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Spatio-temporal analysis of small-
area intestinal parasites infections 
in Ghana
F. B. Osei1,2 & A. Stein2

Intestinal parasites infection is a major public health burden in low and middle-income countries. In 
Ghana, it is amongst the top five morbidities. In order to optimize scarce resources, reliable information 
on its geographical distribution is needed to guide periodic mass drug administration to populations 
of high risk. We analyzed district level morbidities of intestinal parasites between 2010 and 2014 
using exploratory spatial analysis and geostatistics. We found a significantly positive Moran’s Index of 
spatial autocorrelation for each year, suggesting that adjoining districts have similar risk levels. Using 
local Moran’s Index, we found high-high clusters extending towards the Guinea and Sudan Savannah 
ecological zones, whereas low-low clusters extended within the semi-deciduous forest and transitional 
ecological zones. Variograms indicated that local and regional scale risk factors modulate the variation 
of intestinal parasites. Poisson kriging maps showed smoothed spatially varied distribution of intestinal 
parasites risk. These emphasize the need for a follow-up investigation into the exact determining 
factors modulating the observed patterns. The findings also underscored the potential of exploratory 
spatial analysis and geostatistics as tools for visualizing the spatial distribution of small area intestinal 
worms infections.

Intestinal parasites, helminth and protozoa, are among the most common infections of humans in developing 
countries with considerable morbidity and substantial burden on public health. The common intestinal parasites, 
Ascaris lumbricoides (roundworms), Trichuris trichiura (whipworms), and Necator americanus or Ancylosttoma 
duodenale (hookworms) are estimated to cause one fourth of the known human infectious diseases1. Although 
there are concerns about the actual numbers of infections2, intestinal parasites are estimated to infect more than 1 
billion people3,4. In children, infections can retard child growth, cause anemia, and create cognitive and physical 
challenges5–7. Prevalence is high amongst resource-poor countries, especially in Asia, Sub-Sharan Africa, and 
Latin America where there is limited access to water supply and poor sanitation. Chemotherapy based on Mass 
Drug Administration (MDA) is the contemporary control strategy embraced by the World Health Organization 
(WHO) and governments to reduce infections. The recommendation is to ensure periodic administration of 
albendazole and mebendazole to at-risk populations3,8. To ensure that MDA control programs are focused 
appropriately on efficient utilization of scarce resources, targeting of populations requiring intervention is essen-
tial. This requires an understanding of the nature of spatial patterns, and precise estimates of the local risks for 
comparison.

Ghana is among the Sub-Saharan countries with high prevalence of intestinal parasites infections3,4. The 
disease has constantly been listed amongst the top five outpatient morbidities. Prevalence has been reported 
to be between 2% and 78% for various parasites and specific population groups9–14. Using random sampling, 
Ayeh-Kumi et al.10 estimated the prevalence of intestinal parasites among food vendors in Accra Metropolitan 
area to be 21.6%, with helminthic predominating with 15.2%. The prevalence of hookworm infection among 
school-aged children was estimated to be 39.1% in the Kintampo North Municipality, with significant risk factors 
being age, malaria parasitemia, lack of health care, school area, levels of antibodies against hookworm, and low 
consumption of animal foods. Asymptomatic carriage among psychiatric patients was estimated to be 13.5%13 
among some Ghanaian orphanages. These studies focused on either the biological or anthropogenic charac-
teristics of the individuals affected. Besides, prevalences have either been estimated for single geographic units 
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or among specific population categories, hence are unable evaluate the spatial patterns of infection. Intestinal 
parasites thrive under climatic and environmental conditions such as warm temperatures, high precipitation 
and adequate soil moisture15–17. Infections have often been associated with sociodemographic conditions such as 
poverty, poor sanitation, and poor drinking water18–20. In Ghana, prevalence has been associated with sociodemo-
graphic conditions14. Since these underlying risk factors are spatially dependent, morbidity rates will be expected 
to exhibit spatially dependent patterns.

