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Efforts to identify driver mutations in cancer have largely focused on genes, whereas

non-coding sequences remain relatively unexplored. Here we develop a statistical method

based on characteristics known to influence local mutation rate and a series of enrichment

filters in order to identify distal regulatory elements harboring putative driver mutations

in breast cancer. We identify ten DNase I hypersensitive sites that are significantly mutated

in breast cancers and associated with the aberrant expression of neighboring genes. A

pan-cancer analysis shows that three of these elements are significantly mutated across

multiple cancer types and have mutation densities similar to protein-coding driver genes.

Functional characterization of the most highly mutated DNase I hypersensitive sites in breast

cancer (using in silico and experimental approaches) confirms that they are regulatory

elements and affect the expression of cancer genes. Our study suggests that mutations of

regulatory elements in tumors likely play an important role in cancer development.
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Efforts to identify driver mutations have so far largely focused
on coding genes, although there have been several recent
analyses focused on non-coding sequences. Weinhold et al.1

analzyed non-coding functional sequences, identifying 193
regulatory elements with elevated mutation densities, and then
characterized in depth driver mutations in the promoters of
three genes (SDHD, PLEKHS1 and WDR74). Nik-Zainal et al.2

analyzed the mutational landscape of 560 breast cancers and also
found putative driver mutations in the promoters of PLEKHS1
and WDR74, as well as in the promoter of TBC1D12. Fredriksson
et al.3 focused on regions immediately upstream of transcription
start sites, identified 17 recurrent promoter mutations and
characterized mutations in the TERT promoter. Melton et al.4

developed a model to identify driver mutations as outliers of a
Poisson distribution. Using this model, they analyzed recurrently
mutated positions, detected nine putative driver regulatory
elements and experimentally confirmed by reporter assays that
the recurrent mutations in three of these elements near TERT,
GP6 and BCL11B result in altered expression. A study by Puente
et al.5, which focused on chronic lymphocytic leukemia, identified
an enhancer of PAX5 as a putative driver element. Overall, in
spite of some recent progress, the analytic approaches for
identifying driver regulatory elements are not as developed as
those for identifying driver genes and relatively few driver
regulatory elements have been characterized.

Breast cancer is a highly heterogeneous disease characterized
by four major clinically relevant phenotypes6 that have specific
gene expression patterns7, but overlapping mutational profiles8.
Mutational analyses of exomes have shown that combining all
breast cancer subtypes together results in increased sensitivity for
identifying driver genes8–10. In this study, we have analyzed
whole genome sequences for 657 breast cancer samples and more
than one thousand tumors across 19 additional cancer types to
detect non-coding driver mutations. We focused on analyzing
DNase I hypersensitive sites (DHSs) as previous pan-cancer
analyses of non-coding sequences have shown that regulatory
elements associated with DHSs have decreased somatic mutation
rates compared with the rest of the non-coding genome,
suggesting that mutations in these regions have a driver role in
cancer11–13. Given the fact that local mutation density is
extremely variable across the genome14, 15, in this study we
developed a statistical method that takes into account the
influence of DNA sequence characteristics, replication timing,
and chromatin on local mutation rates15. We then applied a series
of enrichment filters resulting in the identification of ten
significantly mutated DHSs that are both associated with the
aberrant expression of neighboring cancer genes and mutated in
two independent sets of breast tumors. A pan-cancer analysis
showed that three of the regulatory elements are putative drivers
in multiple tumor types. We functionally characterized the four
DHSs most highly mutated in breast cancer with a combination
of in silico and experimental approaches, including CRISPR and
animal models, and confirmed they are regulatory elements of
known cancer genes.

Results
Mutational landscape in discovery breast cancer samples.
Previous genome-wide mutational analyses of exomes have
shown that combining all breast cancer phenotypes together
results in increased sensitivity to identify driver genes8, 10. In
order to detect driver DHSs that are important across all four
clinical phenotypes we obtained whole-genome sequences from
TCGA for 47 breast cancers (and matched normal samples),
representing all four categories (4 HR−/HER2+, 6 HR+/HER2−,
15 HR+/HER2+ and 22 triple negative, Supplementary Fig. 1,

Supplementary Table 1). We investigated the mutational
landscape of these tumors to determine if they are similar to
previously analyzed breast cancers. Using MuTect15 we identified
193,958 high confidence somatic mutations corresponding to an
average of 4,127 mutations (range 3,241 to 41,714) per patient
(Fig. 1a, Supplementary Table 2, Supplementary Data 1).
On average, there are 53 mutations (range 10 to 225) per tumor
in coding sequences. Examining 12 genes previously reported as
harboring driver mutations in breast cancer8, we identified
mutations at the expected density in TP53 (33 mutations in
32 samples, 68.1%) PIK3CA (12 mutations, 25.5%), CDH1
(2 mutations, 4.3%), MLL3 (2 mutations, 4.3%) and GATA3 (one
mutation, 2.1%)8 (Fig. 1b). We did not observe mutations in six
genes (CTCF, MAP2K4, PIK3R1, PTEN, RUNX1 and TBX3)
known to be recurrently mutated at lower frequency (<5%), or
MAP3K1 that is mutated at high frequency (13%) only in luminal
A tumors8. TP53 has a high incidence of frameshift and nonsense
mutations (6 and 4, respectively, Supplementary Data 2), as
previously observed8. Among non-driver genes mutated at high
frequency in our discovery set (>3 samples, 8%), we detected
several known to be hypermutated in many cancer types (TTN,
MUC17, MUC16, OBSCN), mostly due to their length (>4,000
codons, with long introns often spanning more than 1Mb) and
believed to primarily harbor passenger mutations (Fig. 1c)14–16.
Examining the somatic substitution frequencies for all samples,
the most common substitution is CG–TA (Fig. 1d), comprising
32% of all somatic SNVs, similar to previous observations17.
Recently, breast cancers were shown to often display kataegis, i.e.
localized hypermutation, proposed to result from cytosine
deaminations catalyzed by APOBEC proteins18. We inspected the
distribution of distances between mutations in the discovery
samples (Fig. 1e, f) and observed 69 kataegis loci in 29 samples
(59.6%, Supplementary Table 3)19, levels similar to previous
reports (~50%)18. Overall, these data show that the mutational
rates and patterns in the 47 discovery samples are generally
consistent with breast cancer samples analyzed in previous
genome-wide experiments16, 17.

Identifying DHSs significantly mutated in breast cancer.
Several groups have previously shown that the local mutation
density is lower in regulatory elements that are active in the cell-
type of origin of the tumor compared to regulatory elements in
other cell types11. This observation supports the hypothesis that
mutations in functional genomic regions are usually deleterious
and negatively selected. Therefore, increased local mutation
density relative to the expected density under a neutral model of
evolution is an evidence of positive selection, suggesting that the
mutations are functional and hence referred to as drivers20, 21.
Based on these assumptions, we focused on the two breast cell
lines in ENCODE22, the breast cancer cell line T47-D and a
human mammary fibroblast (HMF) line, and derived a list of
DHSs. Of note, HMFs are not in the same lineage as the epithelial
cells that lead to ductal carcinoma. Analyzing the data of these
two cells lines, we obtained 334,781 DHSs corresponding to 118
Mb that do not overlap either RefSeq exons or kataegis loci
(Fig. 2a, Supplementary Table 3, Supplementary Data 3). To
reduce the number of false negatives, all DHSs (independent of
peak height) were included. In the 47 discovery samples, we
detected mutations in 14,087 (4.2%) of these 334,781 breast
DHSs. To identify breast DHSs enriched for mutations over
neutral expectation, we first estimated the expected number of
mutations for each DHS assuming absence of selection. To take
into account known factors responsible for the mutation rate
heterogeneity, we grouped the 334,781 breast DHSs into 223
clusters on the basis of chromatin and DNA sequence
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characteristics known to affect mutation frequency: (1) DNA
replication timing23, (2) open and closed chromatin status24, (3)
GC content, (4) local gene density15, and (5) expected mutations
based on trinucleotide composition (Supplementary Data 4). For
each of the 223 clusters of DHSs with similar expected mutation
densities, we inferred the background mutation probability. Then,
we calculated the probability p for each DHS of having the
observed or a higher number of mutations assuming Poisson
distribution (see Methods section), and we used this p-value as
our test statistic. We estimated its expected distribution for our
dataset under a model of neutral evolution by simulating
mutations (random expectation, Fig. 2b, Supplementary Fig. 2).
Based on the latter expected distribution of p, we defined a false
discovery rate (FDR) as the expected fraction of sites that have a
value p smaller than the FDR threshold q just by chance. We
considered the value of p at which the FDR is 0.25 as the
threshold for significance (p< 0.00171 for breast DHSs Fig. 2c).
Using this threshold, we identified 637 potentially significantly
mutated breast DHSs (Filter 1, Fig. 2a, b).

