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ABSTRACT: In material informatics, the representation of the
material structure is fundamentally essential to obtaining better
prediction results, and graph representation has attracted much
attention in recent years. Molecular crystals can be graphically
represented in molecular and crystal representations, but a
comparison of which representation is more effective has not
been examined. In this study, we compared the prediction accuracy
between molecular and crystal graphs for band gap prediction. The
results showed that the prediction accuracies using crystal graphs
were better than those obtained using molecular graphs. While this
result is not surprising, error analysis quantitatively evaluated that
the error of the crystal graph was 0.4 times that of the molecular
graph with moderate correlation. The novelty of this study lies in the comparison of molecular crystal representations and in the
quantitative evaluation of the contribution of crystal structures to the band gap.

■ INTRODUCTION
Material informatics (MI) constitutes a compelling research
subject, attracting significant attention across academic and
industrial landscapes.1−3 The application of MI is becoming
widespread in various fields, typically in polymers and
inorganics. In most cases of MI, a set of structural information
and target properties is required as prior knowledge for model
supervision. While a target variable can be defined relatively
straightforwardly depending on the purposes, structural
information can be represented in various ways. For example,
conventional representations of molecules are fingerprint
vectors, such as extended connectivity fingerprints.4 Many
types of descriptors have been developed,5 and the choice of
the descriptor influences the predictive performance of a task
to be solved.
In recent years, graph representation has received a great

deal of attention. Molecular structures can be represented as
graph data consisting of nodes and edges, and graph neural
networks (GNNs) can handle regression and classification
tasks.6−9 Recent studies on inorganic crystals also have
successfully used graphs for inorganic crystal structures.10−14

Graph-based approaches have been applied not only to
molecules and bulk inorganic materials but also to metal−
organic frameworks, two-dimensional materials, and even
molecular dynamics simulations.15−17 Furthermore, model
architectures such as ALIGNN and M3GNet, which
incorporate angle information, have been developed to
improve prediction accuracy.13,18

In contrast to inorganic materials and polymers, MI research
on molecular crystals has made little progress.19−21 This may

be due to the lack of databases linking the structure and
properties of the molecular crystals. For example, the
Cambridge Structural Database (CSD) and Crystallography
Open Database (COD) are useful platforms of molecular
crystal structures,22,23 but they do not include information on
physicochemical properties. Therefore, constructing struc-
ture−property data sets requires human labor to collect
physical properties from publications, experiments, and
quantum chemical calculations. Olsthoorn et al. constructed
a large database of electronic band gaps (N = 12,500) that
relates molecular crystal structures to band gaps obtained from
quantum chemical calculations.24 The band gap is the energy
difference between the conduction and valence bands and is
related to the optoelectronic properties. They also performed a
regression analysis using crystal graph and achieved a mean
absolute error (MAE) of 0.388 eV by the ensemble model of
the smooth overlap of atomic positions (SOAP)25 and a kind
of GNN, SchNet.6 It is expected that such database
construction and MI-aided material screening will be helpful
for the development of novel molecular crystals, as evidenced
by some recent works.26−28
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As such, Olsthoorn et al. conducted a valid prior study but
did not compare the graph representations. Because molecular
crystals are composed of organic molecules, molecular and
crystal graph representations are possible (Figure 1). The

complexity of the graph also affects prediction performance,
and it is crucial to investigate which graph representation has
the much better prediction accuracy. Furthermore, the
difference between molecular and crystal graphs will allow
quantitative evaluation of the influence of the molecular
structure and intermolecular interactions on the target
properties, which can provide insight into the physicochemical
aspect.
This study compares the prediction accuracy of molecular

and crystal graphs in band gap prediction. Molecular and
crystal graphs of varying complexities were used as input, and
GNN models of multiple architectures were used as prediction
functions. A comparison of regression results shows that crystal
graphs give better prediction accuracy than molecular graphs
and the contribution of molecular structure and intermolecular
interactions is quantitatively evaluated. The novelty of this
study lies in the comparison of molecular crystal representa-
tions and in the quantitative evaluation of the contribution of
crystal structures to the band gap. Since this algorithm can be
applied to other properties of molecular crystals, it is expected
to contribute to the efficient screening and design of molecular
crystals.

