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15.1 � Synthesis of silver nanoparticles

The synthesis of metal nanoparticles is currently a highly active area of research. 
Several methods have been developed for the synthesis of these materials. Techniques 
for synthesizing nanoparticles can be divided into solid-, liquid-, and gaseous-phase 
processes [1].

Due to the size of nanoscale materials, their behavior is remarkable, compared with 
their macroscopic counterpart. The properties of these materials are primarily influ-
enced by the increase in the surface-to-volume ratio, which results in an increase in 
the total contact/active surface. The solubility or the reactivity is superior to those of 
the same materials in the form of larger particles [2]. Consequently the development 
of techniques that can lead to the production of nanoparticles with adequate size and 
shape and controlled polydispersity is pivotal.

Nanocrystalline materials can be synthesized by either clustering atoms/molecules/
groups of atoms (bottom-up approaches) or decomposing large-sized materials to 
smaller dimensions (top-down approaches). During top-down synthesis, nanoparticles 
are obtained by reducing the size of macroscopic systems to nanoscale. The reduction 
in particle size can be achieved by various physical or chemical procedures when 
applying a source of energy, which may be mechanical, chemical, or thermal [3, 4].

As far as mechanical approaches are concerned, there are various types of mill-
ing equipment used to mix, alloy, or reduce in particle size. The mechanical mill-
ing processes may involve high local temperatures and pressures (> 1000°C and 
GPa-level pressures), which is why these types of processes can be considered to be 
mechanochemical synthesis. The aim of milling is to reduce larger particle sizes to 
nanoparticles, with the possibility of generating new phases and surface properties, 
as function of the milling parameters [5]. Generally, using top-down approaches (e.g., 
milling) makes it relatively difficult to obtain precise control of the size and shape of 
the nanoparticles; however, it is a quick and adequate variant for widespread use in 
the nanoindustry [6].

To improve the process of nanoparticle synthesis by mechanical milling, surfac-
tants are generally used, which help to obtain particles with more precise sizes and 
superior characteristics. Surfactants are materials that may exhibit both hydrophobic 
and hydrophilic properties. A major classification of these is defined based on the type 
of surface charge, namely, anionic, cationic, amphionic, and ionic surfactants [5]. The 
main problem posed by nanomaterials obtained by mechanical means is their irregular 
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shape and the presence of defects in the crystalline network, as well as the partially 
amorphous state of the powder. Moreover the final product may be contaminated with 
impurities due to the grinding media [7, 8].

Another means of top-down synthesis is laser ablation. This technique is based on 
the principle of optical conversion in thermal energy due to electronic excitation. By 
using high energy lasers, an increased absorption of light on the surface of the target 
material is caused, where rapid temperature rise occurs and chemical bonds from the 
surface of the target material are destroyed, allowing the target material to evaporate. 
Particle synthesis is accomplished by condensation of the removed (evaporated) mate-
rial from the target surface, leading to the formation of nanoparticles in a liquid [8a]. 
It is understandable that the processing parameters greatly affect the characteristics of 
the laser-ablated nanoparticles. Sportelli et al. are reporting that exceptionally stable 
silver nanoparticles were prepared by LASiS using isopropanol as ablation medium, 
instead of water. The nanoparticles synthesized using a pulse energy of 46.5 mJ exhib-
ited stability over time (up to 90 days), without any significant flocculation. The reason 
for this stability might be related to the decomposition of isopropanol at high tempera-
tures (generated by the laser beam), thus generating organic stabilizing layers, which 
cover the nanoparticles [9]. Furthermore, by applying several stages of laser irradia-
tion, firstly, to the solid target and, secondly, to the solution obtained in the first stage, 
one could obtain reduced-size silver nanoparticles, as reported by Fernández-Arias 
et al., with increased inhibitory effects against Staphylococcus aureus, clearly related 
to the improved size and shape of the nanoparticles, caused by the reirradiation stage 
[10]. Laser ablation could be used as a single-step process to deposit silver nanoparti-
cles unto substrates, as reported by Boutinguiza et al. In this case the spherical shape 
AgNPs, with mean diameter bellow 20 nm, were proposed as potential antibacterial 
agents against Lactobacillus salivarius, to be further used in dental implantology [11].

The sonofragmentation process involves breaking the particles into nanoscale frag-
ments by applying high-power ultrasounds. In the case of sonofragmentation, detach-
ment occurs due to the interaction between the particles and the shock waves, unlike 
the usual ultrasonic milling, where the particles are mainly milled and separated by 
collision between the particles [12, 13]. Ruixuan Gao et al. have used ultrasonication 
applied to metal nanowires to generate monodispersed metal nanoparticles. They ap-
plied sonofragmentation on several types of materials from Ge, to TiO2, to Ag. For the 
synthesis of Ag nanoparticles, commercially available nanowires of Ag with a diame-
ter of about 20 nm were used. Following the sonofragmentation process the obtained 
nanoparticles had dimensions smaller than 4 nm [14].

