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ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second 

leading cause of cancer death by 2030. Current therapeutic options are limited, 
warranting an urgent need to explore innovative treatment strategies. Due to 
specific microenvironment constraints including an extensive desmoplastic stroma 
reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient 
deprivation. Their connection with oncogenic alterations such as KRAS mutations 
has brought metabolic reprogramming to the forefront of PDAC therapeutic 
research. The Warburg effect, glutamine addiction, and autophagy stand as the 
most important adaptive metabolic mechanisms of cancer cells themselves, 
however metabolic reprogramming is also an important feature of the tumor 
microenvironment, having a major impact on epigenetic reprogramming and tumor 
cell interactions with its complex stroma. We present a comprehensive overview of 
the main metabolic adaptations contributing to PDAC development and progression. 
A review of current and future therapies targeting this range of metabolic pathways 
is provided.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is currently 
the fifth leading cause of cancer death and the second leading 
digestive cancer in incidence in Western countries [1]. By 
2030, it is expected to be the second leading cause of cancer 
death [2]. PDAC is considered to be the tumor with the worst 
prognosis among all digestive malignancies, with a 5-year 
survival rate of less than 5% [1, 3].

PDAC are highly invasive tumors with early 
metastatic potential, for which therapeutic options 
are limited [4]. Gemcitabine has been the reference 
chemotherapy regimen since 1997. In 2011, the 
FOLFIRINOX regimen combining 5-fluorouracil, 
leucovorin, oxaliplatin, and irinotecan was shown to 
be superior to gemcitabine (median overall survival 
[OS]: 11.1 versus 6.8 months, p < 0.001) in selected  

patients; those with a performance status 0–1 and absence 
of cholestasis [5]. In 2013, the combination of gemcitabine 
with nanoparticles of albumin-bound paclitaxel (nab-
paclitaxel) demonstrated a statistically significant increase 
in OS compared with gemcitabine alone (median OS: 8.5 
versus 6.7 months, p < 0.001) [6]. Nonetheless, despite 
these encouraging improvements, overall prognosis in this 
patient population remains dismal and new therapeutic 
approaches are urgently needed.

Cancer cells need large amounts of both energy 
(adenosine triphosphate [ATP]) and macromolecules 
to sustain their proliferation. As a hallmark of cancer, 
metabolism reprogramming highlights the fact that 
changes in cell metabolism are necessary for tumor 
initiation and progression. Both oncogenes and the 
tumor microenvironment are involved in this process 
[7–11]. PDAC displays one of the most extensive and 
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poorly vascularized desmoplastic stromal reactions of 
all carcinomas, leading to tumor hypoxia and nutrient 
deprivation, yet without evidence of major cell death. 
Taken together, this suggests that pancreatic tumor cells 
adapt to metabolically challenging survival conditions in 
their microenvironment [12]. Targeting PDAC-specific 
metabolic pathways thus represents a novel strategy to 
explore for the development of innovative therapies.

In this review, we provide a comprehensive 
overview of the metabolic deregulations in PDAC 
and their supportive role in tumor development and 
progression, and then focus on crucial metabolic nodes 
that could be leveraged in future therapeutic strategies.

METABOLIC ADAPTIVE MECHANISMS

PDACs are characterized by a prominent desmo-
plastic stromal reaction, and the extent of the stroma 
is often greater than the epithelial component of the 
tumor (up to 80% of tumor volume) [13–15]. Activated 
pancreatic stellate cells (PSC) are responsible for the 
excessive production of extracellular matrix [16–18]. The 
resulting dense and fibrotic stroma compresses vessels 
and generates high interstitial pressure thereby limiting 
tumor vascularization. As a consequence, tumor cells are 
confronted with hypoxia and nutrient deprivation [19, 20].

Hypoxia is a typical feature of PDAC and is 
associated with poor prognosis [19, 21–27]. Preclinical 
studies in PDAC models showed that hypoxia increases 
cancer cell proliferation, survival, epithelial-to-
mesenchymal transition (EMT), invasiveness, and 
metastasis, as well as resistance to chemotherapy and 
radiotherapy, through hypoxia-inducible factor (HIF)-1α 
-dependent and -independent mechanisms [25, 26, 28–36].

Cells in hypovascularized PDAC have to adapt 
to their metabolically challenging environment early in 
tumor development. Several changes occur in response 
to oxygen deprivation: increased glycolysis as well as 
increased amino acid (AA) production derived from 
protein degradation, protein glycosylation, and fatty acid 
synthesis. In addition recycling and scavenging of cellular 
components has been shown to be applicable in PDAC. 
This early adaptive mechanism is known as the “metabolic 
switch” and is described in detail below [Figure 1].