■ RESULTS AND DISCUSSION
Data Set and Structure Representations. A data set

where the crystal structure and calculated electronic band gap
corresponded was obtained from the Organic Materials
Database (OMDB).24 In the data set, there is no distinction
between direct and indirect band gaps; that is, the value was
defined as a distance between the minimum energy of the
lowest conduction band and the maximum energy of the
highest valence band independently. As the original data set
did not contain simplified molecular input line entry system
(SMILES) corresponding to each molecular structure,
SMILES data were extracted from the COD database29 for
this study. Data that caused errors in processing SMILES

conversion using rdkit package were excluded, yielding a data
set of N = 10472, where SMILES, the crystal structure (as
COD ID), and the band gap corresponded. The data set was
split into train, validation, and test subset at the ratio of 0.8,
0.05, and 0.15, respectively. All subsets have a similar
distribution of band gap (Figure 2).

Molecular and crystal graphs are formed with different
complexities. A SMILES-based molecular graph comprises
nodes and edges that reflect atoms and chemical bonds (Table
S1). Each node has a 121-dimensional representation that
includes atomic information, such as the atom number and
charge. Each edge has a 2-dimensional vector based on
chemical bonds. As SMILES does not explicitly include
hydrogen atoms, it is possible to determine whether they are
added to molecular graphs. In the molecular graphs without
hydrogen atoms (MolGraph), the number of nodes and edges
averages 21.8 and 68.3, respectively (Figure 3a). These
averages of molecular graphs with hydrogen atoms (Mol-
GraphH) increased nearly twice (Figure 3a). Figure 3b
exemplifies the MolGraph and MolGraphH of a molecule.
Crystal graphs were created based on atomic coordinates in

the crystal structures. The main difference of the crystal graphs
from molecular graphs is that edges are formed based on
distances rather than chemical bonds. When edges are created
in the crystal graphs, there are two parameters: radius and the
maximum number of neighbors. The radius defines the
maximum distance from one atom to the other atoms for
sharing the edges. When the atom−atom distance is within the
radius, an edge is allowed between these atoms. The maximum
number of neighbors defines the maximum number of edges
from a node, and the number of edges is limited to the nearest
atoms, even when the atom−atom distance is within the radius.
Thus, the number of edges in the crystal graphs depends on
the radius (r) in the unit of Angstrom and the maximum
number of neighbors (max_n). We considered three different
crystal graphs: simple (r = 8 Å, max_n = 6), medium (r = 8 Å,
max_n = 12), and complicated (r = 4.2 Å, max_n = 1000)
graphs by changing these parameters (Figure 3a,c). Hereafter,
they are called simple, medium, and complicated CrystGraphs.
The average of the number of edges almost doubled from
simple to medium CrystGraph and from medium to
complicated CrystGraph (Figure 3a,c). This complexity
graph could be achieved with other combinations of r and
max_n, but we chose these combinations to vary the number
of edges. The number of edges corresponds to the graph

Figure 1. Structure−property relationship and graph representations
of molecular crystals. Molecular crystals are formed by organic
molecules and thus can be represented by both molecular and crystal
graphs.

Figure 2. Data distribution of the band gap in the train, validation,
and test subsets.
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complexity, indicating the number of intermolecular inter-
actions considered in graph convolutions. The crystal structure
(COD number: 4030612), whose molecule is shown in Figure
3b, exemplifies the difference in graph complexity (Figure 3d).
In the crystal structure, C−Br is the longest chemical bond
(1.99 Å), and O···H is a short intermolecular interaction (2.69
Å) (Figure 3d). Simple CrystGraph captures the longest
chemical bond and the short interaction by forming edges as
indicated by solid and dotted arrows, while other longer

intermolecular interactions are not considered. Medium
CrystGraph captures more intermolecular interactions by a
greater number of edges, and complicated CrystGraph
contains much more. The difference in the graph complexity
on the prediction performance is shown in the following
section.

Regression on Band Gap. Molecular and crystal graphs
with different complexities were input into the GNN models
CGCNN, SchNet, and MEGNet.6−8 The difference between

Figure 3. Molecular and crystal graphs with different complexities. (a) Comparison of the averages of the number of nodes and edges in different
molecular and crystal graphs. (b) Example of molecular graphs without and with hydrogen atoms (MolGraph and MolGraphH, respectively). (c)
Dependence of the average of the number of edges in crystal graphs by changing the radius (r) and maximum number of neighbors (max_n). The
number of nodes does not change by these parameters. (d) Example of the crystal structure (COD ID = 4030612) and corresponding simple,
medium, and complicated CrystGraphs.