Spatial analysis and geostatistics can provide opportunities to study the type and nature of spatial patterns, 
and where these patterns occur. They have widely been used to study the spatial patterns and estimate the spatial 
risk of intestinal parasites infections17,21–25. Spatial analysis methods such the global Moran’s Index26 (Moran’s 
I hereafter) and its local counterpart, Anselin’s Local Indicator for Spatial Association (LISA)27, could illumi-
nate potential causal factors of diseases28,29. Geostatistical analysis of health outcomes has also recently received 
increasing attention as a filtering tool30–32. For instance, Poisson kriging allows filtering of those noise by integrat-
ing population heterogeneities to account for non-constant variance30.

In this paper, we utilize spatial analysis tools and geostatistics to study the spatial patterns and provide spatially 
explicit maps of risk estimates useful for guiding control programs. Our specific objectives are to (1) quantify the 
type of spatial association, and detect and map clusters, (2) quantify the nature of spatial structure and map risk 
estimates of intestinal parasites using district level morbidities in Ghana. As neighborhood health planning in 
Ghana is largely based upon small-areas (administrative districts), studying spatial patterns of infections at the 
district level will present valuable and easy to implement information.

Methods
Study area and data.  Study Area and Data.  Ghana is a tropical region centrally located on the West Coast 
of Africa with a total land area of 239,000 km2 (Fig. 1: created with ArcGIS software). The average annual temper-
ature is approximately 26 °C (79 °F). There are two distinct rainy seasons, April-June and September-November, 
but March-September for the northern belt. Annual rainfall ranges from 1,015 mm in the north to 2,030 mm in 
the southwest (PHC, 2010). The country consists of ten administrative regions which are subdivided into 216 dis-
tricts. Ghana is subdivided into six agro-ecological zones: Sudan Savannah, Guinea Savannah, Coastal Savannah, 
Forest/Savannah transitional zone, Deciduous Forest zone and the Rain Forest zone (Fig. 2).

In this study, we used aggregated clinically or laboratory diagnosed cases of intestinal worms parasites. Due to 
the protection of patient privacy and perhaps deficiencies in address geocoding systems, publicly available data 
on precise locations of disease cases are uncommon. Consequently, the spatial scale of our study was limited to 
the 170 administrative districts of which data were available. We obtained district level yearly aggregated cases 
of intestinal parasites infections from 2010 to 2014 from the Centre for Health Information and Management 
(CHIM) of the Ghana Health Service (GHS). CHIM is responsible for compiling and ensuring uniformity in 
reporting and managing all morbidities reported to health facilities (clinics and polyclinics, hospitals). In sum-
mary, health facilities capture and aggregate data and submit to sub-districts. Sub-districts aggregate facility sum-
mary reports and submit those to districts. Districts then receive both facility and sub-district summary reports 
for validation. At each stage of the data recording hierarchy, data can be entered directly into the District Health 
Information Management System (DHIMS). We also obtained population estimates for 2010 to 2014 from the 
Ghana Statistical Service (GSS).

Spatial autocorrelation.  We used both global and local Moran’s I of spatial autocorrelation to estimate the 
strength of spatial correlation. The global Moran’s I26 estimates the general strength of spatial autocorrelation 
among districts while its local equivalent, LISA27, estimates the spatial autocorrelation between districts and their 
neighboring districts. Thus, the local Moran’s I identifies districts with high and low risks as well spatial outliers. 
For the observed counts yi and populations ni for the set of districts = ...i m1, , , we assumed that the counts are 
realizations from the Poisson distribution ⋅~Y r n rPoisson( )i i i i . The variable of interest is the risk ri; its maxi-
mum likelihood estimate equals =r y n/i i i, and its variance ∝ −v ni i

1. Since the variance is inversely proportional 
to the population sizes, the required assumption of constant variance is violated and could lead to misleading 
results of large variances for regions with small populations. We used the empirical Bayesian standardization to 
account for the unequal variances arising from unequal populations33. To do so, we constructed a standardized 
variate = −r r r v( )/i

EB
i i  based upon the unconditional marginal expectation r  and district specific variance 

= +v s r n/i i
2 . The method of moments estimates34,35 for the mean and variance equals = Σ Σr y n/  and 
σ= − Σs r n m/( / )i

2 2 , respectively, where σ = Σ − Σn r r n( ) /i i i
2 2 .