Glycolysis and the Warburg effect

In the presence of oxygen, normal cells produce 
ATP from glucose-derived pyruvate by oxidative 
phosphorylation (OXPHOS) via the mitochondrial 
tricarboxylic acid (TCA) cycle. In the 1920s, Otto Warburg 
observed that some proliferative tissues, notably tumor 
cells, display increased glucose uptake and preferentially 
metabolize glucose-derived pyruvate to lactate even in the 
presence of oxygen [37–39]. This phenomenon of aerobic 
glycolysis is also known as the “Warburg effect”.

The glycolytic switch is an early phenomenon 
characterized by increased expression of lactate 
dehydrogenase (LDH, that converts pyruvate into lactate) 
and inactivation of pyruvate dehydrogenase (PDH, that 
converts pyruvate into acetyl-CoA for the TCA cycle) 
[40–46]. The glycolytic switch is thought to be driven 
by the hypoxic tumor microenvironment through HIF-1α 
activation, aberrant signaling due to oncogene activation 
(e.g., Ras, PI3K/mTOR, c-Myc), tumor suppressor gene 
inactivation (e.g., p53), or by mutations in the OXPHOS 
pathway [47, 48].

In preclinical models, hypoxic PDAC cells 
overexpress glycolytic markers. Constitutively activated 
K-Ras, present in more than 90% of PDAC, has a key 
role in metabolic reprogramming and particularly in the 
glycolytic switch [49–52]. Gene expression and metabolic 
flux analyses showed oncogenic KRAS upregulates 
expression of glucose transporter (GLUT)-1 (increasing 
glucose influx) and of the hexokinase (HK) 1–2 and 
phosphofructokinase enzymes, which speed up glycolytic 
activity. Oncogenic KRAS also supports biomass synthesis 
(i.e. proteins, nucleic acids etc.) required for cancer 
cell proliferation by rewiring glucose toward anabolic 
pathways, such as the pentose phosphate pathway (PPP), 
while maintaining a low level of reactive oxygen species 
(ROS) by limiting ROS production and ROS-related 
apoptosis [53]. TP53 loss-of-function (50% of PDAC) also 
contributes to the glycolytic switch through deregulation 
of GLUT1 and GLUT4 transcription and loss of expression 
of TIGAR (TP53-inductible glycolytic and apoptotic 
regulator) which acts as a fructose-2, 6-biphosphatase 
(FBP-ase) [54, 55]. Although the physiological substrate of 
TIGAR remains controversial, when silenced, FBP levels 
increase enhancing pyruvate kinase (PKM) glycolytic 
activity [56, 57]. Interestingly, genetic mutations may 
be a consequence of metabolic stress, such as glucose 
deprivation, dynamically interconnecting oncogenic and 
metabolic alterations [58].

The glycolytic switch also mediates interconnections 
between tumor compartments [45]. Far from being a waste 
product of the Warburg effect, lactate may be an important 
vector for tumor-stroma interactions and symbiotic spatial 
energy fuel exchange between cell compartments within 
the tumor [59]. Lactate produced by hypoxic cancer cells 
can diffuse to the extracellular environment through lactate 
transporter MCT-4 and be taken up by normoxic cancer 
cells through MCT-1 to be used for oxidative metabolism, 
thereby sparing glucose for hypoxic cancer cells [34, 40]. 
Lactate also “feeds” stromal cells providing a fuel source 
for OXPHOS [60].

Moreover, acidification of the microenvironment 
by lactic acid contributes to pro-tumor immunologic 
remodeling by promoting chronic inflammation, 
while suppressing T-cell mediated adaptive immune 
response [61–63]. Lactate-dependent interleukin-17 and 
interleukin-23 production can induce an inflammatory 
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tumor environment that will result in the attraction of pro-
tumoral immune cells [64–68]. Thus, the end products of 
the Warburg effect participate in the inter-compartment 
dialogue and symbiosis within PDAC and generate a 
favorable immunologic microenvironment for cancer 
cells. Not surprisingly, high lactate concentrations and 
acidic pH, representative of “glycolytic tumors”, has been 
associated with poor prognosis and a more aggressive 
phenotype [69, 70].

Responding to amino acid deprivation

PDAC cells also face AA shortage, which can 
have a critical impact on cell survival especially for 
essential AA. It has been suggested that the increased AA 
requirement for cancer cells is a very early phenomenon 
in tumor development and that metabolic reprogramming 
to provide cancer cells with branched-chain AA (BCAA) 
precedes PDAC diagnosis by about 5 years [71]. Mayers 
et al. showed that elevated plasma levels of all three 
proteinogenic, essential, BCAA (isoleucine, leucine and 

valine) are associated with future diagnosis of PDAC. 
BCAA elevations are derived from a long-term pool of 
AA of muscular origin. This study reveals that protein 
breakdown clearly predates PDAC diagnosis and clinical 
cachexia. The mechanisms underlying this protein 
breakdown are still under investigation.