Similar to laser ablation (where the nanoparticles are obtained due to the effect of a 
laser beam on a solid target), sputtering is a method of vaporizing materials on a solid 
surface by bombarding it with energetic ions of a plasma, causing an ejection of atoms 
and groups of atoms, followed by condensation into nanoparticles [15]. Magnetron 
sputtering can be used to synthesize metallic nanoparticles, and their size can be con-
trolled with precision. With a constant sputtering time and deposition time, the size of 
the Ag nanoparticles is inversely proportional to the target-substrate distance. These 
Ag nanoparticles have important properties for potential applications both in the cat-
alyst and sensor industry and in diagnostics [16]. Wender and colleagues reported the 
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formation of colloidal silver nanoparticles after sputtering and condensation in castor 
oil, canola, and capric-caprylic triglyceride oil. Nanoparticles that showed smaller di-
mensions and a uniform size distribution were those obtained with increased discharge 
voltage [17]. Several other physical and chemical methods have been used to produce 
nanoparticles, such as ultraviolet irradiation, aerosol technologies, lithography, ultra-
sonic fields, and photochemical reduction techniques, although they remain expensive 
and involve the use of hazardous chemicals [18].

In “bottom-up” synthesis processes, the individual manipulation of atoms and mol-
ecules through self-assembly processes leads to the formation of nanostructures. The 
precursor is usually a liquid or gas that is ionized, dissociated, sublimed or evaporated, 
and then condensed to form amorphous or crystalline nanoparticles [4, 19, 20]. The 
main advantages of bottom-up techniques consist of a homogeneous chemical com-
position, a low particle size variation, or the number of nanoparticle surface defects, 
considerably lower compared with top-down approaches [4].

Chemical reduction is the most commonly used method of synthesis of nanoparti-
cles due to its low difficulty. Through this bottom-up approach, controlling the growth 
of metallic nanoparticles with a narrow distribution in diameter is a viable goal. It is 
well known that metal nanoparticles can be produced through this process at low cost 
and high yield [20, 21]. To understand the principle of the method, the principle un-
derlying the chemical synthesis of metal nanoparticles will be described. The process 
requires three components, namely, metal precursors, reducing agents, and stabilizing 
agents [22]. The formation of the colloidal solution, which contains nanoparticles re-
duced from metallic salts, involves two main steps: the nucleation/germination step 
and the subsequent growth of the crystals. It has been demonstrated that the size and 
form of synthesized nanoparticles are strongly dependent on these stages [23, 24]. For 
the synthesis of uniformly dispersed nanoparticles, it is necessary that the formation 
of all nuclei is simultaneous. The formation of crystals can be controlled by adjusting 
the reaction parameters such as temperature, pH of the solution, precursors, reducing 
agents (ethylene glycol and glucose), and stabilizing agents (PVA and PVP) involved 
in the synthesis. Moreover a short nucleation burst, followed by slow controlled 
growth, is essential to produce monodisperse nanoparticles [25, 26]. When discussing 
chemical reduction the synthesis process is divided in two stages: In the first stage a 
strong reducing agent is used to produce small particles, while in the second stage, 
these small particles are grown by further reduction with a weaker reducing agent.

In recent years, biological synthesis (biosynthesis) has emerged as an attractive al-
ternative to traditional nanoparticle production methods. Biosynthesis involves ecolog-
ical approaches based on green methods using single-cell and multicellular biological 
entities, such as bacteria, actinomycetes, fungi, plants, yeasts, or plant extracts [27]. 
In addition to the use of microbes and plants, green methods of synthesis currently 
include different approaches through the use of biological materials like honey, starch, 
or ascorbic acid. They have been used so far to synthesize gold, silver, palladium, 
carbon, and platinum nanoparticles [28]. Although microorganisms and plant extracts 
can be used to synthesize metal nanoparticles, it is very important that the process be 
optimized to produce homogeneous nanoparticles of similar size and shape. This can 
be done by adjusting the control parameters such as the precursor concentration, the 
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mixing ratio between the biological extract and the metal salt, pH value, temperature, 
incubation time, nutrient media composition, and aeration [29].

Plants could be considered a more ecological way for the biological synthesis of 
metal nanoparticles. They have potential in the accumulation and biological reduction 
of metal ions. Plant extracts contain bioactive alkaloids, phenolic acids, polyphenols, 
proteins, sugars, and terpenoids that play an important role in the initial reduction of 
metal ions and furthermore in their stabilization. The variation in the composition and 
concentration of these active biomolecules between different plants and their subse-
quent interaction with metal ions contributes to the diversity of nanoparticle sizes and 
shapes that can be obtained [27, 29].

Natural products or those derived from natural products, such as extracts from sev-
eral plants or parts of plants, tea, coffee, bananas, and plain amino acids, as well 
as wine, table sugar, and glucose, have been used as reducing agents [29]. Recent 
experiments have also revealed the reduction potential of leaf extracts, seed extracts, 
root extracts, bulbs, and plant latex, which are used to synthesize gold, silver, and 
palladium nanoparticles [28].