We computed the global Moran’s I, = Σ ΣI w r ri j ij i
EB

j
EB, and local Moran’s I, = ΣI r w ri i

EB
j ij j

EB using the standard-
ized variable zi. We defined the binary connectivity weight matrix wij as =w 1ij  if ∩ ≠i j null( ) ( ) , and 0 other-
wise, where i( ) and j( ) are the set of boundary points of district i and j, respectively. The m by m weight matrix wij 
was row-standardized, and satisfied the following conditions (1) symmetry, i.e., =w wij ji, (2) zero diagonal ele-
ments, i.e. =w 0ii , and (3) normalization, i.e., Σ =w 1i ij . For the local index, Ii, the summation over j implies that 
only the set of neighbors Ji of i, ∈j Ji, was included.

To test the null hypothesis of no spatial autocorrelation, we generated 999 independent permutations of the 
vector ...z z( , , )m1  and computed I  and Ii for each permutated vector to generate the empirical distribution. The 
p-value was estimated as the proportion of the number of times the index from the permuted data exceeds the 
Index from the actual data. We used the spdep36 package of the R statistical software37 for estimating both global 
and local Moran’s I.

Spatial structure and smoothing.  We used geostatistical smoothing to filter out the noise caused by het-
erogeneous population distribution. Unlike deterministic smoothers38, geostatistical smoothing can account for 
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the range of spatial correlation and estimate the associated uncertainties. We assumed that the risks ri are realiza-
tions from a second-order stationary random field. Poisson kriging was used to estimate the risk over a given 
district i0 as linear combinations of the risk observed for that district ri, and its neighboring districts 

µ µ= + −−ˆ ˆ ˆr C C r( 1 )i i ij i m0
1

0
. The assumption of stationarity implies the spatial mean of the prediction locations 

µ̂i0
 is the same as the spatial mean of the random variable ri, µ µ= =ˆ ˆE r( )i i i0

. Under minimum variance, the best 
linear unbiased estimate of the spatial mean equals ′ ′− −C C r(1 1 ) 1m ij m m ij i

1 1 . We refer to the vector µ− ˆr( 1 )i m  as the 
predictor variables, Ci0 as a covariance vector between the prediction location and the predictor variable, and Cij 
as the covariance matrix of the predictor variables. Essentially, λ=−C Ci ij i0

1
0 yields the so-called kriging weights. 

We used the variogram model γ̂ h( ) as a structural tool to estimate the covariance function based on the relation 
γ= − ˆC C h( )ij ii , where Cii is the variance of the risk or covariance at lag 0.

We used the empirical variogram estimator γ Σ= Σ − −− ⁎h w w r r r( ) {2 } { ( ) }ij ij i j
1 2 , where = −h i j  and N h( ) 

is the number of observation pairs separated by the distance h between the centroids of districts i and j. Here, the 
variogram γ h( ) depends only on the distance between the centroids of districts, and this refers to the assumption 
of uniform population density within each district. This is an adjusted experimental variogram estimator 

Figure 1.  District map of Ghana showing its neighboring countries; Cote d’Ivaire (left), Burkina Faso (top) and 
Togo (right). This map was created using ArcGIS software (version 10.1, ESRI Inc. Redlands, CA, USA. https://
www.esri.com/).

https://www.esri.com/
https://www.esri.com/
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proposed by39,40, and generalized by Goovaerts30 for disease mapping to account for heterogeneous populations. 
The rate differences −r r( )i j  are weighted by their corresponding populations =

⋅

+
wij

n n

n n
i j

i j
 to homogenize their 

variances, where = Σ Σ⁎r n r n/i i i is the population-weighted mean.
To explore both local γ h( )loc  and regional γ h( )reg  level spatial correlations, we fitted permissible nested vario-

gram models γ γ γ= +ˆ ˆ ˆh h h( ) ( ) ( )loc reg  to γ h( )41–43. This implies that the risk with mean μ was decomposed as the 
sum of local ri ,loc and regional Ri ,reg orthogonal random functions, µ= + +r r ri i i,loc ,reg , each with its particular 
contributory variogram γ̂ h( )loc  and γ̂ h( )reg , respectively. This is useful to unravel scale-dependent spatial autocor-
relation patterns. The commonly used variogram models such as the exponential and spherical models have been 
described elsewhere43,44. We fitted local and regional scale nested spherical models γ̂ h( )loc  and γ̂ h( )reg , respectively, 
using weighted least squares with weights γ=γw h N h h( ) ( ) / ( ). In this paper, the variogram modeling was con-
ducted using the public-domain software poisson_kriging.exe30.

