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Dissecting the Roles of Supervised and Unsupervised
Learning in Perceptual Discrimination Judgments
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Our ability to compare sensory stimuli is a fundamental cognitive function, which is known to be affected by two biases:
choice bias, which reflects a preference for a given response, and contraction bias, which reflects a tendency to perceive stim-
uli as similar to previous ones. To test whether both reflect supervised processes, we designed feedback protocols aimed to
modify them and tested them in human participants. Choice bias was readily modifiable. However, contraction bias was not.
To compare these results to those predicted from an optimal supervised process, we studied a noise-matched optimal linear
discriminator (Perceptron). In this model, both biases were substantially modified, indicating that the “resilience” of contrac-
tion bias to feedback does not maximize performance. These results suggest that perceptual discrimination is a hierarchical,
two-stage process. In the first, stimulus statistics are learned and integrated with representations in an unsupervised process
that is impenetrable to external feedback. In the second, a binary judgment, learned in a supervised way, is applied to the

combined percept.
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ignificance Statement

The seemingly effortless process of inferring physical reality from the sensory input is highly influenced by previous knowl-
edge, leading to perceptual biases. Two common ones are contraction bias (the tendency to perceive stimuli as similar to pre-
vious ones) and choice bias (the tendency to prefer a specific response). Combining human psychophysical experiments with
computational modeling we show that they reflect two different learning processes. Contraction bias reflects unsupervised
learning of stimuli statistics, whereas choice bias results from supervised or reinforcement learning. This dissociation reveals
a hierarchical, two-stage process. The first, where stimuli statistics are learned and integrated with representations, is unsu-
pervised. The second, where a binary judgment is applied to the combined percept, is learned in a supervised way.
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Introduction

Perceptual discrimination, the ability to compare sensory stimuli, is
a fundamental cognitive function, which has been extensively studied
using the delayed-comparison task. In this paradigm, the participant
(human or animal) is presented with two temporally separated stim-
uli that differ along a single dimension, e.g, pitch, intensity,
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luminance, or contrast, and is instructed to report which one is
“larger” along that dimension (e.g., frequency; Fig. 1, inset). The
standard way of quantifying performance in this task is the psycho-
metric curve, which depicts the probability that the participant would
report that the first stimulus is larger than the second as a function of
the difference between the two stimuli. The slope of the psychometric
function is often interpreted as reflecting the level of internal noise
that limits perceptual resolution. However, this slope does not cap-
ture two common biases, choice bias and contraction bias.

Choice bias (also known as the stationary response bias;
Jones, et al., 2015) is the tendency to prefer a specific response
(Green and Swets, 1966; Klein, 2001; Lebovich et al., 2019). It has
been shown that choice bias is sensitive to feedback (Herzog and
Fahle, 1999): responses that have more often been associated
with a “correct-answer” feedback are more likely to be preferred
(Gold and Ding, 2013). Typically, such sensitivity to feedback
improves performance because it allows the participant to exploit
associations between actions and their outcome (Shteingart and
Loewenstein, 2014).
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Contraction bias is the tendency to perceive stim-
uli as closer to the “center” of the distribution of
similar, previously-presented, stimuli (also known
as “central tendency”; Hollingworth, 1910; Poulton,
1989). Typically, it biases perception toward a more
probable interpretation of the sensory input. It has
been hypothesized that the contraction bias is the conse-
quence of incorporating stimuli-specific expectations into
perception to increase perceptual accuracy (Huttenlocher
et al,, 2000). This hypothesis leads to two predictions.
Rather than reflecting a rigid biophysical property of
the sensory system, (1) contraction bias is sensitive to the
statistical distribution of the stimuli used in the experi-
ment; (2) contraction bias increases as the reliability of
stimulus representation decreases. Both predictions have
been verified (Huttenlocher et al., 2000; Ashourian and
Loewenstein, 2011; Lieder et al., 2019).

We used a Perceptron (a linear discriminator) to
model decision-making in the delayed-discrimination
task. Perceptual comparison in the Perceptron is a two-
stage process. In the first stage, the representations of
the two stimuli are linearly combined, and in the second
stage, a binary decision is made. Both contraction and
choice biases can be directly mapped to the two pa-
rameters determining the Perceptron’s first and sec-
ond stages of computation, respectively. Therefore, an
optimal Perceptron, a Perceptron whose two parame-
ters are tuned to maximize “correct-response” feed-
back, specifies the optimal values of these two biases,
within a given feedback protocol, and can be used to
compare human behavior to optimal performance.

We found that when feedback is unbiased, the opti-
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Figure 1. Choice and contraction biases in the delayed-comparison task. Top, left, inset, A schematic
illustration of the task, in which a participant is presented with two, temporally-separated, pure tones
and is instructed to report which one is larger. Top, Schematic illustrations of the psychometric curves,
the probability of responding that the frequency of the first stimulus was greater than that of the second
stimulus, “f; >f,", as a function of the frequency difference between the two stimuli in logarithmic scale.
Bottom, Schematic illustrations of the same analyses in the f; x f, plane (in logarithmic scale). Color
code denotes the probability of responding “f; >£,". Left, An unbiased participant. The psychometric
function is centered around a zero frequency difference between the stimuli, and the line of indifference
(blue) overlaps the diagonal. Middle, Choice bias manifests as a horizontal shift (here rightwards) of the
psychometric curve. Right, Contraction bias. When two tones are relatively low (Region 1), the first tone is
contracted to a higher value, yielding a tendency to respond “f,>f,", and to a leftward shift of the psy-
chometric curve (dashed line). When the tones are relatively high (Region Ill), the psychometric curve is
shifted to the right (dashed-dotted line). The psychometric curve is unbiased (solid line) only in the inter-
mediate region (Il). In the f; x £, plane (in logarithmic scale), the contraction bias manifests as a line of
indifference whose slope is <<1. The colored region denotes the pairs of stimuli used in the experiments.

mal Perceptron model provides a better fit to partici-

pants’ behavior than the psychometric curve, indicating

a similarity between human and optimal performances.