Bioreduction consists in the chemical reduction of metal ions in more stable forms. 
Many organisms have this ability, where the reduction of a metal ion is coupled with 
the oxidation of an enzyme. This results in stable and inert metal nanoparticles [30]. 
The most common location of nanoparticle biosynthesis is that of biological cells 
and their cell membrane. Biosynthesis is the phenomenon that occurs through bio-
logical or enzymatic reaction [31]. There are two types of biosynthesis, depending on 
where the process takes place, that is, intra- or extracellular synthesis. Intracellular 
synthesis occurs in the cell, while extracellular synthesis occurs due to cell-secreted 
enzymes [32].

The ability of bacteria to synthesize inorganic nanoparticles is well known and 
explored. The first bacteria that have been shown to have the ability to produce silver 
nanocrystals belong to the strain Pseudomonas stutzeri A259 [33].

Hereinafter the procedure to obtain silver nanoparticles using Bacillus amyloliq-
uefaciens and B. subtilis will be briefly presented. The bacteria were grown in the 
following solid medium: 1-g/L yeast extract; 18-g/L agar-agar; 5-g/L sodium nitrate; 
and 0.2-g/L glucose, which was firstly sterilized at 128°C in 100-mL volume of dis-
tilled water. The cultures were further inoculated on the solid medium petri dishes, 
with 1 μL of each bacterium and incubated at 33°C for 48 h. To synthesize the silver 
nanoparticles, 1 μL of bacterial strains was freshly inoculated into conical flasks con-
taining 100 mL of liquid medium (0.6-g/L yeast extract, 1-g/L sodium nitrate, and 
3-g/L glucose) at 33°C for 48 h. After this incubation period the cultures were centri-
fuged at 4000 rpm for 30 min. Ten milliliter of the supernatant was mixed with 90 mL 
of the precursor (1-mM aqueous AgNO3 solution). The steps are shown schematically 
in Fig. 15.1.

The samples were incubated for 48 h at 33°C and 150 rpm. Furthermore the solu-
tion containing the biosynthesized AgNPs was centrifuged. The collected material 
was washed with 25 mL of distilled water and dried at 80°C until the liquid was 
evaporated. The starting point for the formation of silver nanoparticles was observed 
after 6 h, when the color of the aqueous solution began to change from pale yellow 
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to light brown, due to the surface plasmon resonance phenomenon [34]. After 48 h of 
incubation, the final color of the samples was changed to brown, thus signaling the 
extracellular synthesis of silver nanoparticles. The reduction of silver nitrate could 
be produced by the constituents of the cell supernatant. Peptides or proteins may 
be responsible for the reduction of Ag+ ions and the subsequent formation of silver 
nanoparticles. The synthesis of silver nanoparticles can be mediated by the alpha-
amylase enzyme, produced by the Bacillus species [35]. Further results concerning 
the structural and morphological features of the synthesized silver nanoparticles and 
results related to their antibacterial capacity and synergistic effect when combined 
with fluconazole and ciprofloxacin, against several bacteria strains and fungi, can be 
found elsewhere [36].

The use of fungi in nanoparticle synthesis and micosynthesis displays advantages 
compared with other organisms, especially due to their relatively easy isolation and 
their capacity to generate higher protein concentrations, or enzymes that help reduce 
metal ions [29, 37]. Eukaryotic organisms, such as fungi, have been thoroughly inves-
tigated for their ability to form nanoparticles. In a large study involving nearly 200 
different genres, Sastry et al. found that fungi are excellent candidates for the synthesis 
of metal nanoparticles and metal sulfides. The rapid reduction of metal ions by two 
different types of fungi, Verticillium sp. and Fusarium oxysporum, exposed to aqueous 
solutions of gold and silver ions was reported [38].

Of all eukaryotes, yeasts are probably the most studied and applied in bioprocesses. 
Moreover, their potential to produce semiconductor nanoparticles is well known and 
investigated. Although yeasts are known to predominantly produce nanoparticles in-
tracellularly, recent studies have revealed the extracellular synthesis of silver nanopar-
ticles using the silver-tolerant yeast strain MKY3 [39].

The identification of prokaryotic microorganisms for the synthesis of gold nanopar-
ticles was reported by Ahmad and his collaborators, where actinomycetes of the 
Rhodococcus species helped synthesize nanoparticles with well-defined dimensions 
and good monodispersity. Similar results were also obtained by extracellular synthesis 
using Thermomonospora sp. [28, 40, 41].

Final colour

Cell free
supernatant

Pellet of  cells

Centrifugation

150 rpm, 33°C, 48 h 150 rpm, 33°C, 48 h4000 rpm, 30 min Autoclave at 128°C

Bacteria
cultures

Precursor

1mM AgNO3 After 6 h

Initial colour

90% AgNO3 +

10% supernatant

Liquid sample

Fig. 15.1  The biosynthesis steps used to obtain AgNPs, Bacillus amyloliquefaciens and B. 
subtilis aided.
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A combination of the previously mentioned synthesis processes could be employed 
to further synthesize silver nanoparticles, with the main advantage of significantly 
shortening the synthesis period, as reported by Matej Baláz et al., where by using a 
biomechanochemical approach and thus combining mechanochemistry (ball milling) 
and green synthesis, silver nanoparticles (AgNPs) with antibacterial activity were suc-
cessfully synthesized [42].