Although glutamine is a non-essential AA, most 
cancer cells exhibit glutamine addiction [72, 73]. The 
metabolic fate of glutamine is multifaceted; it can be 
used for lipid biosynthesis, as a nitrogen donor for AA 
and nucleotide biosynthesis, as a carbonic substrate for 
the re-feeding of the mitochondrial TCA cycle through 
a phenomenon called anaplerosis, and even as fuel for 
cell energy production [74–76]. PDAC cells metabolize 
glutamine through a non-canonical pathway in which 
transaminases play a crucial role. Whereas most cells 
use glutamate dehydrogenase (GDH-1) to convert 
glutamine-derived glutamate into α-ketoglutarate in the 
mitochondria to fuel the TCA cycle, PDAC relies on a 
distinct pathway in which glutamine-derived aspartate is 
transported into the cytoplasm where it can be converted 

Figure 1: Overview of PDAC cell metabolism in response to microenvironment constraints and oncogenic signals.  
A. The Warburg effect sustains metabolic needs of PDAC proliferative cells; B. The PKM2 tyrosine kinase enhances transcriptional activity 
of several factors such as hypoxia-inducible factor HIF1-α, inducing the Warburg effect through a positive feedback loop; C. the hexosamine 
biosynthetic pathway uses glucose and glutamine influx for protein O-GlcNAc glycosylation and its inhibition induces an unfolded-protein 
response-dependent cell death; D. PDAC-specific glutamine metabolism : glutamine-derived aspartate is converted into oxaloacetate, then 
into malate, and finally into pyruvate, resulting in an increased NADPH/NADP+ ratio that provides the reducing power to maintain reduced 
glutathione pools; E. glutamine is a nitrogen donor for amino acid and nucleotide biosynthesis; F. ASNase may be a promising therapy 
since a majority of PDAC express no or low ASNS; G. macropinocytosis and autophagy support the metabolic needs of PDAC cells; 
H. PDAC overexpresses enzymes involved in fatty acid synthesis. Glc : glucose; Gln : glutamine; Glu : glutamate; Asn : asparagine; 
ASNase : asparaginase; ASNS : asparagine synthetase; GSH : glutathion; LDH-A : lactate dehydrogenase-A; ME : malic enzyme; NADP : 
nicotinamide adenine dinucleotide phosphate; OXPHOS : oxidative phosphorylation; PKM : pyruvate kinase muscle-isozyme.
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into oxaloacetate by aspartate transaminase (i.e. glutamic-
oxaloacetic transaminase [GOT-1]), then into malate, and 
finally into pyruvate. Conversion of malate to pyruvate by 
malic enzyme results in an increased NADPH/NADP+ 
ratio (nicotinamide adenine dinucleotide phosphate), 
providing the reducing power to maintain reduced 
glutathione pools to protect cells against oxidative damage 
[77]. Low expression of GDH-1 and overexpression of 
glutaminase, GOT-1, and enzymes using glutamine as a 
nitrogen donor (cytidine triphosphate synthase, guanine 
monophosphate synthetase, asparagine synthetase) are 
characteristic features of PDAC [42, 77]. In these tumors, 
transcriptional reprogramming of key metabolic enzymes 
in the glutamine pathway (e.g. GDH-1, GOT1) is driven 
by KRAS or MYC oncogenes [77–79]. Thus, more than 
an anaplerotic precursor for the TCA cycle, glutamine 
is necessary to sustain PDAC cell growth required for 
biomass synthesis and maintenance of the redox balance.

Glucose deprivation has been shown to induce the 
expression of asparagine synthetase (ASNS) probably 
through the unfolded-protein response (UPR) pathway as 
a means to protect cells from apoptosis [80, 81]. However, 
in contrast to normal pancreatic tissue that expresses 
high levels of ASNS, approximately half of PDAC cells 
express no or low ASNS levels [82]. These tumors may 
thus harbor an intrinsic fragility to asparagine deprivation 
that may be exploited therapeutically by L-asparaginase 
therapy [83].

Upregulation of the hexosamine biosynthetic 
pathway

The hexosamine biosynthetic pathway (HBP) is 
responsible for N-acetylglucosamine (GlcNAc) production 
for protein O-GlcNAc glycosylation. Glucosamine-
fructose-6-phosphate aminotransferase (GFPT) uses 
glutamine as a substrate to convert fructose-6-phosphate 
into glucosamine-6-phosphate, which is one of the 
precursors for UDP-GlcNAc synthesis and O-GlcNAc 
glycosylation. HBP activity thus depends on both 
glutamine as well as glucose (which is converted into 
fructose-6-phosphate). PDAC cells exhibit high levels 
of O-GlcNAc glycosylated proteins due to upregulation 
of GFPT1, GFPT2, and O-GlcNAc-transferase, and 
low levels of O-GlcNAcase, the enzyme catalyzing 
deglycosylation [84, 85]. Increased glucose and glutamine 
uptake and KRAS-dependent upregulation of GFPT, the 
rate-limiting enzyme in this process, result in increased 
HBP activity in PDAC, which has been associated with 
tumor invasion and metastasis [34, 53, 86].

