monosome-
preferring transcripts is shaped and regulated, as monosome-
mediated translation displays less frequent translation initiation
and slower translation elongation rate, thus, suggesting an
additional layer of regulation at synapses. Another question
is whether membrane-bound or secreted proteins are locally
made in dendrites or axons. In the canonical secretory route,
membrane proteins are synthesized and exported from the
endoplasmic reticulum (ER) to the Golgi (reviewed in Ramírez
and Couve, 2011). For this reason, it is not clear how
locally synthesized proteins can be packaged into releasable
vesicles when there is no observable rough ER or well-defined
Golgi apparatus in dendrites and axons. However, it has
been reported that neurotransmitter receptors such as GABAA
receptors and NMDA-type or AMPA-type glutamate receptors
can bypass the Golgi apparatus (Hanus et al., 2016). The
precise contributions of each mechanism and their relevance
under a specific cellular state remains unknown. These are
a few among many outstanding questions on how the local
translatome is maintained and regulated—that is, how an
individual mRNA as part of a large dynamically regulated
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FIGURE 1 | Canonical and non-canonical modes of the long-range transport of messenger ribonucleoprotein (mRNPs) in neurons. (A) Molecular motor-based
canonical and non-canonical modes of mRNP transport in axon are depicted. Local translation of mRNAs through the interaction among mRNP, late endosome, and
mitochondria at the distal site of axon is illustrated. (B) Molecular motor-based long-range transport of mRNPs in dendrites is indicated. Local translation in and near
the base of activated spines is depicted.

synapse-specific transcriptome is transported and translated at
distal synapses.

CANONICAL MODE OF mRNA
TRANSPORT

Directed transport, diffusion capture, and selective stabilization
are among the strategies diverse cell types utilize to achieve
mRNA localization (reviewed in Buxbaum et al., 2015). Both
long-range transport of mRNPs and organelles are mediated
by microtubule-based molecular motors, kinesin and dynein, in
pre- and postsynaptic compartments of neurons (Prekeris et al.,
1999; Park et al., 2006 and reviewed in Maday et al., 2014; Das
et al., 2019; Guedes-Dias and Holzbaur, 2019) where mRNAs
have been observed traveling bidirectionally at 0.5–2.0 µm/s in
both axons and dendrites (Park et al., 2014; Yoon et al., 2016;
Das et al., 2018; Turner-Bridger et al., 2018; Donlin-Asp et al.,

2020). The polarized structure of the neuron provides an ideal
system to study and characterize mRNA transport and local
protein synthesis.

VESICLE- AND ORGANELLE-MEDIATED
mRNA TRANSPORT

Studies have indicated an alternative or non-canonical mode of
mRNA transport where mRNP granules were seen cotrafficking
with vesicles in axons. In contrast to earlier studies, where vesicle-
coupled mRNA localization was linked to short-range movement
of transcripts (reviewed in Haag et al., 2015), it now appears
that mRNAs could travel long distances by hitching a ride with
endosomes and lysosomes (Cioni et al., 2019; Liao et al., 2019).
Notably, by docking onto moving vesicles, mRNPs may bypass
the need for direct interactions with molecular motors (reviewed
in Maday et al., 2014; Salogiannis and Reck-Peterson, 2017;
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Guedes-Dias and Holzbaur, 2019). In the fungus,Ustilagomaydis,
it has been documented that mRNAs localize to the growing
tip of the hyphae by hitchhiking on endosomes (Baumann
et al., 2016). It is intriguing that axons have convergently
evolved to utilize vesicle-mediated cotransport of mRNA as an
additional pathway to localize transcripts within axons. These
observations lead to exciting mechanistic questions on whether
other motile organelles traffic with mRNAs to synapses or
whether this cotransport is subject to regulation by synaptic
activity. In fact, high-resolution reconstructions of neurons
revealed an extensive juxtaposition of membranous organelles,
such as the smooth ER and the mitochondria, as well as
synaptic vesicles and endosomes, implicating these structures
in mRNA transport to distal synapses (Harris, 2020). Cycling
endosomes and endosome-related lysosomes, while classically
known for sorting, trafficking, and recycling of membrane
proteins through endocytosis and protein degradation (Kennedy
and Ehlers, 2006), can also participate in the long-range
transport of mRNPs.