In a second step of our significance analysis, we compared the
results of the test statistic p for the mutations in breast DHSs to
those derived from analyzing mutations in DHSs from 13
different control tissues (Supplementary Tables 4 and 5). A priori
we expect to see no selection signal in the control tissues and,
hence, no differences between the distribution of p in the control
tissues and in the simulated random data, which correspond to
our model of neutral evolution. We clustered the DHSs for each
of the 13 control tissues in the same manner as in breast and
likewise calculated p for each DHS in control tissues. Because
control tissue DHSs serve as a proxy for neutrally evolving
sites, we first tested whether the values p in the 2,681 individual
DHS clusters for the 13 control tissues are compatible with
the random expectation from our Poisson model, using a
Kolmogorov–Smirnov test (Supplementary Table 5). We found
that mutations in DHS clusters of the control tissues agree with
the expectation under the Poisson model of neutral evolution.
Conversely, this does not apply to the distribution of p in breast,
suggesting that driver mutations are likely present in the set of
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Fig. 1 The 47 discovery breast tumors have typical mutational profiles. For each sample (sample IDs at bottom of panel 1D), we show a the number of
mutations per Mb; b if a mutation is present in one of the 12 known breast cancer driver genes or c in non-driver genes that are mutated in at least 3 (8%)
discovery samples; and d genome-wide SNV substitution frequencies; CG–TA mutations are the most common. e The mutational profile in discovery sample
TCGA-A2-A0D1 (SNV substitution types colored-coded as in panel 1D). The X-axis shows all mutations ordered by mutation index (from the first mutated
position on chromosome 1 to last mutated position on chromosome X) and the Y-axis represents the average distance between each mutation and its two
neighboring mutations, in log-scale. f Shows three kataegis loci (red rectangles) on chromosome 8
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breast DHSs, resulting in deviations from the expected distribu-
tion. Similarly, for control tissues, the fraction of DHSs passing
the FDR= 0.25 filter is significantly lower than in breast (p-value
= 1.7 × 10−113, Fisher’s exact test, Supplementary Fig. 3a), because
the values p at this FDR threshold are substantially smaller
(maximum is p= 0.00047 Supplementary Table 5). This is due to

the fact that control tissue DHSs have a lower signal-to-noise
ratio (where “signal” is intended to denote driver DHSs and
“noise” is the random expectation, corresponding to the
assumption of neutral evolution) than breast DHSs. If DHSs in
the control tissues were all true negatives (i.e., they do not harbor
any driver mutations), the distribution of p values would be the
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same as in the random expectation and the FDR would be equal
to one for all p. Indeed, we observe a significantly lower signal
than in breast DHSs (Fig. 2c), albeit still positive, suggesting that
there are DHSs active in the control tissues that may be positively
selected for mutations in breast cancer. There are several possible
reasons for this including: (1) some of these DHSs are active in
multiple control tissues, and a fraction of them are likely false
negatives in the set of breast DHSs in ENCODE; (2) some of the
significantly mutated DHSs active in control tissues may be false
positives, due to the fact that we used a loose FDR threshold
(0.25); (3) these DHSs may be a different class of regulatory
elements in breast that do not bind DNA-binding proteins, and
therefore are not detected as DHSs; and (4) the genomic regions
corresponding to these DHSs may be inactive in the two breast
samples that we used to define breast DHSs (HMF and T-47D),
but may be active in other breast cancer samples.

Enrichment filters identify putative driver DHSs. As has been
shown in whole exome analyses to identify novel cancer genes,
statistical methods that select for sequences mutated at higher
frequency than expected are not sufficient to detect driver
mutations and often result in the detection of false positives, such
as genes like TTN or MUC17, that are neither expressed in the
tumor nor in its associated normal tissue14–16. Given our use of
an FDR= 0.25 for Filter 1, the 637 significantly mutated breast
DHSs may have a high number of false positives. Therefore, to
eliminate false positives and enrich for a set of DHSs with
characteristics expected of driver regulatory elements, such as
functional activity in associated tissue, we applied additional
filters to the 637 breast DHSs. To eliminate elements significantly
enriched for mutations due to sequencing or alignment issues, we
filtered out DHSs with poor sequencing quality (mean read count,
mean read quality) or alignments (fraction of improperly aligned
reads) compared to the sequencing quality distribution of the
DHSs in their associated clusters (Filter 2). We eliminated 33
DHSs whose mean read count and/or mean read quality was
lower than 2 standard deviations from the cluster mean (Z-score
< −2) and 8 DHSs whose fraction of improperly aligned reads
was higher than 2 standard deviations from the cluster mean
(Z-score> 2, Supplementary Data 5). We filtered the remaining
596 significantly mutated DHSs to enrich for elements that: (1)
are associated in the tumor(s) in which the DHS is mutated with
the aberrant expression of gene(s) located within 500 kb; (2) have
established evidence of physical interactions with the aberrantly
expressed gene(s) in the ENCODE25 and/or 4D Genome
datasets26; and (3) the associated aberrantly expressed gene(s) do
not overlap somatic copy number variations. We identified 73
DHSs that fulfill these three criteria (Filter 3, Fig. 2a,
Supplementary Data 6). Of note, although mutations in these
DHSs are associated with aberrant expression of the target
genes, this is not evidence of causality and thus we applied
additional filters and conducted functional experiments as
described below.

To assess the effectiveness of the significance test (Filter 1) to
identify functional mutations, we examined how it enriches for
DHSs associated with aberrantly expressed genes compared with
all mutated DHSs. For the 14,087 mutated DHSs, we determined
that 402 (2.9%) have known interactions with a gene that is
within 500 kb and aberrantly expressed (Fig. 2d). Of the
596 significantly mutated DHSs (Filter 2), we detected 73
(12.2%, Filter 3) associated with one or more aberrantly expressed
genes (p-value= 3.9 × 10−56, χ2 test). Interestingly, the DHSs in
the control tissues that pass Filter 1 are also enriched for
association with aberrantly expressed genes (albeit significantly
lower than the rate of breast DHSs, p-value= 2.2 × 10−9, Fisher’s

exact test), suggesting that the reason these DHSs do not behave
as null is because some of them are under positive selection in the
breast tumor (Supplementary Fig. 3b). These results show that
our significance test (Filter 1) greatly enriches for DHSs
that are associated with aberrant gene expression in comparison
with two distinct control sets: (1) breast DHSs that do
not have significantly high mutation rate (Fig. 2d); and (2) DHSs
that are active in other tissues but not in breast (Supplementary
Fig. 3b).

To detect putative driver DHSs, we further filtered the 73
breast DHSs based on whether or not they were mutated in two
replication sets of breast cancer samples (Filter 4 in Fig. 2a)
representing all four clinical phenotypes. In the first replication
set, we examined the corresponding sequences in 50 TCGA breast
tumors and for a subset of the DHSs performed targeted
sequencing in 135 breast cancer samples (Supplementary Fig. 1).
We determined that the replication and discovery TCGA samples
have similar overall mutation densities (Supplementary Table 6,
Supplementary Data 7). We then examined the exons of the 12
breast cancer genes discussed above and showed that this first set
of 185 replication breast cancer samples have the expected
mutational landscape (Supplementary Fig. 4, Supplementary
Data 8). Analysis of the 73 breast DHSs revealed that 16 carried
one or more mutations (total of 31 mutations) in these 185
replication samples (Fig. 3a, Supplementary Data 9). DHSs in
control tissues associated with aberrantly expressed genes
(passing Filter 3) are mutated at a substantially lower frequency
than breast DHSs in this first set of replication samples
(Supplementary Fig. 3c), confirming that Filter 4 results in the
enrichment for likely true driver regulatory elements. These 16
DHSs were further examined in a second replication set of 560
breast tumors with Whole Genome Shotgun (WGS) data
(BRCA-EU)2, of which ten DHSs harbored mutations (range: 1
to 13 mutations) (Supplementary Data 9). As determined in Filter
3 in Fig. 2a, the ten breast cancer DHSs with mutations in both
sets of replication samples, which we refer to as putative driver
DHSs hereafter, are associated with the aberrant expression of 27
genes (20 overexpressed and 7 downregulated), of which 18 have
known roles in cancer (Supplementary Table 7). Interestingly,
one gene (TRIM27) is an oncogene included in the Cancer Gene
Census, six of these genes (ACSBG1, COL20A1, DVL1, LPCAT1,
VWA1, and ZNF596) are aberrantly expressed in multiple
cancer types and eight (ACSBG1, ATAD3B, CLPTM1L,
COL20A1, LPCAT1, MAST2, RAD54L and ZNF596) are involved
in breast cancer. These observations suggest that the ten putative
driver DHSs regulate genes whose aberrant expression is
associated with cancer.