O-GlcNAc glycosylation can redirect glucose to the 
PPP by inhibiting phosphofructokinase-1 and stabilizes 
key transcription factors such as p53, c-Myc or β-catenin 
[87–89]. It also promotes aneuploidy and participates 
in cancer cell phenotype by enhancing insulin, TGF-β, 
and FGF pathway activity through transcriptional and 
epigenetic mechanisms [90, 91]. In addition, HBP can 

modulate tyrosine kinase receptor (TKR) signaling 
[92]. HBP inhibition using tunicamycin (a nucleoside 
antibiotic that blocks GlcNAc-1-phosphotransferase) 
in PDAC, resulted in decreased protein levels and 
membrane expression of several TKR such as EGFR 
(epidermal growth factor receptor), ErbB2, ErbB3, and 
IGFR (insulin-like growth factor receptor) [93]. Of note, 
glucose deprivation reduces HBP activity, which decreases 
protein glycosylation and induces UPR-dependent cell 
death [94]. The metabolic switch induced by HBP is 
thus at the crossroads between growth factor survival 
and microenvironment signaling and may represent an 
innovative approach in cancer therapy.

Activation of lipid metabolism

Fatty acid (FA) synthesis occurs at a low level 
in most normal tissues, with the exception of liver 
and adipose tissues. However in cancer cells, FA are 
synthesized at high levels and undergo esterification, 
mainly providing phospholipids for membrane formation. 
PDAC cells overexpress enzymes involved in FA and 
cholesterol synthesis such as FA synthase (FAS) and ATP 
citrate lyase, while levels of several enzymes involved 
in FA β-oxidation in mitochondria are reduced [42]. FA 
synthesis requires NADPH that is produced in PDAC cells 
either by the KRAS-activated PPP or by malic enzyme 
during glutaminolysis. Overexpression of FAS in PDAC 
is associated with poor prognosis [95]. As reviewed by 
Swierczinski et al. [96], the oncogenic potential of FAS 
exploits several mechanisms; FAS expression is strongly 
induced by hypoxia, the PI3K/AKT/mTOR pathway 
through activation of SREBP1c transcription factor, and 
by microenvironment acidification through epigenetic 
modifications of the FAS promoter [97–99].

In cancer cells, activation of de novo lipogenesis 
induces an excess of monounsaturated lipids (which are 
less susceptible to lipid peroxidation than polyunsaturated) 
in cell membranes, increasing the resistance of cancer 
cells to oxidative stress [100]. Besides, plasma membranes 
exhibit specific subdomains, named lipid rafts, which are 
enriched in sphingolipids and cholesterol. Caveolae, a 
type of lipid raft, are principally composed of caveolin-1, 
which is deregulated in several human malignancies 
including PDAC [101, 102]. Interestingly, co-expression 
of caveolin-1 and FAS correlates significantly with poor 
clinical features and reduced survival in PDAC patients 
suggesting that these proteins are potential therapeutic 
targets in this indication [103]. Moreover, these lipid rafts 
are essential in cancer cell signaling processes, forming 
platforms for growth-factor receptors [104].

Recent work of Guillaumond et al. revealed 
cholesterol uptake and more specifically low-density 
lipoprotein receptor (LDLR) as a highly attractive 
target for PDAC metabolic therapy. They showed that 
lipoprotein catabolism and cholesterol synthesis pathways 
are enriched in PDAC, compared with nonmalignant 
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pancreas [105]. This increase in tumor cell cholesterol 
content is consistent with the increased of lipid raft levels 
observed in cancer cells. Interestingly, cholesterol level of 
lipid rafts has been shown to modulate EGFR-dependent 
survival pathway [106]. Cholesterol uptake disruption 
through shRNA silencing of LDLR inhibit proliferation 
and ERK1/2 pathway activation of PDAC cells [105].

Autophagy and pinocytosis

Recycling and scavenging are often necessary 
for cancer cells to sustain their biomass needs. 
Macroautophagy is a catabolic process that consists of 
degrading macromolecular complexes and cytoplasmic 
organelles into AA, lipids, and nucleosides that are then 
recycled. Autophagy is triggered by nutrient shortage, 
protein damage, or by oxidative stress occurring through 
inhibition of the AMP kinase (AMPK) and mTOR 
pathways, and by activation of UPR [107–109].