Evidence that mRNA granules are hitchhiking on motile
organelles arises from a study that used fluorescence imaging
and proximity labeling proteomics to reveal an association
between RNA granules and lysosomes (Liao et al., 2019).
By simultaneously tracking the movement of a granule
marker, G3BP1, along with LAMP1-positive late endosomes
or lysosomes, the authors demonstrated that RNA granules
and lysosomes cotraffic in cortical neurons. Additionally, the
authors uncovered a molecular tether, annexin A11, that bridges
RNA granules and lysosomes. Interestingly, amyotrophic lateral
sclerosis (ALS)-linked mutation in annexin A11 reduced its
association with LAMP1-postive compartments in neurons,
rendering the formation of more stable and possibly aggregation-
prone RNA granules. In an unrelated study, an association
between mRNAs and endosomes was investigated in the
axons of Xenopus retinal ganglion cells (Cioni et al., 2019).
The authors showed that local translation occurred in close
proximity to Rab7a-associated late endosomes and mitochondria,
suggesting that membranous organelles may serve as sites for
local translation for a significant fraction of axonal mRNAs
(Figure 1A; reviewed in Béthune et al., 2019; Rossoll and
Bassell, 2019). About 20–30% of mRNAs that colocalized
with endosomes were observed moving bidirectionally along
with ribosomal proteins and RBPs, suggesting that these
organelles can act as hubs to recruit components of local
translation. Using the puromycylation assay, they found newly
synthesized proteins associated with Rab7a-positive endosomes,
which decreased when Rab7a was mutated or endosomal
maturation was pharmacologically impaired (Cioni et al.,
2019). Therefore, the authors concluded that a subpopulation
of axonal endosomes acts as platforms of protein synthesis.
Furthermore, Rab7a-positive endosomes halted or paused
when they encountered mitochondria forming contacts that
were maintained on the range of minutes, coincident with
epochs of translation. This association mediates the synthesis
of lamin B2 (Lmnb2) and voltage-dependent anion-selective
channel proteins 2 (Vdac2), which have known roles in the
maintenance of axonal mitochondrial integrity and function.

Importantly, both reports identified a link to neurological
diseases, which underscores the physiological significance
of vesicle-mediated mRNA transport as means to localize
transcripts in axons.

Advances in the field have brought additional outstanding
questions to light. For example, the observed RNA–organelle
interactions are consistent with the role of mitochondria
supplying energy to meet local demands for new protein
synthesis during synaptic plasticity (Rangaraju et al., 2019
and reviewed in Rossoll and Bassell, 2019). Using stimulated
emission depletion (STED) microscopy to resolve mitochondrial
compartments in live neurons, Rangaraju et al. (2019) found
that mitochondria exist in temporally stable compartments of
single or multiple mitochondrial filaments in dendrites. Of
note, mRNAs found to be transported by the endosomes are
transcripts for nuclear-encoded mitochondrial proteins, and
yet, the extent to which nuclear-encoded mitochondria mRNAs
are translated by cytosolic ribosomes in close proximity to
mitochondria has not been completely surveyed. Moreover,
potential advantages of endosome-mediated transport and
translation over molecular motor-based mechanisms in neurons
are still largely unknown (Hillefors et al., 2007; Aschrafi
et al., 2012; Yoon et al., 2012; Yousefi et al., 2020, and
reviewed in Rangaraju et al., 2017). Therefore, how endosomes
may mediate long-range transport of specific subsets of
mitochondrial mRNAs is an important question that remains
to be answered. To this end, proximity-labeling methods
like APEX-seq, where RNA molecules within close proximity
of organelles can be assessed at the transcriptomic level,
holds the promise to survey endosome-associated as well
as mitochondria-associated mRNAs (Fazal et al., 2019). In
conjunction with organelle-specific ribosome profiling method,
it may be feasible to identify locally translated mRNAs
at the contact sites between endosomes and mitochondria
(Jan et al., 2014).

While vesicular and organellar mRNA transport has been
better characterized in axons, a recent study characterized
a newly described ER subcompartment called the ribosome-
associated vesicle (RAV) in dendrites. Using multiple high-
resolution microscopy techniques, the authors visualized ER
network dynamics and RAVs in real time (Carter et al., 2020).
Moreover, RAVs are often observed localized in close apposition
to mitochondria. As the name suggests, RAVs have ribosomes
attached to the cytosolic side of the vesicle that are presumably
engaged in translation. Together, these studies support an
emerging model where motile organelles are not solely dedicated
to their physiological function but also serve as platforms
or hubs to facilitate local protein synthesis. Furthermore, the
goal of vesicle-mediated mRNA transport and translation is
likely to replenish proteins onto the organelle, which they are
tethered to. Further studies regarding the spatial and temporal
nature of these interactions will provide mechanistic insight into
translational control in dendrites and axons. To resolve these
molecular interactions and to understand the mechanisms of
local translation on organelles near synapses, high-resolution
microscopy techniques paired with single-molecule imaging of
mRNAs in neurons will be indispensable.
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SINGLE-MOLECULE IMAGING OF mRNA
LOCALIZATION AND LOCAL
TRANSLATION

With the development of orthogonal fluorescence tagging
systems and new generations of bright and photostable
fluorophores, modern-day single-molecule imaging can probe
dynamic behaviors of an individual molecule in unprecedented
detail (Grimm et al., 2015; Liu et al., 2015, and reviewed
in Lavis, 2017). Direct visualization of a molecule allows for
quantitative assessment of molecular behaviors in subcellular
compartments of intact neurons and brain tissues (reviewed
in Triller and Choquet, 2008). In particular, single-molecule
imaging of mRNAs in live neurons can be designed to ask
the question on how a cell parcels mRNAs out to specific
synapses during synaptic plasticity by providing spatiotemporal
information with nanoscale precision and subsecond resolution.