This optimality could result from supervised learning, a term
used in Machine Learning to indicate situations in which the
learner utilizes information during the training procedure (expe-
rience) that it lacks during the testing phase (Shalev-Shwartz and
Ben-David, 2014). In delayed discrimination, this information is
the “correct-answer” feedback. Human near optimality could
reflect the use of the feedback to maximize the fraction of
correct-responses. Choice bias sensitivity to feedback can be
explained in this framework. If contraction bias also reflects
supervised learning, it should also be sensitive to the feedback
protocol. Alternatively, it could result from statistical learning of
stimuli’s distribution (unsupervised learning), and thus be feed-
back insensitive. We found that in contrast to choice bias, con-
traction bias is insensitive to the feedback, indicating that in this
task, feedback has access only to the decision stage and not to the
earlier stage, whose parameters are learned in an unsupervised
way.

Materials and Methods

The delayed comparison task

Participants were instructed to compare two serially presented tones
and to indicate which of the two stimuli (first or second) had a higher
pitch (Fig. 1, inset). Performance in discrimination tasks is typically
depicted by the psychometric curve plotted in top row of Figure 1. A
fuller, albeit less conventional representation of participants’ responses
on such tasks, is presented in Figure 1, bottom row. This two-dimen-
sional representation reflects the probability of this response for each
pair of stimuli: the axes are the frequencies of two stimuli in logarith-
mic scale (logf; x logf,), and the participants’ probability of response

Pr [“fi>f,”] is color coded. The left plot illustrates the predicted responses
of an unbiased participant. The probability of the response depends solely
on the difference between the two stimuli (log f; — log f>), and therefore,
the probability of the response does not change when moving in parallel
to the diagonal in the logf; x logf, plane, in which log-frequency differ-
ence does not change. In the absence of a choice bias, the line of indiffer-
ence, in which Pr[“fi>£,"] = 0, lies along this diagonal.

Choice bias is manifested as a lateral shift of the psychometric curve:
a rightward shift of the curve (Fig. 1, top, middle) reflects a tendency to
respond that the first stimulus was smaller than the second, whereas a
leftward shift reflects the opposite bias. In the logfi x logf, representa-
tion (Fig. 1, bottom, middle), this shift is manifested as a shift in the line
of indifference to the right (preferring the second stimulus; Fig. 1, bot-
tom, middle) or to the left (preferring the first; not shown) without
changing its slope. In both these cases, the conventional psychometric
plot captures participants’ behavior because the responses are deter-
mined solely by the difference between the two stimuli, logf; — logf,.
However, this is not true in the case of contraction bias, which cannot be
depicted by a single psychometric curve, as explained below.

As discussed in the Introduction, the magnitude of the contraction
bias increases with the noise/uncertainty in the representation of the
stimulus. In the context of delayed-discrimination tasks, the representa-
tion of the first stimulus is noisier than that of the second stimulus by the
time the decision is made. This is because encoding and retaining the first
stimulus in memory degrades its representation. Consequently, the con-
traction of the first stimulus to the center of the distribution is larger than
the contraction of the second stimulus (Berlineret al., 1977; Preuschhofet
al., 2010; Ashourian and Loewenstein, 2011; Raviv et al., 2012, 2014).
When the stimuli are smaller than the median, the contraction bias favors
responding “f; >£,”, thus shifting the psychometric curve leftwards. When
they are larger than the median, contraction bias shifts the psychometric
curve rightward (Fig. 1, top, right). In the log f; x logf, space, it changes
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the slope of the line of indifference, making smaller than 1 (Fig. 1, bottom,
right). The stronger the contraction bias, the smaller the slope of the line
of indifference. Infinite contraction would manifest as a horizontal indif-
ference line, in which participants’ responses are fully determined by the
second stimulus.

The stimuli

Each participant performed 220 trials. Each trial consisted of two 50-ms
pure tones, with a 10-ms linear rise time, and a 10-ms linear fall time,
separated by a 950-ms interstimulus interval. Immediately after the sec-
ond stimulus was played, the text “Which tone was higher?” appeared
on screen, and the participant responded by clicking one of two on-
screen buttons using a computer mouse, with no time constraint. Visual
feedback of a smiling face or a sad face was presented for 300 ms after
correct and incorrect responses, respectively. After a pause of 700 ms,
the next trial began. The frequencies of the two tones (in Hz), f; and f,
were chosen such that (log (fi)+log (f,))/2 was uniformly distributed
between log(1000) — 0.2 and log(1000)+0.2, where log denotes natural
logarithm. In 75%, randomly selected trials, (log (i) — log (f>))/2 was
uniformly distributed between —0.0905 and 0.0905. This resulted in a
uniform distribution of stimuli (in logarithmic scale) in the rectangles in
Figure 1, bottom. The feedback in these trials was always correct. In the
remaining 25% of the trials, which were denoted “impossible” trials, the
frequency of f; was equal to that of f; (fi = f,). The feedback in these tri-
als varied according to the experimental condition.