The role of autophagy in cancer progression has been 
controversial, and both pro- and anti-tumorigenic effects 
have been described [110, 111]. In most cases, PDACs 
exhibit basal autophagy activity [112]. Rosenfeldt et al. 
recently provided new insight into this complex issue, 
bringing to light the role of p53 in the process [113]. In 
mouse models of PDAC, inhibition of autophagy blocked 
KRAS tumorigenicity in a wild type TP53 background, 
but favored pancreatic intraepithelial neoplastic (PanIN) 
transformation into invasive PDAC in the context of a 
coexisting oncogenic KRAS mutation and TP53 deletion. 
In tumors with intact p53, autophagy inhibition resulted in 
decreased metabolism activity, whereas in tumors with loss 
of p53 function (embryonic homozygous TP53 deletion), 
it induced an increase in glucose consumption for anabolic 
pathway activity, fueling cancer cell proliferation. PDAC 
cell dependence on autophagy may thus vary according 
to the genetic background of the tumor. However, more 
recently, using an alternative mouse model with stochastic 
loss of heterozygosity of TP53, tumor cell lines, and 
genetically-characterized patient-derived xenografts, Yang 
A. et al. [114] showed that p53 status does not seem to 
affect response to autophagy inhibition. These findings 
have important implications on ongoing clinical trials.

Cancer cells are also able to absorb and degrade 
extracellular components through an endocytic process 
called macropinocytosis. KRAS-dependent upregulation 
of macropinocytosis contributes to the metabolic needs of 
PDAC cell lines, with macropinocytosis inhibition shown 
to reduce KRAS-transformed cell growth [115, 116].

TARGETING METABOLISM IN 
PANCREATIC CANCER

Activating KRAS mutations in PDAC are acknow-
ledged to be a major driver of carcinogenesis; however, 
to date they have proven to be poorly druggable targets. 

Addressing downstream metabolic alterations may 
circumvent this allowing inhibition of tumor growth in 
PDAC, as suggested by preliminary data [117, 118].

Blocking the heart of the glycolytic switch via 
PKM2

Pyruvate kinase controls the penultimate step of 
glycolysis, catalyzing the production of pyruvate and 
ATP from phosphoenopyruvate (PEP) and adenosine 
5′-diphosphate (ADP), putting PKM2 at the core of 
the glycolytic switch in cancer cells [Text Box 1]. This 
enzyme has several isoforms (M1, M2, L, R), with PKM1 
and PKM2 resulting from an alternative splicing of the 
same pre-mRNA. PKM2 is found in several tissues (liver, 
lung, pancreatic islets, and retina) and is preferentially 

Box 1: PKM2 at the core of the glycolytic 
switch in cancer cells

PKM2 glycolytic activity is regulated by different 
mechanisms, including allosteric and post-translational 
modifications [163–166]. PKM2 is present as either 
active tetramers or inactive dimers. In cancer cells, it is 
predominantly found in dimers with low activity. Active 
tetramers induce OXPHOS whereas inactive dimers favor 
cytoplasmic conversion of pyruvate into lactate by LDH-A 
[122]. The low glycolytic activity of PKM2 dimers allows 
upstream glycolytic metabolite accumulation and their 
redirection towards anabolic pathways (for review, see [167]).

Furthermore, monomeric PKM2 can translocate 
into the nucleus and acts as a co-transcription factor. 
Activation of the EGFR pathway promotes PKM2 nuclear 
translocation via EGFR-activated ERK1/2 which directly 
binds and phosphorylates PKM2 on Ser37, resulting in its 
nuclear translocation and activation, without any effect on 
PKM1 [121, 168]. Through a positive feedback loop, PKM2 
binding to succinyl-5-aminoimidazole-4-carboxamide-1-
ribose-5′-phosphate (SAICAR), an intermediate of the de 
novo purine nucleotide biosynthesis that is abundant in 
proliferative cells, leads to phosphorylation and activation 
of ERK1/2 [169]. In the nucleus, PKM2 interacts with 
nuclear HIF1-α and p300 to induce transcription of 
hypoxia-responsive genes (e.g. anaerobic glycolysis 
genes). PKM2 also binds to β-catenin and promotes 
expression of pro-proliferative MYC and CCDN1 genes. 
In addition, PKM2 interacts with STAT3 and histone H3 
whose phosphorylation on threonine 11 depends on EGFR 
activation and is required for the dissociation of HDAC3 
from the CCND1 and MYC promoter regions [170, 171]. 
As PKM gene expression is modulated by c-Myc, STAT3, 
β-catenin, and HIF1-α, and PKM alternative splicing is 
under c-Myc control, the kinase activity of PKM2 induces a 
positive feedback loop that globally enhances the glycolytic 
phenotype of cancer cells and plays a crucial role in cancer 
cell metabolism reprogramming [172].
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expressed over PKM1 in cancer cells through cMyc-
dependent splicing modulation [119].