Putative driver DHSs are mutated in multiple cancer types. To
determine whether the ten putative driver DHSs that we
identified in multiple collections of breast cancer (Fig. 2) may
play a role in other tumors, we examined their sequences in 1,097
TCGA cancer genomes from 19 tumor types (Fig. 3a, b). We
used MuTect to call somatic mutations and identified 298,
corresponding to an average of 29.8 (range: zero to 105) per DHS.
To assess our power to detect somatic mutations in a pan-cancer
analysis of thousands of cancer samples, we called variants in ten
genes known to be highly mutated in multiple cancer types27, and
found on average 50 (range: 14 to 182) mutations per gene
(Supplementary Fig. 5), suggesting that our approach has high
sensitivity to detect mutations. These results also show that the
mutation densities of the ten putative driver DHSs are similar to
known cancer genes (Fig. 3b).

We performed two analyses to determine if any of the breast
cancer putative driver DHSs are mutated above background in
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other cancer types (Fig. 3c). First, we conducted an interval
analysis by comparing the mutation density of each putative
driver DHS with that of the surrounding sequence (50 kb
upstream and downstream), and found four DHSs (40%)
significantly more mutated (Supplementary Data 10). Second,
we conducted a clusters analysis by comparing the mutation
density of each DHS with that of 20 DHSs randomly chosen
from the same cluster (based on GC content, open chromatin,
DNA replication time, local gene density and expected context-
dependent mutations, Supplementary Data 4), and found three
DHSs significantly more mutated, all of which were also found by
the first approach (Supplementary Table 8). Of these three DHSs,

the most mutated one, chr8:579137-581436, is significantly
mutated in 12 cancer types individually in addition to the pan-
cancer analysis, while the other two DHSs, chr5:1325957-1328153
and chr20:62115827-62119284, are respectively significantly
mutated in six and seven of the cancer types individually.
Mutations in two of these DHSs (chr8:579137-581436 and
chr5:1325957-1328153) are distributed across the entire elements,
whereas the DHS on chr20:62115827-62119284 has the majority
of its mutations concentrated in a 500-bp region next to its 3′ end
(45 of its 68 mutations, 66.1%, Fig. 3d), but the mutations are not
recurring at single base pair sites. Overall, this pan-cancer
analysis showed that three of the breast cancer putative driver
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DHSs are mutated above background in multiple tumors at
mutation rates similar to driver genes, suggesting that they may
be involved in tumorigenesis in several cancer types.

DHS mutations are associated with TERT overexpression. The
most highly mutated DHS in breast cancers is at chr5:1325957-
1328153, located within an intron of CLPTM1L and 30 kb
upstream of TERT (Fig. 4a). This putative driver DHS is an
enhancer based on ChromHMM, harbors 17 mutations in 13
breast cancer samples (three discovery, four in replication set 1
and six in replication set 2), and when mutated results in over-
expression of six genes (Fig. 4b). Four of these genes have known
associations with cancer: TERT overexpression is associated with
glioblastoma, hepatocellular carcinoma and melanoma1;
CLPTM1L inherited variants are associated with lung and
pancreatic cancer risk28; overexpression of TRIP13 drives DNA
damage in head and neck cancer29; and LPCAT1 overexpression
correlates with tumor progression and prognosis in breast,
colorectal and prostate cancer30. All these genes are located
within the same topologically-associated domain (TAD) as the
putative driver DHS31 and three of them (TERT, CLPTM1L and
LPCAT1) are also included in the same chromatin loops32,
supporting our observations that the putative driver DHS likely
regulates their expression. Since TERT overexpression is often
associated with mutations in its promoter33, we examined the
TERT promoter in the 1,097 TCGA cancer genomes (see
Methods) and found 51 mutations, of which 49 are in two loci
previously described as recurrently mutated33 (Supplementary
Data 11). The majority of these 51 mutations are in glioblastoma
(23) and low-grade glioma (10), with the remaining distributed
across bladder, head and neck, lung, melanoma and thyroid
tumors. Our findings show that the known driver mutations in
the TERT promoter do not commonly occur in breast cancer, but
TERT is frequently overexpressed in breast tumors and this
altered expression is associated with mutations in the putative
driver DHS (chr5:1325957-1328153). Furthermore, our data
suggest that mutations in this putative driver DHS may
contribute to the development of cancer by driving over-
expression of several different genes.

Regulatory potential is affected by DHS mutations. Mutations
in the second most highly mutated putative driver in breast
cancer, DHS chr6:28948439-28951450 (Fig. 3a), were associated
in Filter 3 with the overexpression of a known cancer gene
(TRIM27), a member of the tripartite motif (TRIM) family of E3
ubiquitin-protein ligases that is involved in several cancer types
through interactions with RARα, RB, p300, ERBB2, RET and
JUN34. To determine if the mutations we identified in this
DHS have a functional impact on gene expression, and therefore
may be driver mutations, we investigated the effects of four
mutations in vivo, using Ciona intestinalis as a model system
(Supplementary Table 9). This urochordate is an excellent system
to use for screening of regulatory variants, because it shares a
large part of its transcriptional machinery with higher
eukaryotes35. The four mutations are distributed across the
element with two affecting GATA binding sites and two affecting
ETS binding sites Fig. 5a). To determine their effects, we built
reporter constructs containing either the wild-type or
mutated DHS attached to a minimal promoter36 and GFP. These
constructions were electroporated into C. intestinalis fertilized
eggs to assay their function. The two GATA mutations result
in significant differential expression, with one resulting in over-
expression and one in downregulation (p-value= 1.25 × 10−12

and p-value= 0.0032, respectively Fisher’s exact test, Fig. 5b–g,
Supplementary Table 10): chr6:28950885A>G results in

a seven-fold increased GFP signal in epidermis, whereas
chr6:28949254A>C reduces the enhancer activity by 50% in
anterior neural plate (a6.5 lineage). We also observed a significant
decrease in the enhancer activity for chr6:28950050G>A in
multiple tissues (p-value= 0.0077 in endoderm, p-value= 0.065
in anterior neural plate and p-value= 0.015 in secondary
notochord, Fisher’s exact test, Fig. 5b–g, Supplementary
Table 10), whereas chr6:28950040C>T does not result in any
significant change. These results demonstrate that three of the
four mutations tested result in the aberrant activity of DHS
chr6:28948439-28951450, providing evidence that these were
likely driver mutations in the cancers in which they were
detected.

DHS deletions alter chromatin structure and gene expression.
The third and fourth most highly mutated putative driver DHSs
in breast cancer are at chr8:579137-581436, which was associated
in Filter 3 with ZNF596 downregulation, a gene frequently
downregulated in breast cancer37 and osteosarcoma38; and at
chr20:62115827-62119284 which was associated with the over-
expression of five genes, including ARFGAP1, a gene involved in
microsatellite instability oncogenesis39, and COL20A1, whose
expression levels are used in predictive models for breast cancer
risk40. To functionally characterize these putative driver DHSs
and investigate causality underlying these associations, we used
CRISPR to delete the intervals harboring the elements and ana-
lyzed changes in gene expression and chromatin accessibility. We
chose this approach because it has been shown that deletions of
distal regulatory elements result in altered expression of their
target genes41, 42.