To achieve fluorescent labeling of target mRNAs in eukaryotic
systems, a genetic tagging approach with the bacteriophage MS2
and PP7 RNA stem-loops and capsid proteins (MCP and PCP,
respectively) has been developed (Bertrand et al., 1998; Das
et al., 2018; Tutucci et al., 2018, and reviewed in Sato et al.,
2020). This approach employs a two-component strategy, in
which target mRNAs are tagged with MS2 or PP7 stem-loops
within the 3′UTR, providing the binding sites for fluorescently
labeled capsid proteins. The highly specific interaction between
the coat protein and the cognate stem-loop facilitates the direct
visualization of individual mRNA molecules (Lionnet et al.,
2011; Park et al., 2014; Das et al., 2018; Garcia and Gregor,
2018; Tutucci et al., 2018; Lee et al., 2019). Alternatively, a
hybridization-based approach with a fluorogenic oligonucleotide
probe (i.e., the molecular beacon), designed to escape from self-
quenching upon binding to target mRNAs, can be used for
live tracking of endogenous mRNAs in neurons (Tyagi and
Kramer, 1996; Turner-Bridger et al., 2018; Cioni et al., 2019;
Donlin-Asp et al., 2020). A detailed and comparative review of
various mRNA-tagging technologies is presented in these reviews
(Braselmann et al., 2020; Sato et al., 2020; Wu and Jaffrey, 2020).

Single particle tracking and analyses of endogenous β-actin,
Arc mRNAs, and exogenous reporters like Rgs4 mRNAs in
neurons have revealed that long-range transport in dendrites
and axons is a non-processive and intrinsically heterogeneous
process, where an mRNA stochastically switches between
stationary and bidirectionally moving phases (Supplementary
Video 1; Park et al., 2014; Yoon et al., 2016; Das et al., 2018;
Turner-Bridger et al., 2018; Bauer et al., 2019; Donlin-Asp et al.,
2020). In particular, bidirectional phases are exemplified by
microtubule-based outward-bound (anterograde) and inward-
bound (retrograde) movements as in the case of active transport
of synaptic and organelle cargos (reviewed in Maday et al., 2014;
Guedes-Dias and Holzbaur, 2019), which are the product of
simultaneous binding of anterograde-driving motor kinesin and
retrograde-driving motor dynein. The net contribution of these
motors determines the final directionality of the mRNA transport
either toward distal dendrites and axon tips or soma, respectively.
In particular, this commonality in the movements of mRNA and

organelle transport has served as important basis for studies to
identify mRNA–organelle interactions (Cioni et al., 2019; Liao
et al., 2019).

In addition, a characteristic halt in mRNA movement at
activated synapses is a prevailing pattern observed in neurons,
which may lead to the engagement of mRNAs with local
regulatory factors (Video 1). It has been postulated that
anchoring of patrolling mRNAs at the base of activated synapses
establishes and maintains synaptic plasticity by presumably
increasing the probability for mRNA to come into contact with
locally available regulators, such as the ribosome (Figure 1B;
reviewed in Kiebler and Bassell, 2006; Doyle and Kiebler, 2011).
In fact, when the dendritic spines are locally stimulated by
uncaging glutamate, β-actin mRNAs preferentially localized at
the bases of activated spines (Yoon et al., 2016). This localization
occurred as early as 15 min within a segment of 6 µm with more
than 50% probability. Importantly, this induced localization
at the site of stimulation is correlated with enhanced local
protein synthesis and subsequent actin polymerization in the
corresponding spines, suggesting that local translation underlies
the actin-mediated remodeling of the stimulated synapses.