As the dimer/tetramer status of PKM2 drives 
pyruvate fate towards OXPHOS or lactate production, 
targeting PKM2 by constraining its conformation may have 
therapeutic potential. The inactive dimer being the main 
PKM2 form in tumors, allosteric activators maintaining 
PKM2 in its highly active tetrameric form could inhibit 
cancer cell growth without toxicity since active tetramers 
are the form present in normal tissues [120]. These 
activators may in fact prevent the accumulation of 
glycolytic intermediates and their rewiring into anabolic 
pathways that are crucial for biomass synthesis of highly 
proliferative cells. Moreover, these compounds might 
prevent PKM2 nuclear translocation and the positive 
feedback loop with ERK proteins that enhance the Warburg 
effect [121]. This might be particularly relevant in PDAC, 
which are characterized by activation of the MAP kinase 
pathway downstream of constitutively activated oncogenic 
KRAS. Several PKM2 inhibitors that effectively inhibit 
cancer cell growth in vitro have already been identified, a 
number of which merit evaluation in PDAC [122].

Addressing glycolysis via LDH-A

LDH controls the rate-limiting final step of glycolysis, 
converting pyruvate into lactate in the cytoplasm. LDH 
activity is not required in normal tissues under normoxic 
conditions. The two LDH isoforms (LDH-A and -B) can be 
combined as five different tetramers (LDH-1–5). LDH-A 
is predominantly expressed in the liver and muscles and 
LDH-B in the myocardia. LDH-5 is composed of four 
LDH-A units which is overexpressed in many cancers 
including PDAC as a result of post-translational or 
transcriptional c-Myc, K-Ras, HIF-1α, and FOXM1 (for-
khead box protein M1) dependent regulation, and is 
associated with poor prognosis [43, 123–126].

In vitro and in vivo constitutive expression of 
LDH-A enhances cell growth while its silencing decreases 
tumorigenicity of PDAC cells [43]. Several LDH-5 
inhibitors are in preclinical development but their efficacy 
in vivo is limited by their pharmacokinetic profile (short 
half-life) warranting optimization of their structure/
stability and/or administration modalities. Interestingly, 
an LDH-A genetic deficiency causes myopathy only 
after major physical effort and individuals carrying this 
anomaly are healthy, suggesting that LDH-5 inhibition 
would present limited toxicities.

Blocking lactate transport

Lactate efflux plays a critical role in intracellular pH 
regulation and in tumor-stroma interactions contributing 
to cancer cell invasiveness and immune escape. Lactate 
transport occurs via monocarbonate transporters (MCT): 
MCT-4 for lactate efflux of highly glycolytic cells, and 
MCT-1 for lactate import into cells that use lactate as 

an oxidative combustible (e.g. heat, skeletal muscle, 
normoxic PDAC cells) [34]. High levels of both MCT-1 
and MCT-4 are associated with poor prognosis, and 
MCT-1 inhibition reduces growth and tumorigenicity of 
RAS-mutated fibroblasts [59, 127]. AZD3965, a MCT-1 
inhibitor, is currently being evaluated in a Phase I trial 
(NCT01791595).

Both MCT-1 and MCT-4 are associated with 
CD147 (also known as EMMPRIN or basigin), an 
immunoglobulin-family chaperone. CD147, MCT-1, 
and MCT-4 expressions at the cell surface are mutually 
dependent [128–130]. Proof-of-principle that targeting 
CD147 is an attractive approach has been established by 
knockdown studies and anti-CD147 antibodies showing 
that loss of CD147 function markedly reduced the levels 
of both MCT-1 and MCT-4 proteins and impaired the 
growth of tumor xenografts in mice [131, 132]. CD147 
being ubiquitously expressed and not specific to MCT-1 
and MCT-4, more selective inhibitors are required.

Targeting glutamine addiction

Glutamine analog inhibitors have been developed, 
from in vitro studies to clinical trials, but all studied 
analogs showed considerable off-target effects. More 
recently, targeting specific nodes of glutamine metabolism 
raised some interest. Notably, glutaminase inhibitors, such 
as bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl)ethyl 
sulfide and compound 968, demonstrated antiproliferative 
effects in vitro and in xenografts models. Similarly, 
aminooxyacetate, a non-specific aminotransferase 
inhibitor, has demonstrated efficacy in xenograft models. 
However, it has not been established whether target effects 
or off-target effects of these compounds were responsible 
for their antitumor activity, and their clinical development 
has been suspended [133].