For an extensive coverage of the chemical and biological synthesis of metal 
nanoparticles, there are several recent reviews available, which can help the reader to 
further explore the subject [4, 43–50].

15.2 � Applications of silver nanoparticles

15.2.1 � AgNPs as delivery systems in cancer therapy

Cancer is the second major problem of global mortality, being responsible for an es-
timated 9.6 million deaths in 2018. According to the World Health Organization, the 
most common causes of cancer-related deaths are lung cancers, followed by colorec-
tal, stomach, liver, and breast cancers [49].

A challenge among cancer therapy is replacing conventional treatments, such as 
chemotherapy or radiotherapy, with different alternatives, which could include the 
use of metallic nanoparticles, used as delivery media. The main reason for this need 
of replacement is determined by the side effects of conventional procedures, which 
may damage not only the tumor tissue but also healthy cells [50]. Currently, chemo-
therapy treatment aims to kill rapidly dividing cells, making no distinction between 
healthy cells and cancer cells. Using chemotherapy as means of treatment results in 
the destruction of cells that are fast proliferating (i.e., hair follicles and intestinal epi-
thelium cells) [51]. Moreover the current medication (e.g., doxorubicin, daunorubicin, 
bleomycin, and cisplatin) used in cancer therapy is considered to be not fully effective, 
followed by other disadvantages, such as restriction by lack of specificity, high cost, 
high toxicity, and resistance susceptibility [5, 52].

Nanoparticles proposed to be used toward cancer therapy have been developed in a 
wide variety of shapes and a broad range of sizes, with the purpose to reduce the release 
rate and amount of required drug dose [53]. Not only nanometric materials such as den-
drimers, micelles, and liposomes but also polymeric, ceramic, and metallic nanoparticles 
are currently of interest [54, 55]. Currently, different types of nanoparticle systems are 
investigated, with a particular emphasis on metallic nanoparticles, mostly due to their 
significant medical potential developed by allowing themselves to be conjugated with 
antibodies, ligands, and drugs [56]. Gold, silver, and platinum are some of the most re-
searched materials to be used as nanometric particles in different areas of medicine [57].

Silver nanoparticles have been found to induce cytotoxicity via apoptosis and ne-
crosis toward a range of different cell types. Moreover, they exhibit results against 
secondary effects of current therapies, as well, such as deoxyribonucleic acid (DNA) 
damage, generation of reactive oxygen species (ROS), increasing leakage of lactate 
dehydrogenase (LDH), and inhibiting stem cell differentiation [58, 59]. Table 15.1 
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describes different applications of silver nanoparticles against various cancer cells, 
both as elementary therapeutic agents or in combination with other known drug 
agents, including salinomycin, gemcitabine, and camptothecin.

Yu-Guo Yuan and collaborators have shown that the synergism between sil-
ver nanoparticles and gemcitabine generated a higher cytotoxicity and apoptosis in 
A2780 cells, compared with the use of the therapeutic agent without nanoparticles 
[60]. Moreover, it was demonstrated that AgNPs can improve the responsiveness to 
gemcitabine or salinomycin in ovarian cancer cells, leading to an increased level of 
different proapoptotic genes, such as tumor protein p53, p21, Bax, and Bak, and acti-
vation of caspases 3 and 9. Furthermore a decrease in the levels of antiapoptotic B-cell 
lymphoma 2 genes was obtained in A2780 human ovarian cancer cells using AgNPs 
[59, 60]. In terms of colon cancers, an upregulation of p53, p21, and caspases 3, 8, and 9 
along with a downregulation of AKT and NF-κB has been observed following therapy 
with silver nanoparticles [63]. Fig. 15.2 represents the effect of wortmannin or AgNPs 
alone or the combination effect of wortmannin and AgNPs on apoptosis in cancer 
cells, as referenced in [66]. Apoptosis of cancer cells after treatment was assessed by 
the TUNEL assay; the nuclei were counterstained with DAPI. Representative images 
show apoptotic (fragmented) DNA (red staining) and the corresponding cell nuclei 
(blue staining). According to tumor volume and weight ratio of tumor tissue data, the 
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Fig. 15.2  The synergistic effect between silver nanoparticles and wortmannin against cancer 
cells in mice with melanoma [66].
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terminal deoxyribonucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick-
end labeling (TUNEL) assay revealed many more apoptotic cells in the tumor treated 
with AgNPs plus wortmannin than in the tumor treated with AgNPs alone, while few 
of the apoptotic cells were observed in the untreated tumor or the tumor treated with 
wortmannin alone.

The synergistic effect between silver nanoparticles and camptothecin in human cer-
vical cancer cells (HeLa) was inferred from their ability to activate caspases 9, 6, and 
3. Moreover, increased levels of p53, p21, cyt C, Bid, Bax, and Bak and modulated 
expressions of Akt1, RAF, MEK, Erk1/2, JNK, P38, NF-κB, and Cyclin D, which are 
known as molecules involved in cell survival, were observed in HeLa cells after using 
AgNPs combined with camptothecin [61].