We deleted a 2.3 kb interval harboring driver DHS
(chr8:579137-581436) in the HEK293T cell line (Fig. 6a). The
HEK293T cell line was chosen because: (1) it is easy to transfect;
(2) the putative driver DHS is an active regulatory element
(Fig. 6b); and (3) the genes identified as targets of the putative
driver DHS (Supplementary Data 6) are expressed. We
investigated the effects of this deletion on chromatin
configuration (ATAC-seq) and gene expression (RNA-seq) in
the 2Mb (+/−1Mb) interval surrounding the putative driver
DHS. Deletion of the putative driver DHS resulted in several large
chromatin accessibility changes including gain of two ATAC-seq
peaks (3 kb and 410 kb distal) coupled with loss of an ATAC-seq
peak 40 kb distal (Fig. 6c–f). Additionally, we observed a
significant decreased accessibility to the promoter regions of four
nearby genes (ARHGEF10, FBXO25, TDRP and ZNF596) and a
significant decrease in expression levels of four protein-coding
genes (DLGAP2, ARHGEF10, TDRP and MYOM2) and four non
protein-coding genes (RP11-91J19.4, RPL23AP53, CTD-2336O2.1,
and RP11-439C15.4) (Fig. 6g–k). ERICH1, whose intron harbors
the putative driver DHS, is not downregulated and retains the
ATAC-seq peak at its promoter when the putative driver DHS is
deleted (Fig. 6d). These results show that deletion of DHS
chr8:579137-581436 alters the open chromatin configuration of
the promoter of the target gene identified in Filter 3 (ZNF596),
and suggests that the driver mutations in the DHS may affect the
expression of additional genes.

We deleted a 901-bp region harboring the portion of the driver
DHS chr20:62115827-62119284 that contains the vast majority of
its mutations (Fig. 3d) in the HEK293T cell line and investigated
expression changes of neighboring genes (Supplementary Fig. 6a).
This DHS is located in a gene-dense genomic region (60 genes
within 2Mb distance), of which 15 are downregulated when it is
deleted (Supplementary Fig. 6b). Two of these downregulated
genes (ARFGAP1 and GMEB2) were identified in Filter 3 as
having both known interactions and altered expression associated
with mutations in DHS chr20:62115827-62119284. An additional
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Fig. 4 Mutations in putative driver DHS chr5:1325957-1328153 result in overexpression of six neighboring genes. Mutations in putative driver DHS
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panel), showing all genes that are expressed in breast cancer. Chromatin states of nine cell lines show that the DHS is an enhancer and that many of the
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downregulated gene, PPDPF, had altered expression associated
with mutations in DHS chr20:62115827-62119284 in Filter 3 but
did not have known interactions. These analyses confirm that

DHS chr20:62115827-62119284 has regulatory properties and
affect the transcription of the target genes identified in Filter 3
(Fig. 2a).
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Discussion
To identify putative breast cancer driver mutations in regulatory
elements, we developed a novel method by adapting approaches
that have been successfully used to identify recurrently mutated
driver genes14, 16. We limited the search space to functional
sequences comprising 4% of the human genome by focusing on
breast DHSs that have reduced local mutation densities similar to
coding sequences11. As we previously showed that chromatin
features in the tissue of origin of a tumor are strongly associated
with the tumor’s somatic mutation profile11, we analyzed DHSs
that are active in breast, derived from the breast cancer T47-D
and HMF cell lines (of note, the mammary fibroblasts are not in
the same lineage as the epithelial cells that lead to breast invasive
carcinoma). We combined all breast cancer subtypes together
because previous studies have shown that this solution results in
increased sensitivity for identifying driver genes8–10. However,
analyzing the different subtypes separately may result in the
detection of additional subtype-specific drivers. To detect
elements mutated above background, we developed a statistical
test, which takes into account genomic features known to
influence local mutation densities15. To enrich for coding driver
mutations, cancer studies frequently only consider functional
mutations resulting in non-synonymous amino acid changes, and
genes that are mutated above background rate are examined in an
independent replication sample set as part of a prevalence
screen21. Here we applied similar enrichment filters by only
retaining significantly mutated DHSs that are associated with
aberrantly expressed target gene(s) and mutated in two
replication sets of breast cancer samples as putative driver DHSs.
We further examined putative breast cancer driver DHSs in a
pan-cancer analysis using TCGA tumors across 19 additional
cancer types. Our strategy resulted in the identification of three
putative driver DHSs across multiple cancer types that have
mutation densities similar to the most highly mutated genes
previously reported as harboring driver mutations.

We performed a variety of functional validations on the four
most highly mutated DHSs in breast cancer. These studies
enabled us to determine that the most highly mutated putative
driver DHSs is a long-distant regulatory element likely affecting
the expression of TERT in breast cancer. We used an animal
model system to investigate the second most highly mutated
putative driver DHS in breast cancer and showed that mutations
that alter TFBSs in this element result in altered regulatory
activity. For the third and fourth most mutated putative driver
DHSs, we showed that their deletion resulted in widespread
epigenetic and expression changes of neighboring genes, some of
which are known to play important roles in cancer. Although we
did not experimentally investigate the other six putative breast
cancer driver DHSs, the fact that mutations in many of them are
associated with altered expression of genes with known roles in
breast cancer suggests that they may be breast cancer-specific
drivers.

Our findings in breast cancer do not overlap the results of
previous studies that have detected non-coding driver mutations
for several reasons, including our use of DHSs as a set of

regulatory elements, our application of a novel test statistic and
enrichment filters, and the fact that we focused on regions (and
not specific base pairs) that are significantly recurrently mutated.
We selected breast DHSs because they encompass all regulatory
elements that bind DNA-binding proteins, while at the same time
limiting the search space to less than 100Mb. Our test statistic
demonstrates that the local mutation probability of DHSs can be
inferred from clustering of sites based on similar sequence
characteristics, and the resulting mutation counts follow a
Poisson distribution. Outliers are enriched for being associated
with altered expression of target genes. While previous studies
examined only a small fraction of their significantly mutated
regulatory elements for effects on gene expression, we have taken
advantage of TCGA transcriptome data of the 47 discovery breast
tumors as well as 106 normal breasts to examine all 596
significantly mutated DHSs for effects on the expression of
known target genes. Additionally, previous studies have focused
on specific base pairs that are recurrently mutated due to the fact
that the functions of non-coding sequences are still largely
unknown and only motifs that are targets of transcription factors
are readily characterized4. For instance, oncogenic mutations in
the TERT promoter localize to two specific positions and induce
de novo generation of binding sites for ETS transcription factors
that result in TERT overexpression3, 4, 33, while loss-of-function
mutations in the SDHD promoter localize to three different
positions and disrupt ELF1 binding sites resulting in down-
regulation of SDHD1. Conversely, the functional consequences of
driver mutations in the PLEKHS1 and WDR74 promoters are not
known. Driver mutations in the PLEKHS1 promoter result in
downregulation of gene expression; although localized at two
distinct positions they do not affect transcription factor binding
sites but possibly cause an atypical secondary structure in single
stranded DNA1, 4. Driver mutations in the WDR74 promoter are
broadly distributed across multiple positions and do not seem to
affect expression1, 2. These later studies combined with our
findings suggest that driver mutations can alter the activity of a
regulatory element without affecting transcription factor binding
sites. Further investigations are necessary to understand what
causes these constraints and how mutations in driver DHSs
influence the expression of target genes.

Methods
Sample collection. Whole genome sequence data (BAM files) from 97 breast-
invasive carcinoma samples (47 as discovery screening and 50 as replication set)
and matched normal blood present in TCGA were downloaded from the Cancer
Genomics Hub (CGHub, https://browser.cghub.ucsc.edu/, frozen on December
19th 2013)43. Similarly to previous analyses3, this set included only samples with
high-coverage whole genome sequencing data (BAM files > 75 Gb). For targeted
sequencing of a subset of the samples in replication set 1, 135 breast tumors (of
known estrogen receptor (ER), progesterone receptor (PR) and human epidermal
growth factor receptor 2 (HER2) status, Supplementary Fig. 1) and matched blood
were analyzed (40 from the Cancer Center Biorepository at the University of
California, San Diego44, 16 from the University of California, Irvine44 and 79 from
the Dana Farber Cancer Institute). Informed consent was obtained for all subjects44

and this collection was approved by the Institutional Review Boards of the
University of California at San Diego and of the Dana Farber Cancer Institute.