Participants

This study was approved by the Hebrew University Committee for the
Use of Human Subjects in Research. A total of 200 adult participants of
either sex were recruited using the online labor market Amazon
Mechanical Turk.

In order to verify that participants understood the task correctly, and
paid full attention for the whole duration of the block, we excluded
blocks from the analysis in which performance in the first half (110 tri-
als) of the block, or the second half of the block did not differ signifi-
cantly (p<<0.05) from chance level performance. On average, this
translated to a requirement of at least 62% correct responses on the pos-
sible trials of each of the two halves of the block; however, the exact crite-
rion changed from block to block, depending on the number of possible
trials. Together, 30/200 of the participants were excluded from the
analysis.

The Perceptron model and Bayesian inference
We consider the case in which as in Equation 1, r; = s1+n; r, =53,
such that n~N(0, o2). We further assume that s; ~N(0, £2). To infer s,
from ry, we use Bayes’ rule:
(s1—r)? (s1)?
Prfsi|r] o< Prlry|si] - Pr[s;] ce 202 e 222 xe 2P

(s1 — )’

B 2

1
—— 1 and p? =
0_2 1 P 1 1

I+ 5 PR

where pu = . Therefore, given r; and s,:

(z—w?

Pr[51>32|r1752] == foo dz 2p2

524 [2mwp? €

performance is thus to report that s;>s, if and only if
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which can be implemented in a Perceptron witha = ——

Results

The impact of feedback protocols on human performance
Feedback protocols

Though both the choice and contraction biases are well docu-
mented in humans and other animals, the processes that affect
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Table 1. Feedback protocols

fy =f, < 1kHz fy =f, > 1kHz
Control Unbiased fi > £, 50% fi > £, 50%
f, < f,, 50% f, < f, 50%
Choice bias Enhance fi > £,, 90% fi > £, 90%
fi >f, fy < f,, 10% fi < f,, 10%
Suppress fi > £,, 10% fi > £, 10%
fi>f fy < f,, 90% f; < f,, 90%
Contraction bias Enhance contraction bias fi > f,, 90% fi > £, 10%
fy < f,, 10% fy < f,, 90%
Suppress contraction bias fi > £, 10% fi > £,, 90%

fi < f, 90% fi < f,, 10%

Feedback in the impossible trials depended on the values of f; = f, relative to the median of the distribu-
tion (1kHz) and on the protocol type. The third and fourth column denote the probabilities that the two
responses were considered “correct.” Feedback in the “possible” trials reflected the veridical difference
between the two stimuli.

them are only partly understood. In particular, it remains unclear
whether the contraction bias can be modified by the feedback
protocol (where we used a smiling/a sad face to indicate a
correct/incorrect response). To explore this issue, we used a
pitch discrimination task, where tone frequency determines
the perceived pitch (Fig. 1). We designed five different feed-
back schedules and administered them to five different
groups of participants: one was administered as a control,
two were designed to enhance choice biases, namely, the
fraction of “f; > f,” or “f, > f,” responses, and two aimed to
enhance or reduce contraction bias. In order to manipulate
the biases without providing false feedback, we incorporated
25% “impossible trials,” namely, trials in which the two tones
had the same frequency (f; = f,). Feedback was only biased
in these impossible trials. In the control protocol, feedback
on the impossible trials was random, with equal probabilities
for the two possible responses being considered “correct.” In
the protocol designed to enhance the “f; > f,” response, the
“fi>f,” response was considered “correct” in 90% of the
impossible trials, whereas in the protocol aimed to enhance
the “f, > f;” responses, it was considered “correct” only in
10% of the impossible trials. In the protocol aimed to
enhance contraction bias, responses congruent with the con-
traction bias (f; > f, when the two tones were below the median
and f; <f, when they were above the median) were considered
“correct” in 90% of the impossible trials. These responses were
considered “correct” only in 10% of the trials in the protocol
aimed to suppress the contraction bias. The feedback on all pos-
sible trials, i.e., the remaining 75% of the trials, was veridical and
did not differ between groups (Table 1).

Feedback modifies choice bias

Figure 2A depicts the psychometric curves of three groups of
participants associated with the different feedback protocols: the
control (black), favoring the response “f; > f,” (blue), and favor-
ing the response “f, > f;” (red). Whereas there was no consistent
choice bias in the control group, the other two groups exhibited
substantial choice biases, which were manifested as shifted psy-
chometric curves.

To further illustrate the effect of the feedback protocol on the
choice bias, Figure 2B depicts the proportion of participants
responding “f; > f,” in the impossible trials in each of the three
groups as a function of trial number. At the beginning of the
assessment, this proportion was similar in the three groups.
However, it quickly deviated, such that within fewer than 40 tri-
als the two groups with opposing feedback differed significantly
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in their choice bias (p < 0.02,0ne-sided Wilcoxon A
rank-sum test over participants). 1

Feedback does not affect contraction bias

As explained above, contraction bias is manifested
in the tendency to respond “f; >f,” when both
tones are below the median, and “f; <f,” when
both tones are above it, as depicted by the shal-
lower slope of the line of indifference plotted in
the f; x f, plane of Figure 1, bottom, right. In
order to capture this tendency in the psychometric
curves, we divided the trials according to their loca-
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tions in the f; X f, plane into three groups (Fig. 1, 01
bottom, right) and plotted the psychometric curves
separately for each group of trials (Fig. 1, top,
right). Figure 3A depicts these three psychometric
curves for the unbiased protocol participants. As
predicted from Figure 1, top right, because of the
contraction bias, the psychometric curve for trials
in which f; and f, were small relative to the median
(Fig. 1, Region I) is shifted to the left, whereas the
psychometric curve for trials in which f; and f,
were large relative the median (Fig. 1, Region III)
shifted to the right. Therefore, the difference
between the fractions of reports “f; > f,” when f; = f, is a mea-
sure of the magnitude of the contraction bias (Fig. 3D, left).