The effects of PVP-coated AgNPs and silver ions (Ag+) against the human lung 
cancer were also reported. Even though a similar toxic effect on mitochondrial func-
tion of alveolar cell line, A549, was observed using both AgNPs and Ag+, it should be 
highlighted that the AgNPs lead to higher levels of ROS than Ag+ (leading further to 
DNA damage) [64]. In addition to increased cytotoxicity, AgNPs not only inhibited 
cancer cell proliferation through induction of apoptosis but also inhibited the cancer 
cell migration [56, 67]. Regarding the toxicity effects of starch-coated silver nanopar-
ticles, it was reported that their use could lead to the ATP depletion, mitochondrial 
damage, and cell cycle arrest in G2/M phase, in relation to human lung fibroblast cells 
and human glioblastoma cells [57].

Furthermore, it was shown that hybrid nanoparticles, composed of silver and bio-
active small molecules of quinacrine based on poly(lactic-co-glycolic acid) (PLGA), 
exhibit antitumor potential in H-357 oral cancer cells and oral squamous cell 
carcinoma-cancer stem cell (OSSC) [62]. The presence of cancer stem cells has been 
found to be the main cause of cancer relapse even after successful surgeries took place 
and also for the development of cancer resistance to treatment [68]. Therin, Satapathy, 
and coworkers have demonstrated that their obtained hybrid nanoparticles were able 
to generate apoptosis in OSCC inducing S-phase arrest and damaging the DNA [62].

15.2.2 � AgNPs as antiviral agents

The development of resistance to treatment in various pathogens including viruses 
represents another major cause of death, which is a major concern of the medical, 
pharmaceutical, and biotechnological systems [18]. Silver nanoparticles are employed 
in newly emerging applications as antiviral agents, due to their inhibitory activity 
against numerous viruses, including certain strains of coronavirus [68a], hepatitis, 
influenza, herpes, recombinant respiratory syncytial virus, and human immunodefi-
ciency virus [47]. It is generally acknowledged that silver nanoparticles contribute to 
viral inactivation because of reactions with sulfhydra, amino, carboxyl, phosphate, 
and imidazole groups [69].

In 2017 worldwide about 1 million people died only from AIDS-related illnesses 
[69]. Even if over 25 antiretroviral compounds have been developed and accepted 
for use in HIV-infected individuals, they do not generally have the capacity to com-
pletely eradicate viral reservoirs. This phenomenon often occurs as a result of the 
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virus developing resistance to the treatment [70]. AIDS can be caused by two dif-
ferent lentiviruses, HIV-1 and HIV-2. Research carried out in various countries in-
dicates that up to 78% of patients infected with HIV-1 and treated by antiretroviral 
administration have developed resistance to at least one of the available drugs [71]. 
Considering these developments, nanotechnology challenges have emerged in relation 
to the eradication of latent HIV reservoirs [72]. There are three main pathways, in con-
nection with virus infections, which are involved in limiting of pathogen replication 
in infected cells, namely, apoptosis, necroptosis, and pyroptosis [73]. While apopto-
sis is usually nonimmunogenic, it has a vital role in eliminating virus-infected cells. 
For viruses that successfully resist apoptosis, programmed necrosis and pyroptosis 
may be vital to eliminate the viral factor before adaptive immunity is engaged [74]. 
Elechiguerra and coworkers demonstrated that silver nanoparticles exhibited antiviral 
activity performed through gp120 glycoprotein knobs, which have the main function 
based on binding to the CD4 inhibiting fusion or entry of the virus into the host cell 
receptor sites [75]. It has been argued that acting via gp120 represents an optimal 
manner by which CD4-dependent virion binding, fusion, and infectivity of HIV can 
be prevented [71]. Not only proper functioning of silver nanoparticles occurred at an 
incipient stage of virus replication, but also a very important point is that they have 
developed inhibition of HIV-1 life cycle at postentry stages [71, 75]. Silver nanopar-
ticles, synthesized using HEPES buffer and human serum albumin, which served as 
a stabilizer, have been reported to exhibit cytoprotective and postinfected anti-HIV-1 
potential toward Hut/CCR5 cells. In that study the results have shown that the apop-
tosis of the cells is dose dependent. For example, a significant reduction of apoptotic 
cells, from 49% to 19%, was obtained for a higher concentration of nanoparticles, 
(50 mM), while a concentration of 5 mM leads to cell apoptosis up to 35%. Moreover, 
it was confirmed that silver nanoparticles exhibit cytotoxicity activity, in particular 
against HIV-1 cells, the survival percentage of 80% for the Hut/CCR5 host being 
registered at concentration up to 50-mM nanoparticles [76]. PVP-coated AgNPs have 
also been used in studies against HIV, besides their potential in treating cancer, using 
an in vitro human cervical tissue-based organ. The PVP-coated Ag nanoparticles have 
been found to inhibit HIV-1 transmission within a relatively short period of time, in 
about 1 min. It has been observed that this delivery drug system protects the cervical 
tissue against infection with HIV-1, for 48 h, even after several successive washes, 
providing long-term protection of cervical tissue from infection [71]. Moreover, after 
the inactivation of HIV-1 and blocking of viral entry, the fusion of HL2/3 and HeLa 
CD4 cells was also blocked, in a dose-dependent manner [71]. Likewise, PVP-coated 
AgNPs (0.2-wt% PVP—pharmacologically inactive substance) were shown to inhibit 
the herpes simplex virus type 2 cytopathic effect on host cells, causing a significant 
reduction of progeny viruses. A concentration of 100-μg/mL AgNPs induced an in-
significant toxicity on Vero host cells being as well capable of inhibiting HSV-2 rep-
lication. A different delivery drug system based on silver nanoparticles capped with 
mercaptoethane sulfonate, sonochemically synthesized, was used for the inhibition of 
herpes simplex virus type 1, having no cytotoxic effect on host cells. Because the in-
teraction between viral envelope glycoproteins and cell surface heparan sulfate affects 
the attachment and entry of the virus into cells, silver nanoparticles should lead to the 
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blockage of viral entry into the cell and to the prevention of subsequent infection [77]. 
In vivo studies showed that tannic acid–modified silver nanoparticles (Ta-AgNPs) ex-
hibit significant antiviral activity against herpes simplex type 2 infection. By treating 
intravaginally a mouse model with HSV-2 infection with Ta-AgNPs, an increase in the 
percentage of IFN-gamma + CD8 + T-cells, activated B cells, and plasma cells at the 
tissue level was observed [78].