DNA was isolated from tumor and blood samples44: snap-frozen tissue samples
were mechanically pulverized, then underwent tissue disruption in lysis buffer and

Fig. 5 In vivo validation of putative driver mutations in DHS chr6:28948439-28951450. a Shown are the locations of the four mutations in GATA and ETS
transcription factor binding sites that were tested for function. b Barplots showing downregulation in anterior neural plate (a6.5 lineage, chr6:28949254 A
>C), no change in endoderm (chr6:28950040 C> T), downregulation in endoderm (chr6:28950050 G>A) and overexpression in head epidermis
(chr6:28950885 A>G). p-values were calculated using Fisher’s exact test. (c–g) Images showing tailbud stage C. intestinalis embryos (8 h post fertilization
at 21 degrees Celsius) electroporated with (c, f) indicated reference enhancer>GFP or (d, e, g) indicated mutated enhancer>GFP. d Decreased
expression in the anterior neural plate is observed when the enhancer is mutated (chr6:28949254 A>C); e Enhancer activity is decreased in anterior
neural plate and secondary notochord in presence of mutation chr6:28950050 G>A. c is the wild-type enhancer for both d and e. g Increased expression
in the epidermis is observed when the enhancer is mutated (chr6:28950885A>G)
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DNA extraction using AllPrep DNA extraction kits (Qiagen GmbH, Hilden,
Germany); DNA was extracted from blood using Qiagen Clotspin Baskets and
DNA QIAmp DNA Blood maxi kits (Qiagen Inc., Valencia, CA, USA). DNA
concentrations for all tumor and blood samples were determined by fluorometry
(Qubit, Life Technologies). ER, PR and HER2 status for the 47 TCGA discovery
samples and 50 TCGA replication samples were obtained from the TCGA Data

Portal (https://tcga-data.nci.nih.gov/tcga/). Clinically relevant breast cancer
phenotypes were derived from ER, PR and HER2 statuses as follows6: (1) hormone
receptor (HR) positive (+) includes tumors that are ER+ and/or PR+ and HER2
negative (−); (2) HR+/HER2+ includes tumors that are ER+ and/or PR+ and HER2
+; (3) HR-/HER2+ includes tumors that are ER− and PR− but HER2+; and 4)
triple negative includes tumors that are ER−, PR− and HER2−.
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Fig. 6 Deletion of putative driver DHS chr8:579137-581436 results in chromatin remodeling in the surrounding interval. a The relative positions of the
deleted putative driver DHS (red) and the neighboring genes expressed in HEK293T are shown. ZNF596 (green) had altered expression associated with
mutations and known interactions (Filter 3). Curved lines show validated (blue) and predicted interactions (red) between the driver DHS and putative target
genes25, 26. b Chromatin states of HEK293T were derived from ChIP-seq data in the GEO series GSE5163361 and for the remaining cell lines from the Broad
ChromHMM track in the UCSC genome browser70 (light green=weakly transcribed; dark green= transcribed, orange= strong enhancers, yellow=weak
enhancers, red= active promoters, light red=weak promoters, violet= inactive/poised promoters, blue= distal CTCF/insulators, dark gray= polycomb
repressed, light gray= heterochromatin, hatched box=missing data). c Show ATAC-seq data corresponding to deleted putative driver DHS (red) and
HEK293T cell line treated with empty vector (gray). d–f The deletion of DHS chr8:579137-581436 (highlighted in red) results in the loss of an ATAC-seq
peak (40 kb distal, dark blue square, shown in e) and the gain of an ATAC-seq peak (410 kb distal, light blue square, shown in f). g Volcano plot showing log2
fold change and p-value of gene expression differences (Wald test, computed using the DESeq function in R) between cells with deleted putative driver
DHS and cells treated with empty vector. h–k Shown are ATAC-seq peaks in four genes that have alterations in chromatin accessibility at their promoters
(indicated by arrow) when the putative driver DHS is deleted
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Genome analysis. For the discovery and replication samples obtained from
TCGA, Samtools 0.1.1845 was used to remove duplicate reads from the BAM files.
Base quality score recalibration was performed using GATK v1.6-5-g557da7746 in
two steps: first, the recalibration table was created using CountCovariates, then base
quality scores were updated using TableRecalibration. Local realignment around
indels was performed using GATK RealignerTargetCreator and IndelRealigner
(Supplementary Data 12). MuTect15 was used to call somatic point substitutions in
the 97 genomes. Mutations were filtered to reduce the number of false positives;
only somatic substitutions with at least 14× coverage in the tumor, 8× in the
matched normal and with an allelic fraction ≥10% in the tumor were retained15.
We performed two additional filtering steps. First, all somatic mutations over-
lapping with the 5,298,130 repetitive elements (as determined using IntersectBed47

and the RepeatMasker track from UCSC Genome Browser)48 were removed.
Second, somatic mutations overlapping any of the 53,567,890 loci included in the
dbSNP 137 database49 were discarded (Supplementary Table 2). To examine
coding somatic mutations, coordinates of all mutations were intersected with
coding exons included in RefSeq (V55) (Figs. 1b, c) using IntersectBed.

Kataegis analysis. Rainfall plots were made as described by Nik-Zainal et al.18:
briefly, for each mutation, the intermutation distance used to construct the plots
was calculated as the mean distance to its two neighboring mutations (upstream
and downstream) (Supplementary Table 3). All stretches of six or more consecutive
mutations with a mean intermutation distance shorter than 1,000 bp were con-
sidered as kataegis loci19, 50.

Identification of significantly mutated breast DHSs in Filter 1. A total of
266,757 DHSs from a HMF line51 and 278,680 DHSs from the T-47D breast cancer
cell line52 were obtained from the UCSC Genome Browser composite track
wgEncodeUwDgf22. After removing DHSs overlapping known RefSeq genes there
were 237,046 HMF DHSs and 247,051 T-47D DHSs. Overlapping DHSs (by at least
one base pair) were combined using BEDTools v2.20.1 MergeBed47 resulting in
392,977 unique DHSs (181.6 Mbp). Fifty-five DHSs were removed from the ana-
lysis because they overlap kataegis loci (Supplementary Table 3). Repetitive ele-
ments, derived from the RepeatMasker track of the UCSC Genome Browser48, on
DHSs were masked, reducing the corresponding DHS length. The 58,141 DHSs
with remaining length zero after repeat masking were omitted from the analysis.
The 334,781 DHSs that do not overlap kataegis loci and have remaining length
larger than zero were then intersected with the mutations in the 47 discovery breast
cancer samples using BEDTools intersectBed.

Clustering DHSs into groups of similar sequence characteristics. The signature
of positive selection for mutations at a driver locus in the tumor genome is an
increase in observed mutation density relative to the expected density under a
neutral model of evolution. We developed a statistical test to detect this kind of
increase in local mutation density on DNase hypersensitivity sites. This test relies
on an inference of the local mutation probability of DNA sequences, which is
known to vary considerably across the tumor genome. Several sequence char-
acteristics, such as gene expression levels and GC content, are known to influence
the local mutation density53; therefore comparing the mutation probabilities of
DHSs with similar sequence characteristics enables the identification of those that
are mutated at a rate higher than expected by chance15. To control for all factors
affecting mutation probability outside of selection, we took five covariates into
account by performing a k-means clustering procedure on all DHSs per
chromosome: (1) DNA replication timing23, (2) open and closed chromatin status
measured by HiC mapping (GEO series GSE35156)31, (3) GC content53, (4) local
gene density15, and (5) expected mutations on the basis of trinucleotide content.
Local gene density for each DHS was calculated as the fraction of base pairs within
250 kbp overlapping a RefSeq gene (BEDTools WindowBed –w 25000047 was used
to extract the genes associated with each DHS), while the other values were
retrieved directly from the indicated references. To determine the expected
context-dependent mutation probability up to a constant factor, the genomic
trinucleotide distribution and the number of mutations per trinucleotide were
calculated. For each trinucleotide t, we counted the number of mutations Mt and
the number of its occurrences Nt throughout the genome (centromeric regions
excluded). For each DHS i, we then calculated the expected mutation rate μi as:

μi¼
XTTT

t¼AAA

ni;tMt

Nt
ð1Þ

where ni,t is the number of occurrences of trinucleotide t in the DHS i. A value for
each covariate was calculated for every DHS, and all covariates were normalized to
have mean= 0 and standard deviation= 1. Breast DHSs were binned into 223
clusters. Each cluster included at least 100 DHSs, for a total length of at least 20 kb
(Supplementary Data 4).