Enhancing asparagine deprivation with 
L-asparaginase

L-asparaginase catalyzes the hydrolysis of asparagine 
into aspartic acid and ammonia, inducing asparagine 
deprivation. L-asparaginase is one of the most efficient 
agents against acute lymphoblastic leukemia, being used in 
the clinic for almost 50 years [134]. Leukemic lymphoblasts 
exhibit very low levels of ASNS - as do PDAC cells - 
meaning they are unable to produce de novo asparagine 
and these cells thus rely on exogenous supplementation. 
L-asparaginase-induced asparagine deprivation triggers 
cell apoptosis, and in vitro and in vivo experiments show 
that PDAC cells expressing low ASNS are very sensitive 
to L-asparaginase [82]. Interestingly, asparagine depletion 
may be rescued by glutamine through a transamidation 
reaction catalyzed by ASNS; asparaginase anti-leukemic 
activity correlated strongly with asparaginase-induced 
glutamine reduction, eventually resulting in protein 
synthesis inhibition and initiation of autophagy [135, 136].
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The classically formulated L-asparaginase is limited 
by toxicity and development of an immune response. 
A new formulation encapsulating L-asparaginase in 
erythrocytes has increased bioavailability and a better 
toxicity profile while retaining strong antitumor activity 
in leukemia [137]. Based on preclinical data showing 
activity, a phase II clinical trial in PDAC with this 
formulation as second-line therapy is ongoing in the 
PDAC metastatic setting (NCT02195180).

Regulating fatty acid synthesis

Two widely used drugs, metformin and statins, 
provide evidence that targeting lipid metabolism in 
cancer may have therapeutic efficacy. Metformin has 
antitumor effects in preclinical PDAC models, notably 
by inhibiting de novo FA synthesis via downregulation of 
Sp transcription factors that reduce FAS expression (see 
below) [138, 139]. Statins are inhibitors of the HMG-CoA 
reductase, which is involved in the synthesis of cholesterol 
precursors. Some data suggest that statins might prevent 
PDAC and enhance survival of PDAC patients [96]. 
However, a recent randomized phase 2 trial failed to show 
a survival benefit for simvastatine in patients treated with 
gemcitabine [140].

Plant-derived compounds such as green tea 
polyphenols or flavonoids can inhibit FAS and have 
shown cytotoxic effects in vitro in human PDAC cell 
lines, but further studies are warranted [141]. Several FAS 
inhibitors are currently in preclinical development such as 
the cerulenin analog C75 that showed antitumor activity in 
breast and prostate cancers as well as in lymphoma [96].

Since cholesterol synthesis inhibition appears to 
be ineffective for PDAC treatment, blocking cholesterol 
uptake through LDLR blockade may be a more appropriate 
strategy. Moreover, this strategy sensitize PDAC cells to 
chemotherapeutic drugs such as gemcitabine [105]. LDLR 
inactivating compounds are warranted to develop this 
novel approach of PDAC metabolic targeting.

Pinocytosis and autophagy inhibitors

The finding that survival of RAS-transformed 
cells depends on autophagy offers a potential approach 
for inhibition. Hydroxychloroquine is a compound 
approved for malaria and several rheumatologic diseases 
that prevents lysosome acidification, thus inhibiting 
autophagy and macropinocytosis. Several trials testing 
hydroxychloroquine in patients with PDAC are ongoing 
(NCT01978184; NCT01128296; NCT01506973; 
NCT01494155; NCT01273805). Wolpin et al. [142] 
reported the results of a phase II study evaluating 
hydroxychloroquine monotherapy in 20 patients with 
previously treated metastatic PDAC. Median progression-
free survival and OS were limited (46.5 and 69.0 days, 
respectively). In addition, recent data showed that 
autophagy inhibition in PDAC cells lacking p53 may 

result in increased anabolism and tumor progression [113]. 
This raises the question of the biological relevance of this 
strategy and the identification of the right tumor context in 
which these inhibitors can be used safely. The outcomes of 
patients recruited in above clinical trials should shed light 
on this strategy.

The mTOR pathway is constitutively activated in 
25%-75% of human PDAC tumors and mTOR inhibition 
can lead to proliferation arrest of PDAC cells [143]. 
Rapamycin induces autophagy in rapamycin-sensitive 
pancreatic cell lines only, which suggests that autophagy 
induction may be a downstream consequence of the 
antitumor effects of mTOR inhibitors [144, 145]. Recent 
results from phase II clinical trials of mTOR inhibitors in 
PDAC patients failed to demonstrate clinical benefit [146, 
147].

Non-specific OXPHOS inhibitors: metformin

Metformin is an antidiabetic drug that belongs to 
the biguanide family. Retrospective observational studies 
showed that metformin might reduce the risk of PDAC in 
diabetic patients and have antitumor properties, following 
the observation that it was associated with increased 
survival in diabetic patients with PDAC [148–150]. In 
in vitro and in vivo models, metformin was shown to 
impair proliferation and tumorigenicity of PDAC and 
cancer stem cells [151–155].