Figure 3B,C depict the three psychometric curves for the groups
of participants administered feedback aimed at reducing and
enhancing the contraction bias, respectively. Bias suppressing proto-
col (bias -) did not decrease the contraction bias relative to the bias
enhancing protocol (bias +), indicating that unlike choice bias, the
contraction bias was not sensitive to the feedback protocol.

Figure 2.

The impact of feedback protocol on a Perceptron model
Could the failure of the feedback protocols aimed to modify the
magnitudes of the contraction bias stem from the characteristics
of the protocol itself? Our protocols only modified the rewarded
responses (“correct” answers) on the impossible trials. One possi-
bility is that optimal adaptation to these protocols does not entail
any substantial change in the magnitude of the contraction bias.
To address this question quantitatively, we examined the impact
of these protocols on binary classification in the framework of
the Perceptron model (Rosenblatt, 1958). The Perceptron model
is a linear classifier that is consistent with a large family of cogni-
tively and biologically plausible classification schemes. In our
application to this task, it compared a noisy representation of the
first stimulus with the representation of the second stimulus, as
illustrated in Figure 4A. Computationally, it models a two-stage
hierarchical process in which the representations of the two stim-
uli (r; and r,, respectively) are first linearly combined, after
which this combined representation is compared with a thresh-
old. In this simple two-stage architecture, contraction bias stems
from the first stage and choice bias results from the second. This
framework allowed us to examine both qualitatively and quanti-
tatively, how a feedback protocol is likely to affect each of these
biases, and compare it to the actual performance of the human
participants in the experiment.

Denoting by r; and r, the representations of the frequencies of
the first and second tones in a trial, respectively, we posited that

T1:SI+7’1;72:SZ (1)

where s; and s, denote f; and f,, measured relative to 1000 Hz
(the median of the distribution of the stimuli), This assumption

: 0.3
-0.05 0 0.05 0.1 0 50 100 150 200

Iog(f1)-|og(f2) trial #

Choice bias is quickly modified by the feedback protocol. A, The psychometric curves of the three
feedback groups, control (black); feedback favoring “f,>f," response (blue); feedback favoring “f, > £;" (red).
Gray areas around the curves denote the cross-participant SEM. Open symbols denote responses on impossible tri-
als. The psychometric curves were constructed using only the possible trials. B, Dynamics of responding “f; > f,"
on impossible trials in each of the three groups. Each dot is average over 20 trials (approximately five impossible
trials) and all participants. Whereas the three groups all started with no choice bias, they deviated according to
the rewarded response within <40 trials. Error bars denote cross-participant SEM.

is made for mathematical convenience and as discussed below,
does not affect our analysis. All frequencies are measured in the
natural logarithm of the frequencies: s; = log(f;/1000); n denotes
Gaussian noise such that (n) = 0 and (n?) = 0%, where (...)
denotes average. This framework assumes that the noise in the
task is dominated by noise in the internal representation of the
first tone. This asymmetry between the two tones reflects the fact
that by the time the second tone is presented and the decision is
made, the representation of the first tone is corrupted by the
encoding of the first tone in memory and its retention (Ashourian
and Loewenstein, 2011). However, the results described below
remain qualitatively similar even if noise is assumed to corrupt the
representation of the second tone as well, as long as the noise asso-
ciated with the representation of the first tone is larger than that of
the second tone.

Geometrically, the discrimination task is a segmentation of
the r; X r, plane into two regions that correspond to the two
possible responses (Fig. 4B). Mathematically, all linear classifiers
can be implemented by the Perceptron model (Fig. 4A):

A=0h):;h=a-rn—r—> (2)

where ©(x) is the Heaviside step function such that
O(x<0) =0 and O(x>0) = 1, and a and b are parameters.
The value of A denotes the response on a trial: A =1 corre-
sponds to reporting “f; > f,”, and A = 0 corresponds to the op-
posite response “f; <f,”. Figure 4B illustrates three different
segmentations of the r; X r, plane, where the dark gray regions
indicate the “f; <f,” response, and the light gray regions indicate
“fi > f,” response. Figure 4B, left panel, corresponds to the case
of a =1 and b = 0. It divides this plane according to the sign of
rp — r, such that the first and second tones are considered
“higher” when r; >r, and r; <r,, respectively. This segmenta-
tion is clearly optimal in the absence of noise (¢ = 0) because it
corresponds to the segmentation according to the sign of the dif-
ference between the two stimuli. The segmentation depicted in
Figure 4B, middle panel, corresponds to a classifier, which
reports that the frequency of the second tone is higher than that
of the first tone if and only if r; — r, > b (where b > 0), as illus-
trated in the vertical shift (downwards when b > 0) of the
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The feedhack protocol did not affect contraction bias. A—C, The psychometric curves calculated separately for each of three stimulus ranges (Fig. 1, right), low-frequency range (1)