Generation of DHS clusters from control tissues. The coordinates of DHSs
active in 53 cell lines were downloaded from the UCSC Genome Browser com-
posite track wgEncodeUwDgf22. DHSs associated with the same tissue type were
merged using BEDTools mergeBed, resulting in 13 distinct tissues (Supplementary

Table 4). DHSs in control tissues that overlapped with any of the 392,977 breast
DHSs were removed from the control set for the significance test (Supplementary
Table 5). Thus, the set of breast DHSs is more enriched in constitutive DHSs
(Supplementary Fig. 7a), i.e. those that are active in many different tissue types.
Control tissues DHSs were clustered into groups to account for the five covariates
of local mutation rate as described above for the breast DHSs. In this manner, we
generated 13 independent sets of control tissues DHSs.

Inference of mutation probability. Clustering of DHSs according to five covari-
ates of mutation rate was assumed to account for all relevant factors affecting local
mutation rate. Consequently, the per-nucleotide neutral mutation probability µ
within a given cluster was assumed constant across all of its member DHSs
(i= 1, …, N). This left two remaining factors that would have an effect on the
observed number of mutations n on a given DHS from the cluster: 1) the length L
of the DHS (after repeat masking), which determines the mutational target size,
and 2) selection. For a DHS sequence that evolves neutrally we expect n~Poiss(λ),
where λ= μL, while positive selection increases λ through its effect on the fixation
probability of a mutation, i.e., an increase in µ. We inferred the mutation
probability per cluster using the maximum likelihood estimator:

μ̂ ¼
PN

i¼1
ni

PN

i¼1
Li

ð2Þ

Note that this value will be upward-biased from the true neutral probability if a
cluster contains DHSs under selection. Supplementary Fig. 8a shows an illustrative
example of a representative distribution of mutation counts, P(n), from a cluster of
DHSs. The cluster is constructed both from sites that evolve neutrally as well as
sites under positive selection. Inference according to Eq. 2 in this case entails an
overestimation of the true neutral mutation probability that governs the evolution
of neutral sites. Importantly, this means that our test statistic, the probability p of
observing as many or more mutations on a DHS, is a conservative measure and by
construction overestimates the true p of a DHS under selection.

Test statistic p. Given the estimated mutation probability of a DHS from a given
cluster inferred as in Eq. 2, we computed the probability of observing at least n
mutations in the DHS of length L by:

p ¼ 1�
Xn�1

k¼0

Poiss k; λ̂
� � ¼ 1�

Xn�1

k¼0

λ̂
k

k!
e�λ̂ ð3Þ

with λ̂ ¼ μ̂L. We used p defined in Eq. 3 as p-value to measure the deviation of
mutation counts on a DHS from the null expectation of neutral evolution. Finally,
we combined the data from all clusters of DHSs to obtain a distribution of values p
of DHSs from all chromosomes and all mutation rate backgrounds. This
distribution will be considered in the following sections and was used to test for the
presence of significantly mutated DHSs.

The observed values p from cancer data need to be compared to the expected
values, whose distribution is however not known a priori, due to the Poisson nature
of the mutation count n. We simulated the expected distribution of p from 100
random instances of ni � Poiss μ̂iLið Þ per DHS i, with μ̂iinferred at the cluster level
as described above (Eq. 2). This yielded a null model of neutral evolution for both
breast and control tissues and therefore also quantified any remnant deviation in
control tissue DHSs from the neutral expectation.

Supplementary Fig. 8b shows the normalized histogram of values p obtained
from the cluster distribution P(n) shown in Supplementary Fig. 8a. Because
n~Poiss(λ), p-values are non-uniformly distributed, with a pronounced peak at
p = 1 for the relevant range of small to intermediate λ. Overestimating the true µ
through μ̂ entails that the values p of the selected sites in the cluster are
overestimated as well, as their observed mutation counts n are less extreme than
they would be with the true and smaller λ= μL. Supplementary Fig. 8b illustrates
why, therefore, the inferred p-value p is a conservative estimate of the true p-value
of a DHS under positive selection. Furthermore, the observed distribution of p has
a larger variance than the expected distribution, owing to its composition (neutral
and selected components) of different mutation probabilities. Therefore, in the
depicted case of positive selection for driver mutations,
the random simulated distribution of p will have a higher proportion of sites
with p< 1 than the observed distribution (Supplementary Fig. 8b). This is
in line with the excess of the expected p for breast DHSs at intermediate values 0.1
< p< 1 shown in Supplementary Fig. 2. As expected from the assumption of
neutral evolution, this trend is greatly reduced for the control tissues
(Supplementary Fig. 9).

False discovery rate. The expected distribution of p under the model of neutral
evolution allows for an estimate of the fraction of values p among the observed
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ones that occur by chance, as a function of a p-value threshold p*:

FDR p�ð Þ ¼ Fexp p�ð Þ
Fobs p�ð Þ ð4Þ

where F(p) denotes the cumulative distribution function at p. Figure 2c shows the
FDR of Eq. 4 for breast as well as control tissue DHSs. We set the allowed fraction
of false rejections of the null hypothesis of neutral evolution to FDR(p*)= 0.25,
which defines a threshold p* for each tissue below which DHSs were considered
significant.

Testing the Poisson assumption. Our statistical test relies on the assumption that
mutation counts on DHSs are Poisson random variables. We tested this
assumption using the set of DHSs that are active in control tissues, serving as
a proxy for neutrally evolving sites. Given the large number of DHSs and
correspondingly smooth distribution of p in each tissue, we used the
Kolmogorov–Smirnov test to assess the probability with which the observed values
p in control tissues stem from the expected distribution simulated under the
neutral Poisson model. Conversely, if there exist breast DHSs under selection, we
would expect a low similarity. Supplementary Table 5 shows the p-value of the KS
test statistic, with low values indicating that the two data sets, observed and
simulated neutral, are unlikely to have been generated from the same underlying
distribution. We found that all control tissues exhibit almost perfect agreement
with the random expectation, while breast DHSs have a distribution of p that
cannot be matched, indicating selection. This does not imply that mutations on
breast DHSs under positive selection are not Poisson distributed, but rather
that their Poisson distribution parameter λ is larger than that of neutrally evolving
sites. This is because positive selection increases the probability of fixation of
each positively selected mutation arising on the sequence. From this we conclude
that the Poisson assumption of mutation counts is in good agreement with the
observed data.

Inferred mutation probability and DHS ubiquity dependence. Supplementary
Fig. 7b shows that inferred mutation probabilities μ̂ (Eq. 2) in clusters of breast
DHSs are on average elevated compared to those on non-breast DHSs. DHSs in
control tissues that overlapped with any of the 392,977 breast DHSs were removed
from the control set for the significance test (Supplementary Table 5). Thus, the
construction of the breast and control tissue data sets (see above), resulted in breast
DHSs being enriched in constitutive DHSs. Here we examined whether these
observed differences affect the inference of significantly mutated DHSs in breast vs.
control tissues. To test whether the excess of mutations in our set of significantly
mutated breast DHSs derives from a biased mutation probability in the subset of
clusters the DHSs originate from, we compared the distribution of inferred
mutation probabilities across all clusters to that from the subset of DHSs with
p< p* Supplementary Fig. 10a shows that the two distributions are very similar,
suggesting that the excess of mutations cannot be attributed to a difference in the
background mutational properties of the subset of highly mutated DHSs. As it is
observed, we expected a slight upward shift in mean μ̂ among the ensemble of
significant DHSs, since the clusters which the selected sites originate from, by
construction, have higher inferred mutation probabilities than their fully neutral
counterparts. With respect to tissue specificity, we found that the highly significant
DHSs are slightly overrepresented among the very ubiquitous ones (active in 13
and 14 tissues; see Supplementary Fig. 10b), but largely cover the whole range of
tissue specificity. From this we conclude that tissue specificity does not have a large
effect on our inference of selection.

Quality assessment of significantly mutated DHSs in Filter 2. Three measures
of sequencing and alignment quality were assessed for each DHS using BAM files
from 94 samples (47 tumors and their matched 47 germline DNA): (1) mean read
count over each position in the DHS; (2) mean read quality; and (3) fraction of
improperly aligned reads, calculated as the number of reads that have abnormal
pairing in terms of orientation and distance divided by the total number of read
pairs aligned on the DHS. For each cluster of DHSs, mean and standard
deviation were calculated for all three quality measurements and Z-scores were
calculated for each DHS as the difference between its value and the cluster mean,
divided by the cluster’s standard deviation. DHSs were eliminated if at least one
of three conditions occurred: (1) read count Z-score lower than −2; (2) read quality
Z-score < −2; and (3) improperly aligned reads Z-score > 2.