Metformin inhibits OXPHOS (mitochondrial 
complex I), TCA cycle anaplerosis, and de novo FA 
palmitate synthesis from glucose-derived acetyl-CoA 
[152, 156]. Thus, metformin may contribute to limit cell 
membrane synthesis. With cholesterol and FA de novo 
synthesis inhibited, glucose metabolism is channeled 
towards lactate production, which is consistent with one 
of the observed side effects, lactic acidosis. In a stem cell-
enriching culture model, metformin exposure significantly 
decreased mitochondrial transmembrane potential and 
increased mitochondrial ROS production [151]. However, 
its effects on ROS production are controversial [157].

Metformin may also exert an antitumor effect by 
inhibiting the mTOR pathway [155], as suggested by its 
association with reduced phospho-mTOR and phospho-
p70S6K levels, independently of AKT inhibition [151, 158]. 
Metformin activates AMPK, which negatively regulates 
mTORC1. In addition, metformin-induced activation of 
AMPK disrupts crosstalk between the insulin/IGF-1 receptor 
and G protein-coupled receptor signaling in PDAC models 
in vitro and in vivo [159, 160]. However, neither AMPK 
activators nor mTOR inhibitors (e.g. rapamycin) were able 
to mimic these cellular effects in PDAC cells. Clinical 
trials evaluating PI3K/AKT/mTOR pathway inhibitors in 
PDAC also failed to demonstrate a survival improvement, 
suggesting that AMPK-dependent inhibition of mTOR is 
not the driving mechanism for metformin activity in PDAC 
[151]. This suggests pathways, such as Sonic Hedgehog, 
contribute to metformin’s antitumor effect [161].
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In preclinical models, metformin was used at 
concentrations ranging from 5 to 20 mM, whereas its 
serum concentration in patients at therapeutic antidiabetic 
doses is 2 000–10 000 times less concentrated (around 2 
μM)—a potentially major pitfall in the translation of these 
results to the clinic [162]. Clinical trials testing antitumor 
activity of metformin at antidiabetic doses are ongoing and 
will contribute to resolve these issues.

DISCUSSION AND CONCLUSION

To survive under severe metabolic constraints, 
PDAC cells rely on specific metabolic adaptations, 
offering a source of innovative strategies to treat 
PDAC patients in the coming years. Only few of them 
have reached the clinical development stage [Box 2]. 
Promising novel targets have been highlighted in this 

Box 2: Metabolism-modulating agents in clinical development for pancreatic ductal 
adenocarcinoma therapy
Name (mechanism of action) Trial identifier Phase Current status

AZD3965 (MCT-1 inhibitor)

NCT01791595 1 Recruiting

ERY001 (L-asparaginase encapsulated in red blood cells)

- Metastatic PDAC

NCT02195180 2 Recruiting

Hydroxychloroquine (autophagy inhibitor)

- Neo-adjuvant setting

NCT01978184 2 Recruiting (combined with Gem and nab-P)

NCT01494155 2 Recruiting (combined with capecitabine and 
radiotherapy)

NCT01128296 1/2 Active, not recruiting (combined with 
gemcitabine)

- Locally advanced or metastatic PDAC

NCT01506973 1/2 Status unknown (combined with Gem and nab-P)

NCT01273805 2 Active, not recruiting (monotherapy)

Metformin (non-specific inhibitor)

- Neo-adjuvant setting

NCT02153450 2 Recruiting (combined with stereotactic 
radiosurgery)

- Adjuvant setting

NCT02005419 2 Recruiting (combined with Gem)

- Locally advanced or metastatic PDAC

NCT01210911 2 Completed (combined with Gem and erlotinib)

NCT01167738 2 Terminated (concern of detrimental effect)

NCT01666730 2 Recruiting (combined with FOLFOX 6)

NCT02336087 1 Not yet recruiting (combined with Gem, nab-P, 
and a standardized dietary supplement)

NCT01488552 1/2 Recruiting (combined with Gem + nab-P or 
FOLFIRINOX)

NCT02048384 1/2 Recruiting (combined with rapamycin)

NCT01971034 2 Completed (combined with paclitaxel)

Gem: gemcitabine; nab-P: nab-paclitaxel; PDAC: pancreatic ductal adenocarcinoma
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review, including PKM2 as a master regulator of tumor 
metabolism and the potential use of allosteric regulators, 
and LDH-A inhibitors. Strategies to metabolically 
starve tumors are also very appealing and interestingly 
enough, many compounds targeting tumor metabolism 
are expected to have low toxicities. Given the proven 
metabolic plasticity associated with tumors, intratumor 
heterogeneity, and the multiplicity of cell types involved 
in symbiotic metabolic interactions, targeting tumor 
metabolism will almost certainly benefit from combination 
with other targeted agents or cytotoxic compounds.
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