Results
Spatial autocorrelation.  Between 2010 and 2014, a total of 3,310,653 intestinal parasites infections were 
reported. The annual incidence rates ranged from 1.55% to 3.3%, with an average annual incidence rate of 2.53% 
(Table 1). The incidence rate increased from 1.55% in 2010 to 3.3% in 2014, with a slightly lower rate of 3.25% in 
2014. We found significant positive spatial autocorrelations throughout 2010 to 2014 (Table 1), indicating that 
districts of similar risks were spatially clustered. Global autocorrelation was highest in 2010 (I = 0.388, p = 0.01) 
and lowest in 2012 (I = 0.095, p = 0.01). For easy interpretation, we presented the results of the local spatial auto-
correlations as cluster maps based upon four categories: high-high, low-low, high-low, and low-high (Fig. 3). The 
high-high and the low-low associations indicate clustering of high risk (hot-spots) and low risks, respectively. 
Both the high-high and low-low associations indicate significant (p ≤ 0.05) clustering of similar risks or posi-
tive spatial autocorrelation. The low-high category indicates that high risk districts surround a low risk district, 
whereas the high-low category indicates that low risk districts surround a high risk district. These are indications 
of spatial outliers. High-high clustering dominated within the middle belt while low-low clustering dominated 
within the northern parts. Although we undertook no formal causal relationships since this is an exploratory 

Figure 2.  Map showing the six agro-ecological zones of Ghana. This map was created using ArcGIS software 
(version 10.1, ESRI Inc. Redlands, CA, USA. https://www.esri.com/).

https://www.esri.com/
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study, a visual assessment of the local Moran’s I maps together with the ecological zones map of Ghana (Fig. 2) 
was worthwhile. We found that the high-high clusters extended within the semi-deciduous forest and the transi-
tional ecological zones. The low-low clusters on the other hand were concentrated within the northern parts and 
mostly intersected with the Guinea and Sudan Savannah ecological zones. Few outliers were detected throughout 
the study period.

Spatial structure and smoothing.  We computed experimental variograms for each year using 10 km lag 
distances for 20 lags and fitted nested spherical models (Fig. 4). At 10 km lags, there were enough (≥30) pairs of 
districts to obtain stable estimates of the variogram. Table 2 shows the parameters of the models fitted to the 

Year Cases Rate (%) Moran’s I p-value

2010 381307 1.55 0.388 0.01

2011 505614 2.00 0.367 0.01

2012 663576 2.57 0.095 0.01

2013 875921 3.30 0.248 0.01

2014 884232 3.25 0.165 0.01

Table 1.  Yearly incidence rates and global Moran’s I.

Figure 3.  Local Moran’s I cluster maps showing high-high, low-low, low-high, and high-low spatial 
associations. This map was created using ArcGIS software (version 10.1, ESRI Inc. Redlands, CA, USA. https://
www.esri.com/).

https://www.esri.com/
https://www.esri.com/
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experimental variogram. All variograms exhibited two basic structures. The parameter c0 is the nugget variance 
which refers to spatially random variation. The variance parameter c1 refers to an estimate of the amount of spa-
tially structured local (short range) variation within an average range of φ1. The variance parameter c2 refers to an 
estimate of the amount of spatially structured regional (large range) variation within an average range of φ2. The 
sum = + +sill c c c0 1 2 refers to the total variation, and %c0, %c1, %c2 refers to the proportion of the overall vari-
ation explained by c0, c1, c2, respectively. We found that the local spatial variations fell within the range ≈ 
34–41 km. The regional spatial variation, however, showed widespread range values, ≈271–900 km, beyond the 
maximum lag distance used for estimation. For the years 2010 to 2012, γ̂ h( )reg  accounted for nearly 70% or more 
of the variation and γ̂ h( )loc  accounted for nearly 30% or less. Conversely, for rates in 2013 and 2014, γ̂ h( )loc  
accounted for more than 70% whereas γ̂ h( )reg  accounted for nearly 25% or less. We also found an increasing trend 
of the variation accounted for by γ̂ h( )loc  from ≈ 13% in 2010 to ≈ 75% in 2014.