where participants tended to respond “f,>f," (red), high frequency range (Ill) where participants tended to respond “f;<<f,” (blue), and an intermediate range (Il) evenly distributed around
the mean frequency where participants showed no substantial contraction bias (black). These separate psychometric curves were plotted for each of three groups. The psychometric curves
were constructed using only the possible trials. 4, Unbiased feedback. B, feedback aimed at reducing the contraction bias. €, Feedback aimed at enhancing the contraction bias. D, The bias
magnitude, quantified as the distance between the two extreme psychometric curves (at f; = f,), was comparable across the three groups (U, unbiased; —, bias —; +, bias +), indicating
that the feedback protocol had no substantial effect on the contraction bias. Open symbols in A-C denote responses in impossible trials. Namely, psychometric curves, based only on possible
trials, and the superimposed open symbols were calculated from non-overlapping data points. The near overlap of the two calculations indicates a unified performance with respect to both trial

types. Error bars denote the cross-participant SEM.

manifested as choice bias and a < 1 results in con-
traction bias (Figs. 1, 4, right). Thus, the two pa-
rameters of the Perceptron b and a naturally map
to the two types of bias, i.e., choice bias and con-
traction bias, respectively.

B a=1,b=0 a=1,b>0 a<1,b=0 The optimal Perceptron model
As mentioned above, in the absence of noise
1200 (0 =0), the parameters a and b that maximize
the performance of the Perceptron are a = 1 and
«' 1000 7 b = 0, because this type of Perceptron accurately
reports which frequency is higher for any pair of
800 frequencies, f; and f,. However, in the presence of
noise (o > 0), the value of a that maximizes per-

800 1000 1200 800 1000 1200 800 1000 1200 . . i .

formance is <I. To see this intuitively, consider
" & the case of infinitely large noise (o = 00). In this
Figure 4. The Perceptron model. A, Schematic illustration of Equation 2. The Perceptron model receives two  €ase; the difference between the two represented

inputs, r; and r, and responds “f; > £," if and only if a - r, — r, is larger than a threshold b. a affects the first
stage in the dassification process and determines the slope of the segmentation line in the r; x r, plane and
hence the magnitude of the contraction bias. b affects the decision stage in the classification process and deter-
mines the intercept of the segmentation line and thus the magnitude of the choice bias. B, Classification patterns
in ther; x r, plane of different Perceptrons: (left) an unbiased Perceptron with @ = 1; b = 0; center, a = 1;
b = 0.7 resulting in a Perceptron that exhibits choice bias; (right) @ = 0.75; b = 0, resulting in a Perceptron
that exhibits contraction bias. Light and dark gray denote “f; > £," and “fy <<f,” responses, respectively. The

behaviors of the Perceptrons in B are depicted in Figure 1 in the same order.

segmentation line. Figure 4B, right panel, depicts a segmentation
that is not based on the difference between r; and r,. Rather, it is
based on a linear combination of r; and r, that weighs r, more
than rq, ie., a<<l, is manifested in a segmentation line whose
slope is less than 1.

Figure 4 depicts the behavior of the model in the space of in-
ternal representations r; X ;. To relate it to the experiment, we
need to examine its behavior in the f; X f, plane. To do so, for
every pair of stimuli fi,f,, we computed the probability of
responding “f; > f,” as a function of the distribution of the noise
n and the parameters of the Perceptron. The expected behavior
of the three Perceptrons in Figure 4B are depicted in Figure 1.
When a =1 and b = 0 (Figs. 1, 4, left), the model exhibits nei-
ther contraction bias nor choice bias; b # 0 (Figs. 1, 4, center)

frequencies, r; — r, is dominated by noise and a
classification based on this difference would result
in chance level performance. By contrast, consider
discrimination by a Perceptron that is character-
ized by a = b = 0. This type of Perceptron, illus-
trated in Figure 5A, which allocates zero weight to
the representation of the first tone, would choose
its response according to the value of f,: it would
report “fi >f,” (red) when f, <1000 Hz and
“fi <f2” when f, > 1000 Hz. To see why such clas-
sification would result in above-chance performance, consider
the performance in the four quadrants. Because of the distribu-
tion of stimuli, f; is equally likely to be larger and smaller than f,
in Quadrants I (in which this Perceptron reports “f; <f,”) and
III (in which the Perceptron reports “f; > f,”). Therefore, the
performance of this Perceptron in these two quadrants will
be at chance level. By contrast, in Quadrant II in which
fi <f, in all trials and in Quadrant IV in which f; > £, in all
trials, the Perceptron would give the correct answer in 100%
of the trials. As a result, the overall performance of this
Perceptron is better than the chance level performance of a
Perceptron that compares the two tones by equally weighing
their representations.
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Figure 5. The optimal Perceptron model. A, Performance of a Perceptron with
a = b = 0. Percentages denote the fraction of correct responses in each quadrant. Despite
the fact that the Perceptron ignores the first stimulus in its decision, its performance level is
above chance. B, Optimal weighting of the first stimulus, a, as a function of the level of noise
0. Only when o = 0, a = 1. The larger the o~ the smaller the value of a.