Recently developed methods for visualization of translating
mRNAs in living cells will provide a means to capture the
moment of translation (Morisaki et al., 2016; Wang et al., 2016;
Wu et al., 2016; Yan et al., 2016). Briefly, the translation reporter
entails an epitope array (e.g., SunTag, MoonTag, or Spaghetti
Monster) fused in-frame to the coding sequence of the reporter
followed by the MS2/PP7 stem-loops, which allows simultaneous
detection of nascent peptides and mRNA by fluorescently labeled
antibody fragments and MS2/PP7 capsid proteins, respectively
(Tanenbaum et al., 2014; Viswanathan et al., 2015; Boersma
et al., 2019). In fact, cotracking of translating mRNAs along with
its own nascent peptides in various cell types has uncovered
detailed kinetic properties of translation; for example, a ribosome
translates a given mRNA at three to five codons per second, and
this computes to one to four translation initiation events per
minute (Wu et al., 2016; Yan et al., 2016). Moreover, utility of this
nascent peptide imaging approach has been demonstrated not
only in studying various modes of translation (e.g., frameshift,
nonsense-mediated decay, and miRNA-mediated translation
repression) but also in the study of organelle-mediated transport
and translation of mitochondria-associated mRNAs in axons
(Boersma et al., 2019; Cioni et al., 2019; Hoek et al., 2019; Lyon
et al., 2019; Ruijtenberg et al., 2020).

Of note, endogenous mRNA tagging methodologies with the
CRISPR-mediated knock-in strategy may hold great promise
as it can provide more accurate picture of the target mRNA’s
molecular behavior as opposed to the overexpression of
exogenous reporter mRNAs (Mikuni et al., 2016; Donlin-
Asp et al., 2020; Willems et al., 2020). A limitation of
exogenous reporters is that, often, the expression levels are not
regulated owing to the absence of the native regulatory elements
(promoters, coding regions, and UTRs) of the gene and may
not represent the endogenous counterpart. Therefore, the next
frontier in single-molecule imaging of mRNAs is to visualize
local translation of endogenous synaptic mRNAs at activated
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synapses and to capture the dynamic translation events during
synaptic plasticity (reviewed in Holt et al., 2019). To summarize,
single-molecule imaging of mRNAs in real time has provided
a wealth of spatiotemporal information about how mRNAs are
transported and localized at synaptic sites, thereby, making
it feasible to infer underlying regulatory mechanisms of local
translation during synaptic plasticity.

FUTURE PERSPECTIVES ON THE
STUDY OF THE ORGANELLE-MEDIATED
LOCAL TRANSLATION

It is unclear how the interactions between mRNAs and organelles
shape local translation at individual synapses. The transcriptomic
approach excels at identifying mRNAs, localized and translated at
synaptic sites, although detailed spatial and temporal information
of mRNAs and their interactions with organelles with regard
to individual synapses is often unattainable. Single-molecule
imaging, on the other hand, can provide nanoscale spatial
and subsecond temporal resolution of mRNAs and organelles,
thus, well-suited for identifying intracellular interactions between
individual mRNAs and organelles, but is inherently limited in its
throughput. Nevertheless, it has yet to be shown via imaging-
based approaches that the presence of an mRNA at a synapse
directly implies its local translation, and current approaches do
not accurately inform about the amount of protein produced
from a single transcript. Therefore, methods that may bridge the
gap between these two approaches will help to advance the field.
This entails a large-scale direct visualization method that allows
for probing the dynamics of mRNA–organelle interactions and
local translation of mRNAs.

Over the last decade, as significant technology progresses in a
large-scale, direct mRNA visualization methods have been made.
Newly devised multiplexed single-molecule fluorescence in situ
hybridization (smFISH) methods have shown great potential to
detect hundreds to thousands of individual mRNAs at a time
(Chen et al., 2015; Shah et al., 2016; Moffitt et al., 2018; Eng et al.,
2019; Alon et al., 2021). For example, multiplexed error-robust
fluorescence in situ hybridization (MERFISH) and sequential
FISH (seqFISH) employ a sequential hybridization strategy,
where gene-specific primary and multiple secondary fluorescent
probes are subject to successive rounds of hybridizations to
achieve unique combinatorial labeling of individual transcripts.
Furthermore, smFISH in physically expanded tissues with
polymers, dubbed expansion FISH (ExFISH), has emerged as a
promising method that can achieve nanoscale spatial resolution

(Chen et al., 2016; Chang et al., 2017). Importantly, the
versatility of these methods to image both mRNA and protein
molecules in preserved tissues provide spatial significance and
in vivo relevance (see perspectives article, Wassie et al., 2019).
When combined with protein retention expansion microscopy
(proExM) and nascent peptide-imaging methods, such as SunTag,
MoonTag, and/or Spaghetti Monster, these approaches may
resolve the precise locations of mRNAs and corresponding
nascent proteins with respect to other organelles in dendrites and
axons (Tillberg et al., 2016; Gao et al., 2019). With the advent
of ever-evolving high-resolution microscopy techniques and
orthogonal tagging methodologies with improved fluorophore
chemistry, single-molecule mRNA imaging can complement
multi-omics approaches to uncover the underlying mechanisms
of local translation at steady state and during synaptic plasticity.
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