Another important application of silver nanoparticles developed for antiviral 
purposes concerns the treatment of influenza. A significant number of results were 
reported concerning the inhibitory activity of this kind of nanoparticles against the 
H1N1 virus, followed by the H3N2 virus. A delivery system for zanamivir medication, 
used to treat and prevent influenza, was shaped at nanoscale alongside silver nanopar-
ticles through a simple chemical method using a solution of vitamin C. Using a similar 
method a surface enrichment of the AgNPs with amantadine was developed, for the 
purpose of overcoming drug resistance shown by the H1N1 virus [79]. It was reported 
that zanamivir and amantadine self-assembled on the surface of AgNPs to get better 
inhibitory potential of neuraminidase and hemagglutinin activity, compared with sin-
gle drug treatments. Furthermore, structural changes in MDCK host cells caused by 
H1N1 viral invasion were considerably diminished by inducing DNA fragmentation, 
chromatin condensation, and activation of capase-3 using the codelivery of the zan-
amivir and amantadine nanosystems, coupled with AgNPs [80]. Per this report the 
DNA fragmentation and nuclear condensation depressed by zanamivir-activated silver 
nanoparticles were shown in Fig. 15.3. The MDCK cells were treated with or without 
zanamivir-activated silver nanoparticles after H1N1 virus infection, followed by de-
tection with TUNEL-DAPI costaining assay.

Xiang and collaborators have reported that AgNPs hold positive outcome in pre-
venting H3N2 influenza virus infection, both in  vitro and in  vivo. In  vitro studies 

Control

Merge

DAPI

TUNEL

H1N1 H1N1 + ZNV H1N1 + AgNPs H1N1 + Ag@ZNV

Fig. 15.3  The synergistic effect between silver nanoparticles and zanamivir against H1N1-
infected MDCK cells [80].



Silver nanoparticles for delivery purposes� 359

confirmed that the growth of the virus hemagglutinin activity is inhibited in a dose-
dependent manner of AgNPs. It also has to be taken into consideration that a too high 
concentration of AgNPs can have a toxic effect on MDCK cells. Reducing the con-
centration of silver nanoparticles, from 100 to 50 μg/mL, caused a significant decrease 
of the cytotoxicity toward MDCK cells. Furthermore, silver nanoparticles protect the 
cells against viral infection, decreasing the cellular apoptosis induced by the H3N2 
influenza virus. It was shown on an influenza-infected mouse model that AgNPs, ad-
ministered via intranasal absorption, improved the survival rate in mice, by preventing 
the growth of virus in their lungs and inhibiting the development of pathologic lung 
lesions [81].

The hepatitis viruses are among the most common viruses that can cause persistent 
infections that may lead to cancer [82]. In this sense, it is desired to increase the 
access to curative therapies of hepatitis virus infections. Consequently the effects of 
silver nanoparticles were explored on hepatitis viruses as well. Monodisperse silver 
nanoparticles having dimensions between 10 and 50 nm in diameter were able to re-
duce the extracellular hepatitis B virus DNA formation of HepAD38 human hepatoma 
cell line and could inhibit in vitro production of HBV RNA and extracellular virions 
[83] (Table 15.2).

15.2.3 � AgNPs as antimicrobial agents

Increased use of antibacterial agents has resulted in bacteria developing resistance 
to antibiotics. Consequently the development of alternative treatment paths is of par-
amount importance. Silver has been used during the years for a variety of medical 
purposes [86]. The antimicrobial potential of silver is well known, and it has been the 
main research subject for the use of silver and more specifically of silver nanoparti-
cles, which exhibit increased biochemical activity due to their large surface-to-volume 
ratio and surface characteristics (structure, roughness, etc.).