Figure 4.  Nested variogram models of the risk for 2010 to 2014. This figure was created using R software (R 
Development Core Team 2013).
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Maps of the smoothed rates and kriging variance after geostatistical filtering are shown in Figs 5 and 6, respec-
tively. Both the smoothed rates and the variances show clustering of districts with similar estimates. From the 
smoothed maps, we found that high rates dominate within the middle belt, whereas low rates dominate within the 
northern parts. As was expected, we found reduced variation and considerable adjustments of rates for districts 
with smaller populations than districts with larger populations (Fig. 7).

Discussion
We observed several noteworthy insights. We found evidence of global clustering of districts with comparable 
risks, suggesting the importance of spatially dependent phenomena modulating the spatial heterogeneity in the 
risk of intestinal worms infection. The observed global patterns imply that neighboring districts have similar 

Year c0 %c0 c1 φ1 (km) %c1 c2 φ2 (km) %c2

2010 0.925 13.40 0.919 39.603 13.31 5.060 883.147 73.29

2011 0.141 1.62 2.277 40.399 26.14 6.293 900.055 72.24

2012 0.067 0.48 4.506 41.186 32.48 9.300 900.051 67.04

2013 0.876 6.73 9.466 34.177 72.70 2.678 314.030 20.57

2014 0.000 0.00 8.184 34.608 74.89 2.744 271.626 25.11

Table 2.  Summary of the variogram models and parameters fitted to the experimental variograms.

Figure 5.  Maps of the smoothed rates after geostatistical filtering. This map was created using ArcGIS software 
(version 10.1, ESRI Inc. Redlands, CA, USA. https://www.esri.com/).

https://www.esri.com/
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underlying ecological and environmental risk factors that trigger intestinal worms infections28. The similarity, 
however, widely contrasted as local Moran’s I illuminated that the high-high values (hot-spots) dominated within 
the middle belt, whereas low-low values (low risk) within the northern part. One would, on the contrary, expect 
the hot-spots to occur mainly within the northern parts of Ghana where the socioeconomically less privilege 
are mostly found. This finding is an unexpected departure from other previous studies20,45–47, and suggests that 
interaction effects of environmental and socioeconomic risk factors that combine best to enhance infection could 
play a role. Although the study did not build a formal causal explanation model for the clustering patterns, a 
visual comparison of the patterns with the ecological zones of Ghana generates a working hypothesis that is worth 
testing in future research efforts. The patterns of the hot-spots are plausible since they widely intersected with the 
semi-deciduous forest and the transitional ecological zones. High precipitation, which is mostly associated with 
the semi-deciduous forest and the transitional zones of Ghana, has been found to increase the risk of intestinal 
parasites19. The specific effect on precipitation, however, has been attributed to specific quarters of the year19,21. 
This emphasizes the need for further studies to substantiate this augment in our study area. The low risks on the 
other hand widely intersect within the Guinea and Sudan Savannah ecological zones. These ecological zones are 
mostly flat with low precipitation, high temperature, and consist predominantly of grassland. These zones also 
have much drier soils with the highest land surface temperatures due to their proximity to the Sahel and the 
Sahara, and likely provide unfavorable environmental and ecological conditions for transmission. Some studies 
have associated low risk of intestinal worms infection to these unfavorable conditions. For instance24, associated 
low risk of helminth infection with high land surface temperature in Kenya. A study of the spatial distribution 
of helminth infection across sub-Saharan Africa associated extreme dry soils with the absence of hookworm 
infections19. The patterns of hot-spots and low risks are similar to findings from a study in Cote d’Ivoire, where 
low risk of schistosomiasis was found in Savannah ecological zones and high risk extended into Forest ecological 

Figure 6.  Maps of the Poisson kriging variance after geostatistical filtering. This map was created using ArcGIS 
software (version 10.1, ESRI Inc. Redlands, CA, USA. https://www.esri.com/).

https://www.esri.com/
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zones48. In a developing country like Ghana, an alternative interpretation of the clustered patterns could be based 
on variations in the reporting systems. However, the consistency in these patterns throughout the study period 
suggests that they are less likely to have been caused by only variations in the reporting systems.