Evidence for interactions between DHSs and promoters in Filter 3. Two
independent experimental data sets were used to identify putative target genes of
the 14,087 mutated DHSs (Fig. 2b): (1) 3,095,882 interactions including 3C, 4C, 5C,
ChIA-PET, Hi-C, Capture-C, and IM-PET included in 4DGenome26 (February 1st
2015); and (2) A collection of 1,454,901 predicted distal regulatory and promoter
interactions derived from the correlation of DHS peaks in promoters and distal
elements from 79 cell types in the ENCODE study25. The coordinates of all the
interactions from both sources were intersected with the 14,087 mutated DHSs
using BEDTools IntersectBed. If the coordinates of one end of the interaction
overlapped with a mutated DHS and the coordinates of the other end intersected

with a promoter or gene body, the gene was marked as a validated target of the
mutated DHS.

Gene expression analysis. RNA-seq data normalized and reporting the expres-
sion levels of 20,531 genes for the 47 discovery breast cancers and 106 unrelated
normal breast tissues was downloaded from TCGA (https://tcga-data.nci.nih.gov/
tcga/dataAccessMatrix.htm). CNV data for all the 47 discovery breast cancers was
also downloaded from TCGA. Only genes not overlapping CNVs in the sample
where the DHS was mutated were considered for the analysis. Expression levels of
each gene associated with one or more mutated DHS were normalized across the
panel of 106 normal breast tissues using the calcNormFactors function from the
EdgeR package in R54. For each gene, the normalized expression level was
compared to the expression level in breast cancer samples with an associated
mutated DHS using the Wilcoxon test. Genes showing significantly different
expression levels (p-value < 0.05) were considered aberrantly expressed and a
putative target of the associated mutated DHS(s).

Replication screenings in Filter 4. Two relatively small breast cancer datasets were
jointly used in replication set 1 (50 tumors with WGS from TCGA and 135 tumors
that underwent targeted sequencing, see below) and one large breast cancer dataset
was used in replication set 2 (560 breast cancers with WGS derived from the BRCA-
EU project2). For replication set 2, the list of 3,851,143 mutations was downloaded
from ICGC Release 22 (frozen at August 24, 2016, https://dcc.icgc.org/releases).

Targeted sequencing of selected regions. Deep-targeted sequencing of 135
matched tumor and blood samples was performed using the Illumina TruSeq
Custom Amplicon kit. Using DesignStudio software, probes were successfully
designed to cover 46 of the 73 putative driver DHSs and 94.0% (171 of 182) coding
exons of the 12 genes most highly mutated in breast cancer8 (Supplementary
Data 13). Sequencing libraries were prepared following the TruSeq Custom
Amplicon Library Preparation Guide with the following modifications55. For all
samples, 500 ng of DNA was used. Extension-ligation was performed according to
manufacturer’s protocol. Two PCR cycles were performed as follows: 95 °C 3min,
followed by 2 cycles of 95 °C for 30 s, 66 °C for 30 s, and 72 °C for 60 s. Following two
cycles of polymerase chain reaction (PCR), Ampure Bead cleanup was carried out
according to standard protocol and eluted in 25 µl. Following cleanup, 20 µl of PCR
product, 22 µl of PMM2/TDP1 and 4 µl of the i7 primer supplied with from the
TruSeq Custom Amplicon Index Kit were added to PCR tubes, and PCR was carried
out using the following conditions: 95 °C for 30 s; 22 cycles of 95 °C for 30 s, 66 °C
for 30 s, and 72 °C for 60 s; and finally 72 °C for 5 min (note that number of cycles is
specific to TruSeq Custom Amplicon Design). Ampure bead cleanup was performed,
library quality was assessed on an Agilent Bioanalzyer (Agilent Santa Clara, CA,
USA) using a DNA 1000 chip, and concentration determined by Qubit and quan-
titative PCR using the KAPA Library Quantification Kit (Kapa Biosystems, Woburn,
MA, USA). Samples were pooled and 45 samples per run were sequenced at 12 pM
using Illumina MiSeq V2 sequencing reagents and the following run set up: Read 1:
301 cycles; Read 2: 8 cycles; Read 3: 8 cycles; Read 4: 301 cycles.

Targeted sequencing read processing and variant calling. FASTQ files were
retrieved from Illumina Basespace (https://basespace.illumina.com/). Mutascope
was used to process reads and to prepare them for variant calling56 because it is a
high-sensitivity software suite designed to analyze data derived from high-
throughput sequencing of PCR amplicons from matched tumor/normal samples.
Briefly, Mutascope requires FASTQ files and the list of coordinates of the ampli-
cons as input. It first creates a blacklist of mutations that might be identified
because of misalignments of reads or alignment to homologous regions in the
genome. Reads are then aligned using BWA-Smith Waterman alignment algo-
rithm46. Low-quality reads are removed and primer sequences are soft-clipped.
Read groups are created to associate each read to a specific amplicon. GATK is
subsequently used to realign reads around indels in both the tumor and normal
samples. Reads with a high Smith-Waterman score and mapped at the expected
location were used for further analysis (Supplementary Fig. 11).

Germline variants were called using Mutascope and Hclust in R was used to
cluster samples on the basis of their genotypes at 1,020 dbSNP loci to ensure that
matched tumor and blood samples were correctly paired. Mutations were identified
using both Mutascope variant caller56 and MuTect15. As Mutascope is optimized
for variant calling in PCR amplicons that have fixed start and end positions, it
estimates the error rate at each genomic position based on the nucleotide, position
in the read and read type (i.e., forward or reverse), and compares the allelic fraction
of each mutation with the error rate using a binomial test for significance.
Mutascope discriminates between somatic mutations and germline variants using a
Fisher’s exact test and filters false positives based on biases in read groups
(mutations called only in forward or reverse reads) or low quality of base calls.
Mutations were independently called by Mutascope and MuTect (as described
above) then the union of the results from the two methods was retained. Mutations
were further filtered to eliminate those with a tumor allele frequency <5% or
normal allele frequency >5%.
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Mutation analysis in 19 tumor types. Metadata associated with 1,097 tumors
belonging to 19 different cancer types (with no use restrictions) in TCGA was
downloaded from the Cancer Genomics Hub (https://browser.cghub.ucsc.edu/)
(September 30, 2014). GTFuse (http://fuse.sourceforge.net/) provides remote access
of BAM files stored at the Cancer Genomics Hub. The 1,097 tumor and matched
germline BAM files were accessed and sequence data was extracted using samtools
view corresponding to the 10 putative driver DHSs (plus 50kbp upstream and
downstream of each element) and, to serve as positive controls the exons of 12
cancer genes (Supplementary Fig. 5) (CTCF, CTNNB1, EGFR, FLT3, IDH1, IDH2,
NFE2L2, NRAS, PIK3R1, PTEN, TP53 and VHL) identified as high-confidence
drivers by four independent methods in the TCGA PanCancer analysis27. Variants
were called with MuTect (using the filters described above), i.e., all mutations
labeled as “KEEP” by MuTect, with at least 14× coverage in the tumor and 8× in
the normal, and at least 10% allele frequency in the tumor were retained. All
mutations in repeat elements were discarded.

To determine if the 16 putative driver DHSs were enriched for mutations across
all 19 tumor types we performed two analyses. First, we performed an interval
analysis in which the mutation density for each of the 16 putative driver DHSs was
calculated as the ratio between the number of mutations in all tumor types and the
number of non-repetitive nucleotides. Mutation probabilities were then calculated
for the intervals (+/−50 kb) surrounding each putative driver DHS. Poisson λ
parameter was estimated from the mutation probability in the interval surrounding
each DHS and p-values p were calculated as shown in Eq. 3. We also performed a
cluster analysis in which the mutation density for each of the 16 putative driver
DHSs was compared with the mutation density of DHSs with similar sequence
characteristics as described above for the breast cancer whole-genome sequence
analysis (Supplementary Data 4). For each of the 16 putative driver DHSs, 20
random DHSs were selected from the corresponding cluster and GTFuse was used to
extract these sequences from the 1,079 tumors and matched germline BAM files.
Mutations were identified using MuTect and values p were calculated as shown in
Eq. 3 to identify significant mutation density differences between each of the 16
putative driver DHSs and their corresponding randomly selected 20 DHSs. The
significance threshold in both tests was set to FDR <0.05, corresponding to p< 0.017
and p< 0.013, respectively (Supplementary Table 8, Supplementary Data 10).