Dakal and coworkers remarked that silver nanoparticles can be engineered so as to 
increase their efficacy, stability, specificity, biosafety, and biocompatibility [87]. The 
mechanisms by which silver nanoparticles are thought to work against pathogens are 
different, many of which are based on adhesion to microbial cells, penetration inside 
the cells, ROS and free radical generation, and modulation of microbial signal trans-
duction pathways [88]. In view of their dimensions, silver nanoparticles can penetrate 
the cells and inhibit enzymatic systems in the respiratory chain of bacteria, thus affect-
ing their DNA synthesis [89].

The antibacterial activity of silver nanoparticles has been investigated individ-
ually, as well as in conjunction with antibiotics, thus potentially leading to a syn-
ergistic effect, usually against microorganisms that have developed resistance to 
common antibiotics. Staphylococcus aureus is one of the most important pathogens 
that cause a wide range of clinical infections [90]. The occurrence of Staphylococcus 
aureus bacteremia and its complications were frequently observed in the last years 
because of the increased number of cases of invasive procedures, immunocompro-
mised patients, and resistance of certain Staphylococcus aureus strains to available 
antibiotics [91].
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Generally, silver nanoparticles that have been obtained by various so-called “green” 
synthesis procedures are preferred, because the final products would be more suitable 
when applying them in the medical and pharmaceutical area. Kaviya et al. reported the 
biosynthesis of silver nanoparticles using Citrus sinensis peel extract, which were fur-
ther tested for their antimicrobial potential against Staphylococcus aureus, with good 
results [92]. Antibacterial activity against multidrug resistant Staphylococcus aureus 
was also observed due to silver nanoparticles micosynthesized extracellularly using F. 
acuminatum Ell. and Ev. isolated from ginger (Zingiber officinale) [93]. Furthermore, 
silver nanoparticle-impregnated bacterial cellulose (produced by Acetobacter xy-
linum) was found to possess antimicrobial activity against Staphylococcus aureus 
bacteria [94]. Mirzajani’s study [95] confirmed that part of antibacterial concern is 
involved with wall damage and accumulation of AgNPs in the bacterial membrane. 
Moreover, it has been found that a rate of change in the α-helix position of the peptide 
chain and glycan strands may also consequently be affected by the presence of AgNPs 
[95]. Moreover the antibacterial potential of known antibiotics (such as penicillin G, 
kanamycin, amoxicillin, erythromycin, clindamycin, chloramphenicol, ampicillin, 
and vancomycin) was increased in the presence of AgNPs against Staphylococcus 
aureus [96]. The hypothesis of Kim’s group that silver nanoparticles can also be used 
for antimicrobial control systems was further tested in the Abbaspour’s study, which 
reported a sensitive and highly selective dual aptamer-based sandwich immunosensor 
for the detection of Staphylococcus aureus [97, 98].

Streptococcus pyogenes and Streptococcus pneumonia are other major pathogens that 
are responsible for a wide range of diseases such as pharyngitis, erysipelas, septicemia, 
meningitis, pneumonia necrotizing fasciitis, and streptococcal toxic shock syndrome 
[99]. In a study demonstrating the bactericidal effect against erythromycin-resistant 
Streptococcus pyogenes, it was shown that silver nanoparticles work by inhibiting cell 
wall synthesis, protein synthesis mediated by the 30s ribosomal subunit, and nucleic 
acid synthesis [100]. Besides the fact that silver nanoparticles possess antimicrobial 
potential against Staphylococcus aureus, it was shown that this bacterium has the abil-
ity to reduce extracellularly silver ions in silver nanoparticles. Nanda and collaborators 
have used Staphylococcus aureus-mediated AgNPs against human pathogenic micro-
organisms, using both gram-positive and gram-negative bacteria. The first category, 
namely, gram-positive bacteria, including Streptococcus pyogenes, was more suscepti-
ble to the mentioned antimicrobial agent [101]. Escherichia coli was used as a model 
for gram-negative bacteria exposed to the antimicrobial activity of silver nanoparticles. 
The results showed that the assayed bacteria were damaged at the cell wall level, as 
a result of the accumulation of silver nanoparticles in the bacterial membrane [102]. 
The bactericidal effect of silver nanoparticles (biosynthesized using Salmonella typh-
imurium as the reducing agent) was further observed against E. coli, after disc diffusion 
tests [103]. Furthermore the synergism of silver nanoparticles with amoxicillin and 
polymyxin B, respectively, was investigated against E. coli. The results showed that 
the delivery systems led to greater bactericidal efficiency, compared with the situation 
when the therapeutic agents are administrated individually [104, 105].

P. aeruginosa is a notable nosocomial pathogen, which mainly affects patients with 
neutropenia and those who are immunocompromised [106]. Salomoni and coworkers 
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evaluated in their study the antimicrobial potential of different concentrations of com-
mercial 10-nm AgNPs on two acquired nosocomial infectious strains of P. aeruginosa, 
resistant to a significant number of antibiotics. Various profiles of susceptibility to an-
tibiotics and AgNPs were observed [93]. The essential mechanism concerning the ef-
fect of silver nanoparticles against multidrug-resistant P. aeruginosa consists in the 
disequilibrium of oxidation and antioxidation processes and the failure to eliminate the 
excessive ROS [107]. Moreover, it was observed that P. aeruginosa, which can extra-
cellularly biosynthesize thermodynamically stable and the desired size and shape of 
silver nanoparticles, exhibited susceptibility toward the same silver nanoparticles that it 
contributed to their synthesis [108]. These results recommend the further development 
of silver nanoparticles, as a consequence of the multidrug resistance phenomena [109].