More generally, underweighting the first stimulus relative to
the second stimulus, which leads to the contraction bias, is bene-
ficial to performance in the presence of noise. From a Bayesian
perspective, if the representation of the first stimulus is noisy, the
decision maker can benefit by partially replacing that stimulus
with information about its prior distribution. Because the repre-
sentations of the two stimuli are measured relative the median
distribution, a Perceptron with 0<<a<{1 approximately imple-
ments this optimal computation. In Materials and Methods, we
present an analytical derivation of the optimal value of a for the
case of a normal distribution of the first stimulus. Figure 5B
depicts the optimal value of a as a function of the level of noise
o, the noise in the internal representation of the first tone (note
that we assume that there is no noise in the representation of the
second tone). The larger the value of o, the smaller the value of a
that optimizes performance (Ashourian and Loewenstein, 2011;
Jaffe-Dax et al., 2015) and the larger the contraction bias.

We define an optimal Perceptron to be the Perceptron whose
parameters a and b optimize performance given the internal
noise o and the distribution of stimuli. When the feedback is
unbiased, the optimal value of b in our model is b = 0 for all val-
ues of o. This result is a direct consequence of the fact that we
assumed that the stimuli are measured relative to the median of
the distribution (1000 Hz; Eq. 1). Because the Perceptron’s deci-
sion is based on a linear combination of neural activities, the per-
formance of the optimal Perceptron is independent of the
baseline used. A different baseline will result in a different opti-
mal value of b which will compensate for the deviation of the
baseline from the median of the distribution.

The optimal Perceptron and human behavior

To compare the optimal Perceptron to the behavior of the
human participants, it is worthwhile noting that the optimal
Perceptron is characterized solely by a single parameter,
namely, the level of noise ¢. This is because for every level of
noise o, the values of a and b are uniquely determined by the
distribution of the stimuli. In that sense, the complexity of the
optimal Perceptron model is identical to that of the classical
psychometric curve, which posits that the probability of choice
depends solely on the difference between the two stimuli. An
unbiased psychometric curve is also characterized by a single
number, its width. Mathematically, an unbiased psychometric
curve corresponds to a Perceptron witha = 1 and b = 0.
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Figure 6. Participants’ response and the different models. 4, Responses of the human par-

ticipant. B, responses of the fitted optimal Perceptrons. C, responses of the fitted psychomet-
ric curves in the unbiased-feedback protocol. Note that the optimal Perceptron but not the
psychometric curve captured human's contraction bias, which was manifested as a shallower
line of indifference (iso-color). D, Model comparison. The difference in the log-likelihoods
(ALL per trial) of the participants’ choices for the optimal Perceptron and psychometric curve
models across participants. Note that for 89% (32/36) of the participants, the likelihood of
the optimal Peceptron model was higher than that of the psychometric curve (both models
are characterized by a single parameter).

For each participant in the unbiased feedback protocol (Fig.
6A), we used the method of maximum-likelihood to find the
value of ¢ that best fit her behavior according to the optimal
Perceptron model (Fig. 6B) and the psychometric curve (Fig. 6C)
models. As illustrated in Figure 6A-C, similar to the psychomet-
ric curve model, the optimal Perceptron captures the increased
accuracy by the distance from the diagonal (change in color in all
three plots). By contrast, the optimal Perceptron model also
accounts for the contraction bias. Specifically, the line of indiffer-
ence (equal color, blue) lies along the diagonal in the psychomet-
ric curve (which only takes into consideration the difference in
frequencies in logarithmic scale); the slope of the line of indiffer-
ence in the optimal Perceptron model is smaller than 1.

To further compare the psychometric curve and the optimal
Perceptron models, we computed for each participant the log-
likelihoods of the two models. Because both models are charac-
terized by a single parameter, the level of internal noise o, their
log-likelihoods can be compared directly. Figure 6D depicts
the difference in the log-likelihood (per trial) of the optimal
Perceptron and the psychometric curve models. In each model,
the level of internal noise o was chosen as the value that maxi-
mized the likelihood of the model. The fit of the Perceptron
model was better for 89% of the participants (32/36, p<<10~>, bi-
nomial test). The difference was particularly pronounced for par-
ticipants characterized by a larger level of internal noise, for
which the Perceptron model predicted a larger contraction bias.

The impact of feedback protocols on the choice and
contraction biases in the optimal Perceptron model
As shown in Figure 6, when the feedback protocol is unbiased,
the optimal Perceptron model accounts better for the perform-
ance of the human participants than the psychometric curve
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Figure 7.  Choice bias and the optimal Perceptron model. The psychometric curves of the
optimal Perceptron models whose parameters were optimized to the different reward proto-
cols. Black, unbiased feedback protocol, yielding no choice bias; blue, in the protocol that
rewards “f; > £," responses on 90% of the impossible trials; red, in the protocol that
rewards “f; <<f,” in 90% of the impossible trials.

model. Specifically, the model accounts for the experimentally-
observed contraction bias. We used the optimal Perceptron to
estimate the expected effects of the different feedback protocols
on the choice and contraction biases. To that end, we con-
sidered the expected responses of Perceptrons whose parame-
ters a and b are optimized to maximize performance in each of
the different feedback protocols. As an estimate of the popula-
tion distribution of os, we used the values of o of the different
participants in the unbiased feedback protocol, estimated
using the optimal Perceptron model. For each value of o and
for each feedback protocol we computed the values of a and b
that maximized the success rate for that protocol. Note that
because the parameters of the optimal Perceptron are independ-
ent of any particular learning algorithm, we did not explicitly
model the learning of these parameters. We then computed the
expected performance of these optimal Perceptron using the
same pairs of f; and f, as in the experiment. Finally, for each
feedback protocol, we averaged the response probabilities of the
different optimal Perceptrons.