In silico analysis of DHS chr5:1325957-1328153. The putative driver DHS
chr5:1325957-1328153 located upstream of TERT is mutated in seven breast cancer
TCGA samples (four discovery, three replication). We analyzed the expression
levels of the 15 genes within 500 kb distance using the same method as described in
Filter 3: normalized expression levels (RNA-seq) were downloaded from TCGA
and compared with 106 unrelated normal breast samples using Wilcoxon test.
Genes showing significantly different expression levels (p-value < 0.05) were
considered aberrantly expressed.

For the focused mutation analysis of the TERT promoter (located in the 50 kb
region upstream of the putative driver DHS on chr5:1325957-1328153), the filter
on repetitive elements was removed because the two reported positions mutated at
high frequency33 are in a repeat element.

In vivo effects of mutations in DHS chr6:28948439-28951450. C. intestinalis
were obtained from M-Rep (San Diego, CA, USA). Eggs were fertilized in vitro and
electroporated with wild-type or putative mutant DHSs reporter constructs as
described in Christiaen et al.57 Primers used to build constructs are shown in
Supplementary Table 11. Embryos were then fixed at 8 h post fertilization for 15min
in 4% formaldehyde and prepared for microscopy as described in Farley et al.35.
After mounting embryos on slides, slide labels were covered and randomized for
blind analysis. At least 45 embryos were analyzed on each slide and at least two
biological replicates were performed for each mutation. Replicates were combined
and differences in GFP expression between wild-type and mutated DHS were
assessed using Fisher’s exact test.

Deletion of driver DHSs in HEK293T cell line. The HEK293T cell line58 was
chosen based on: (1) transfection has very high efficiency59; (2) analysis of genes
using BioGPS60 within 500 kbp of the deleted putative driver DHSs showed that
they are expressed in the cell line; (3) analysis of ChIP-seq data from
HEK293T cells (Fig. 6b, Supplementary Fig. 6) showed that the chromatin states of
the analyzed putative driver DHSs and their associated genes are similar to those
derived from ChromHMM for nine different tissues types. BigWig files of ChIP-seq
data from HEK293T cells were retrieved from the Gene Expression Omnibus
(GEO) series GSE5163361, sample IDs GSM1249885 (H3K4me3), GSM1249886
(H3K4me2), GSM1249887 (H3K4me1), GSM1249888 (H3K4me1) and
GSM1249889 (H3K27ac) and visualized using the UCSC genome browser.

Short guided RNA design and construction. Short guided RNA (sgRNA)
targeting 5′ and 3′ sequences of the putative driver DHS (target regions) and
control region were designed and analyzed for specificity using CRISPR Design
Tool—7-21-201362 (Supplementary Fig. 12a, b). The sgRNA expression plasmids
were prepared by cloning annealed oligos into the PHI74 vector digested by BbsI.
sgRNA oligos are shown in Supplementary Table 12.

Selection of homozygous clones. HEK293T cells were cultured in Dulbecco’s
modified Eagle medium (Life Technologies) containing 10% fetal bovine serum (Life
Technologies), 2 mM glutamine (Life Technologies), 7 mM maximal exact matches
(MEM) non-essential amino acids (Life Technologies), 1 mM sodium pyruvate (Life
Technologies), 10mM HEPES,100 units/ml penicillin streptomycin, and 100 μg/ml
streptomycin (Life Technologies). Cells were co-transfected with constructs expres-
sing 5′ and 3′ sgRNAs and pBABE-Puro63 in Opti-MEM reduced serum medium
(Life Technologies) using the Lipofectamine 3000 Reagent (Life Technologies). Cells
were co-transfected in 48-well plates with either 0.75 μg of 5′sgRNA, 0.75 μg, 3′
sgRNA and 0.5 μg pBABE-Puro or 1.5 μg of empty PHI74 vector and 0.5 μg
pBABE-Puro. Forty-eight hours after transfection, HEK293T cells were cultured for
14 days in the presence of Puromycin (0.75 μg/ml). 72 h after transfection cells were
split onto 10 cm dishes to ensure clonal growth. 10–14 days after splitting, clones
were picked, amplified and tested for CRISPR-CaS11-mediated deletion by PCR.
Homozygous clones were further amplified. Clones were harvested on different dates
and pellets were frozen; however, all samples were processed simultaneously for
DNA and RNA extraction (ATAC-seq and RNA-seq), library generation and
sequencing.

PCR strategy for detection of CRISPR-Cas9-mediated deletion. PCR was
performed using Phusion Hot Start II High-Fidelity DNA Polymerase (Thermo
Scientific). PCR strategy for detection of CRIPR-Cas9-mediated deletion is depicted
in Supplementary Fig. 12c, d. Primers are listed in Supplementary Table 13. PCR
was performed in a total volume of 25 μl with 50 pM of each primer, 400 μM
dNTPs (total), 0.5U Polymerase and 10 ng of genomic DNA.

ATAC-Seq data processing. Nuclei were isolated from 50,000 cells and incubated
with 2.2 μl Tn5 Transposase (Illumina) for 30min at 37 °C64. DNA was immediately
purified using QiagenMinElute columns. Library amplification required ten cycles and
was performed using KAPA Biosystems Real-Time Library Amplification Kit.
Libraries were size selected to between 200 and 800 bp using the SPRIselect Reagent
Kit (Beckman Coulter) and sequenced PE1 using an Illumina HiSeq2500. FASTQ files
were retrieved from Illumina Basespace (https://basespace.illumina.com/) and ATAC-
seq reads were aligned to the human reference genome (hg19) using BWA with
MEM46. Paired-end reads were separated to perform alignments and then were
merged using Picard Tools v. 1.115 MergeSamFiles (http://picard.sourceforge.net).
Duplicate reads were marked with Picard Tools MarkDuplicates (Supplementary
Fig. 13a), read depth at each position in the surrounding 1Mb genomic interval
(+/− 500 kb) was determined using Bed Tools v. 2.20.1 genomeCoverageBed65. We
normalized the read depth at each genomic position by considering the total number
of mapped reads in the analyzed sample compared to all samples (Fig. 6).

RNA-Seq data processing. Total RNA was assessed for quality using an Agilent
Tapestation, and samples determined to have an RNA integrity number of 7 or
greater were used to generate RNA libraries using Illumina’s TruSeq Stranded Total
RNA Sample Prep Kit. RNA libraries were multiplexed and sequenced with 125 bp
paired end reads (PE100) to a depth of approximately 25 million reads per sample
on an Illumina HiSeq2500. RNA-seq reads were aligned to the human genome
(hg19) with STAR 2.4.0 h (outFilterMultimapNmax 20, outFilterMismatchNmax
999, outFilterMismatchNoverLmax 0.04, outFilterIntronMotifs RemoveNoncano-
nicalUnannotated, outSJfilterOverhangMin 6 6 6 6, seedSearchStartLmax 20,
alignSJDBoverhangMin 1) using a splice junction database constructed from
Gencode v1966, 67. Reads overlapping genes were counted using HTSeq-count
(-s reverse -a 0 -t exon -i gene_id -m union) (Supplementary Table 14, Supple-
mentary Data 14, Supplementary Fig. 13b)68. Raw read counts were processed with
DESeq269 and only genes with mean read count >20 were considered for the
analysis. Technical replicates were collapsed using DESeq2 collapseReplicates. Read
counts were transformed using variance stabilizing transformation68. Differential
expression analysis of the nine genes in the region of interest (i.e. within the 1Mbp
interval surrounding the putative driver DHS at chr8:579137-581436) was per-
formed using the DESeq2 function with default parameters69.

Data availability. Data is available at ArrayExpress: E-MTAB-5710 (targeted
sequencing); E-MTAB-5714 (RNA-seq); E-MTAB-5702 (ATAC-seq). All other
remaining data are available within the Article and Supplementary Files, or
available from the authors upon request.
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