The replication of the results presented herein was verified by the authors, with 
comparable results. To synthesize silver nanoparticles, 1 μL of bacterial strains (E. coli 
and P. aeruginosa, respectively) were freshly inoculated into conical flasks containing 
100 mL of liquid medium (0.6-g/L yeast extract, 1-g/L sodium nitrate, and 3-g/L glu-
cose) at 33°C for 48 h. After 48 h the cultures were centrifuged at 4000 rpm for 30 min 
using an angular rotor centrifuge. Ten milliliter of supernatant was mixed with 90 mL 
of precursor (1-mM aqueous AgNO3 solution). The precursor was first autoclaved 
(sterilized) at 128°C for 30 min. The samples were incubated for 48 h at 33°C and 
150 rpm (to ensure maximum enzymatic activity of the extract). For the purification of 
the biosynthesized AgNPs, the samples were centrifuged at 4000 rpm for 30 min. The 
collected pellets were washed with 25 mL of distilled water and dried at 80°C until the 
liquid was evaporated. This last step was performed four times, followed by sample 
drying in an oven at 200°C for 6 h. The potential of silver nanoparticles for antimi-
crobial activity was determined using the disk diffusion method (as described in the 
Clinical and Laboratory Standards Institute (CLSI): M02-A11 standard (Performance 
standards for antimicrobial disk susceptibility testing)), by impregnation of 15 μL of 
solution containing AgNP on each 6-mm disc containing also 5-μg ciprofloxacin, 
thus investigating the potentially synergistic effect of silver nanoparticles in combina-
tion with the antibiotic. Discs containing ciprofloxacin 5 μg, without the addition of 
AgNPs, were used for control. The discs were placed on the surface of the bacterial 
culture (E. coli and P. aeruginosa, respectively). After 24 h of incubation at 31°C, 
the inhibition diameter was measured and compared with the control samples. The 
results are presented in Fig. 15.4, where the inhibition diameter variation can be seen, 
as function of the precursor concentration, and type of bacteria used for the synthesis 
of the silver nanoparticles. The synergistic effect between the antibiotic and the silver 
nanoparticles is evident, even more so against E. coli, compared with the effect against 
P. aeruginosa. Moreover the antibacterial effect is significantly increased for higher 
concentrations of the precursory solution.

The fungistatic and fungicidal effects of silver nanoparticles against Candida spe-
cies were found to increase with their stabilization using polymers and surface-active 
agents. Furthermore the antimicrobial potential of silver particles at nanoscale is com-
parable with the potential of ionic silver, which is cytotoxic at required concentrations 
[110]. Silver nanoparticles induce apoptotic cell death in Candida albicans through 
the increase of hydroxyl radicals and reactive oxygen species [111]. Positively charged 
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silver nanoparticles disrupt the cell membrane of Candida albicans, through the elec-
trostatic attraction between the negatively charged cell membrane of the microorgan-
ism and the positively charged nanoparticles, permeabilizing the outer cell wall as it 
becomes rough and distended, allowing the nanoparticles to penetrate the cell, leading 
to an inhibition of the filamentation of the yeast [112, 113].

In the same manner an aqueous extract from the filamentous fungus F. oxysporum 
mediated the synthesis of silver nanoparticles, which showed further a high antifun-
gal potential. Their potential antifungal activity was assessed against Cryptococcus 
neoformans, thus observing a disruption of the cell wall and loss of the cytoplasm 
content [114].

15.3 � Concluding remarks and future outlook

The ability to synthesize controlled size and shape silver nanoparticles has greatly 
improved in the recent years, due to the efforts of the scientific community. However, 
there is always room from improvement, in terms of experiment replicability, and the 
transfer from the laboratory to the manufacturing and production side. The combina-
tion between silver nanoparticles and other compounds (natural or synthetic antibiotic 
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and anticancer or antiviral compounds) leads to a synergistic effect, which could po-
tentially help to develop new treatment strategies, thus overcoming the current lim-
itations in terms of microbial resistance, more and more encountered in the recent 
years. The next logical step would be to test these compound/silver nanoparticle com-
binations using in vivo conditions, to a greater extent. These types of experimental 
investigations may clarify some pharmacological mechanisms, involving the delivery, 
release, and interaction of the delivery system with the human body. In the future, hu-
man testing will be a necessary step that will assess the appearance of side effects, if 
any, and will be a strong point in determining whether the development of these types 
of treatments that include nanoparticles is a viable path to be pursued. Regardless of 
the benefits mentioned herein, some reports are already suggesting that antimicrobial 
resistance to the treatment starts to develop, even when silver nanoparticles are in-
cluded [115, 116]. Consequently the development of a clinically applicable treatment 
protocol using silver nanoparticles is a daunting task, even if a significant number of 
positive reports can be found in the literature.
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