Figure 7 depicts the behavior of the optimal Perceptrons for
the feedback protocols favoring “f; > f,” response (blue), feed-
back favoring “f, > f;” (red) and unbiased feedback (black). We
found that the optimal Perceptron was sensitive to this manipu-
lation, similar to participants’ sensitivity. Specifically, the reward-
ing “f; > f,” resulted in a psychometric curve that shifted to the
left, whereas rewarding “fi <f,” results in a psychometric curve
that shifted to the right.

To test the effect of the feedback protocols on the contraction
bias of the optimal Perceptron, we administered the two feedback
protocols that we administered to our human participants, which
were designed to modify the contraction bias. The results are
depicted in Figure 8. Whereas for the unbiased-feedback protocol,
the optimal Perceptron model predicted psychometric curves in
the three frequency ranges comparable to those observed in the
human participants (compare Figs. 84 and 3A), it also predicted
that that the bias + and bias - reward protocols would sub-
stantially affect the bias, reversing the order of psychometric
curves in the bias - condition (Fig. 8B) and doubling it in the
bias + condition (Fig. 8C; see also Fig. 8D). This sensitivity
of the optimal Perceptron’s contraction bias to the feedback
manipulations contrasts sharply with the performance of our
participants, who did not exhibit any sensitivity to these
feedback manipulations.
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In the framework of the Perceptron model, our results dem-
onstrate that whereas the parameter b in the Perceptron model is
readily modifiable by the feedback protocol, the parameter a is
insensitive to these manipulations, at least for the number of tri-
als used in our experiment.

Discussion
Learning is the process of using experience to gain expertise. In
the field of machine learning, it is common to characterize the
learning according to the nature of interaction between the
learner and the environment. In supervised learning, the learner
utilizes information during the training procedure (experience)
that it lacks when its expertise is tested, whereas in unsupervised
learning, there is no difference between training and test data
(Shalev-Shwartz and Ben-David, 2014). Applying this distinction
to our task, the extent to which participants use the feedback
defines whether learning is supervised or unsupervised.
Behavioral data are well fit by the optimal Perceptron model.
Conceptually, the performance of any reinforcement learning
algorithm that optimizes the parameters of the Perceptron based
on feedback (Mongillo et al., 2014); would result in an optimal-
Perceptron like behavior, and specifically, would exhibit contrac-
tion bias (Barak et al., 2013). Therefore, one could expect that
contraction bias would be sensitive to feedback. However, this is
not the case in human behavior. The insensitivity of the contrac-
tion bias to the feedback in our human experiments suggests that
contraction bias is not a special case of optimization via rein-
forcement learning. Rather, unsupervised learning underlies the
first stage of the computation in human delayed discrimination
(Ashourian and Loewenstein, 2011).

The role of feedback in delayed discrimination

The impact of feedback on choice bias in human perception has
been evaluated in several previous studies, most notably with
Vernier tasks, where participants are required to report the direc-
tion of misalignment between two simultaneously-appearing
parallel lines. Wrong (reverse) feedback in a subset of particu-
larly difficult trials has been shown to change the decision crite-
rion (threshold) not only in those trials, but also induce a choice
bias on less difficult trials (Herzog and Fahle, 1999). These results
are consistent with our findings that manipulating the feedback
in a subset of the trials (impossible trials) can affect the decision
criterion in the other (possible) trials. In another interesting
study, the feedback to Vernier stimuli in different spatial posi-
tions was biased in opposite directions and participants devel-
oped opposite choice biases at these positions (Herzog et al.,
2006). The analogous experiment in our context would be to
induce opposite choice biases for different frequencies by provid-
ing opposite biased feedback in impossible trials with different
frequencies.

Perceptual discrimination and learning in Vernier tasks has
been modeled as a two-stage process (Petrov et al., 2005; Liu et
al,, 2014). The first stage extracts the relevant features from the
stimuli; in the second stage, a decision is made by comparing the
linear combination of these features to a decision threshold.
Importantly, the first representation stage in their model is not
sensitive to feedback (Petrov et al., 2005). This assumption is
consistent with the implications of our finding that the contrac-
tion bias is not modifiable by feedback (though learning of exter-
nal statistics was not incorporated into their model). However,
Liu et al. (2014) and Petrov et al. (2005) posited an additional
top-down influence on the decision threshold that drives
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Contraction bias and the optimal Perceptron model. A-C, The psychometric curves of the optimal Perceptron model were calculated separately for each of three stimulus ranges

(Fig. 1, right), low-frequency range (I) where participants tended to respond “f, > f,” (red), high frequency range (lll) where participants tended to respond “f; <<f,” (red), and an intermedi-
ate range (1) evenly distributed around the mean frequency, where participants showed no substantial contraction bias (black). These separate psychometric curves were plotted for each of
three groups of optimal Perceptrons whose parameters (a and b) were optimized for (4) the unbiased feedback protocol, (B) feedback aimed at reducing the contraction bias, and (C) feedback
aimed at enhancing the contraction bias. D, The bias magnitude, quantified as the distance between the two extreme psychometric curves at f; = f;, indicates that the optimal Perceptrons

were sensitive to feedback protocol. Open symbols denote responses in impossible trials.

participants to choose both options with equal probabilities
(Petrov et al., 2005). Our optimal Perceptron model, whose pa-
rameters are optimized to our specific task, does not incorporate
this type of term. This term enables integration of participants’
long-term priors, like overall symmetry, across tasks.