The Poisson variogram estimator accounted for the effects of population heterogeneities and revealed actual 
spatial structures that could otherwise have been obscured from the traditional variogram estimator39,40. In con-
junction with the global and local statistics, nested variograms allowed us to identify the spatial distribution of 
intestinal parasites infection, showing that spatial variation occurs on two different scales. The average range of 
the local scale variation was 38 km, suggesting a strong correlation between neighboring districts. The average 
range of the small scale variation was less than the minimum distance of 68 km within which each district would 
have at least one adjoining neighbor. This suggests that most of the patterns of the small range structure only 
cover a district plus its adjoining neighbors. The range of the large-scale variation, ≈271–900 km, was larger 
than the maximum lag distance probably because of the dependency on ecological processes which operate with 
marked variation at regional scales larger than the average size of the districts and their higher-order adjoining 
neighbors. The short range parameters in the second structure of the variogram in 2013 and 2014 could be due to 
temporal changes in the regional scale ecological processes that affect infections.

Under the assumption that the unknown risk is a spatial stochastic process, Poisson kriging of the spatial risk had 
the advantage to correct for extreme rates due to small populations. The Poisson kriged risk maps indicated that intes-
tinal parasites infections are spatially varied and widely distributed. High risk markedly persisted within the middle 

Figure 7.  Graphs of variances accounted for against population after Poison kriging.
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belt and low risks within the northern sector. This partly corroborates with data presented in a previous23 which found 
low hookworm egg counts (<1egg g−1) mostly in the northern parts and high hookworm egg counts (>30 eggs g−1) 
within central parts. Temporal changes in the spatial patterns over the years have been marginal, probably because the 
risk factors have generally remained static over time. Further studies to substantiate this argument will be valuable.

Our study still has some limitations. The first limitation relates the data. Data from the CHIM likely have record-
ing gaps due to the voluntary reporting nature. Most reporting facilities (hospitals, clinics) lack diagnostic apparatus 
for proper biological confirmation of infection and hence rely on symptomatic diagnosis. However, we share the 
same opinion with Julian49 that imperfect information is likely more useful to intervention design than no infor-
mation. Secondly, the morbidity data covered large heterogeneous districts. Although making inferences at district 
level was our interest, centroid based Poisson kriging makes an implicit assumption of homogenous population and 
morbidity distribution within districts. This is overly simplistic and could have affected our final smoothed maps. 
Further studies using rigorous statistical estimations are required to attenuate possible misspecification.

Conclusions
This study demonstrated the use of spatial statistical methods such as cluster analysis and geostatistical smooth-
ing to explore and elucidate the spatial patterns of district level intestinal parasites infections. Local and global 
Moran’s I estimated and mapped spatial clustering of intestinal parasites. Our findings regarding global Moran’s 
I indicated a non-random spatial distribution of internal parasites infection, and prompt for further studies to 
investigate and enumerate possible environmental and socioeconomic factors that could account for such pat-
terns. Local Moran’s I cluster maps are essential for guiding public health officials to develop cost-effective control 
measures and could ensure that control programs are focused appropriately. In consequence of our findings, 
health professionals should pay more intervention attention to the hot-spots locations. Besides, the findings 
regarding the pattern of global and local autocorrelations are important steps in a process leading to a proper 
model for intestinal worms infection in the future. Finally, the study demonstrated the usefulness of geostatistics 
for filtering out noise caused by heterogeneous populations, which is important for low morbidities recorded in 
areas with low population sites. The geostatistical risk maps provided knowledge of the spatial distribution of 
intestinal parasites infections Ghana. We intend to investigate issues of spatial support further and varying pop-
ulation and morbidity distribution within districts in the future.
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