Note that the process of learning is not explicitly described in
the optimal Perceptron model (for the role of feedback in per-
ceptual learning, see Aberg and Herzog, 2012). Rather, it selects
the optimal parameters as a function of the task, as manifested in
the feedback protocol. By contrast, learning in the Vernier task
was explicitly studied under the assumption of a Hebbian learn-
ing rule. The advantage of incorporating a particular learning
rule is that it allows the modeling of trial-by-trial learning.
Relying on optimality considerations (optimal Perceptron), ena-
bles us to draw conclusions that are independent of the specific
learning rule.

Statistical learning, an automatic predecision process

To examine whether contraction bias is indeed modified by the
pattern of the input, we manipulated the distribution of stim-
uli and assessed its impact on performers’ bias, in two previous
studies. In the visual modality (Ashourian and Loewenstein,
2011), participants were asked to determine which of two seri-
ally presented bars is longer. We calculated participants’ con-
traction bias from participants’ bias in impossible trials, in
which both bars were of the same length, and contraction bias
could be attributed only to lengths distribution, which was
uniform. Consistent with an ideal observer model, who utilizes
the prior distribution of stimuli to maximize performance,
participants tended to report that the second bar was longer
when both bars were long relative to the median of the distri-
bution. The opposite bias was observed when both bars were
relatively short. Importantly, when the range of bar lengths
used in the experiment shifted, so was their bias. In response
to exactly the same pair of bars, participants tended to report
that the first one was shorter in a context in which the two
bars were relatively long, and to report that the first bar was
longer in a context in which they were relatively short. We
have also shown a similar pattern of behavior in the auditory
modality, in two-tone frequency discrimination (Lieder et al.,
2019). Four different frequency distributions were used with

four different groups of participants: uniform spanning two
frequency octaves, uniform spanning three octaves, Gaussian,
and bimodal, with two uniform one-octave modes separated
by one octave. Ideal observer’s bias functions substantially dif-
fer between these distributions. Participants’ bias functions
did not differ from that of an ideal observer in any of the dis-
tributions. Together, these studies show that contraction bias
is modified by bottom-up stimuli modifications in a manner
that matches that expected from an ideal decision maker.

The observation that contraction bias is feedback insensi-
tive is in line with previous claims that the bias genuinely
affects the perceptual experience and precedes the decision
stage (Burr and Cicchini, 2014; Fischer and Whitney, 2014;
John-Saaltink, et al., 2016); rather than occurring at a postper-
ceptual decision stage (Alais et al., 2017; Fritsche et al., 2017).
Despite being an automatically driven process, contraction
bias’ magnitude may be manipulated indirectly by task-related
attention (Fischer and Whitney, 2014). Attention in this case
may operate by enhancing the response to the attended stimuli
so that the enhanced contraction bias may be a bottom-up
effect reflecting larger responses to attended stimuli (Treue,
2004).

Perceptual discrimination in the brain

Pioneering studies in monkeys performing an analogous
delayed-discrimination task using vibrotactile stimuli found that
the sequence of processes underlying task performance is imple-
mented hierarchically by a sequence of brain areas. Neurons in
the primary sensory cortex, S1, are phase-locked to the stimulus.
Further upstream, neurons in S2 use this information to encode
the instantaneous frequency of the vibrotactile stimulation via
their firing rates. A series of higher level frontal areas maintain a
memory trace of the stimulus during the delay period, and use it
to compare the two stimuli in the subsequent decision stage
(Romo and Salinas, 2003; Machens et al., 2005;). More recent
studies have used a similar delayed-discrimination task in rats to
compare the magnitudes of two temporally separated whisker
stimulations. Similar to the monkey studies, single-neuron activ-
ity in the vibrissal sensory cortex (vS1) was modulated by the
temporal fluctuations in the speed of the stimulator. This precise
information is lost upstream, in the vibrissal motor cortex
(vM1), where activity is modulated by the mean speed of the
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vibration. Moreover, activity in vMI is more similar to the per-
ceived stimulus than the activity in vS1 (Fassihi et al, 2017;
Mongillo and Loewenstein, 2017).

Recent studies revealed that the posterior parietal cortex
(PPC) is a critical locus for the representation and use of prior
information in the delayed comparison task, in both rats in
humans. In rats trained to compare the loudness of two tempo-
rally separated pink-noise auditory stimuli, PPC neurons were
found to carry more information about previous trial sensory
stimuli than about current trial stimuli. Remarkably, inactivation
of the PPC substantially reduced the magnitude of the contrac-
tion bias. By contrast, this inactivation had no significant effect
on non-sensory biases (Akrami et al., 2018). In humans, per-
forming two-tone delayed discrimination with a fixed reference
frequency yields fast improvement (Nahum et al., 2010), which is
associated with decreased activation in two cortical regions: the
expected auditory region (posterior superior-temporal), and the
(left) posterior parietal region (Daikhin and Ahissar, 2015) as in
rats.

These results suggest that while the contraction bias is associ-
ated with activity in the PPC, non-sensory biases, including those
introduced by feedback, are associated with other brain regions,
and possibly the frontal networks. Our study indicates that cog-
nitively, perceptual discrimination is a two-stage process, in
which unsupervised and supervised learning are separated cogni-
tively, and are associated with sensory and non-sensory biases,
respectively.
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