Table 1. Regression Results of Band Gap Analysis Using Molecular and Crystal Graphsa

representation GNN R2 MAE RMSE

MolGraph SchNet 0.732 (0.004) 0.401 (0.002) 0.527 (0.004)
MEGNet 0.776 (0.006) 0.360 (0.003) 0.482 (0.007)
CGCNN 0.754 (0.011) 0.375 (0.011) 0.505 (0.011)

MolGraphH SchNet 0.693 (0.006) 0.427 (0.005) 0.564 (0.006)
MEGNet 0.758 (0.014) 0.379 (0.013) 0.501 (0.015)
CGCNN 0.750 (0.007) 0.385 (0.007) 0.509 (0.007)

simple CrystGraph SchNet 0.862 (0.008) 0.279 (0.009) 0.378 (0.011)
MEGNet 0.892 (0.006) 0.249 (0.014) 0.335 (0.010)
CGCNN 0.858 (0.007) 0.283 (0.005) 0.383 (0.009)

medium CrystGraph SchNet 0.833 (0.055) 0.308 (0.055) 0.412 (0.066)
MEGNet 0.895 (0.004) 0.240 (0.005) 0.329 (0.006)
CGCNN 0.856 (0.010) 0.280 (0.014) 0.386 (0.013)

complicated CrystGraph SchNet 0.810 (0.084) 0.331 (0.072) 0.437 (0.094)
MEGNet 0.879 (0.007) 0.259 (0.006) 0.354 (0.010)
CGCNN 0.870 (0.004) 0.277 (0.004) 0.367 (0.006)

aEach value is the average, and the bracket represents standard deviation.
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these models relies on the graph convolution layer, which
aggregates and combines node and edge features without
changing the graph adjacency (Methods section). The node
and edge features after convolution layers were converted to a
vector by a readout operation, and the vector was then
inputted to the fully connected layers to output a prediction
value. The predictive performance was evaluated using the test
metrics R2, root-mean-square error (RMSE), and mean
absolute error (MAE). The hyperparameters of all of the
models were optimized with respect to each input
representation (Table S2 and Figures S1−S15).
Table 1 presents the metrics for the test subset using

different combinations of graphs and models. The MEGNet
models performed better than SchNet and CGCNN in all
combinations using molecular and crystal graphs (Table 1).
Thus, the difference in graph inputs on test metrics is discussed
based on the results of the MEGNet model.
The best representation was medium CrystGraph. Simple

CrystGraph afforded nearly high performance with that of
medium CrystGraph, and complicated CrystGraph was worse
than those CrystGraphs (Table 1). Both molecular graphs,
MolGraph and MolGraphH, afforded metrics that were worse
than those of CrystGraphs. The better representation was
MolGraph rather than MolGraphH. In both cases of molecular
and crystal graphs, the most complicated graph did not afford
the highest metrics, showing that there is a suitable complexity
of representation. In the case of the average model, which
represents the reference metrics when assuming there is no
relationship between structure and band gap, MAE and RMSE
were 0.794 and 1.018 eV, respectively. It is estimated that the

combination of MolGraph and the MEGNet model reduced
0.63 eV in MAE by considering molecular structure and that
the combination of medium CrystGraph and the MEGNet
model further reduced 0.12 eV in MAE by considering
intermolecular interactions. Thus, the error using medium
CyrstGraph was 0.67 times that of MolGraph. It is reasonable
that the intermolecular interactions are weak in many
molecular crystals and thus have a moderate effect on the
electronic orbitals by crystal packings, and the molecular
structure alone can greatly reduce the prediction error. The
combination of medium CrystGraph and MEGNet out-
performed the ensemble model of SOAP and SchNet
developed by Olsthoorn et al. (MAE = 0.388 eV, RMSE =
0.519 eV).24 This result agreed with SchNet yielding worse
metrics in our regression (Table 1). Although this may be due
to the reduced number of data, the tuning of crystal graph
hyperparameters and the utilization of the MEGNet model
afforded better predictive performance. Then, we also
performed the regression on the recent architecture, ALIGNN,
using the same training data set and found that the MAE for
the same test data set was 0.221 eV, which was slightly better
than the MEGNet model. Based on this result, it is expected
that the latest models such as ALIGNN and M3GNet would
result in a smaller prediction error for molecular crystals.
However, since it is difficult to input molecular graph used in
the current work to these models, and since we want to
compare the molecular graph with the crystal graph, we will
use the MEGNet model in the following discussion.
Since MolGraph and medium CrystGraph afforded better

test metrics as molecular and crystal representations, we

Figure 4. Predictive performance using molecular and crystal graphs. (a, b) Observed-predicted plots of training and test data set represented by
(a) MolGraph and (b) medium CrystGraph. The dashed line is the reference line when predictions perfectly match with DFT data. (c, d) Error
analysis of test data set represented by (c) MolGraph and (d) medium CrystGraph. Error was defined as predicted value minus observed value. (e)
Error-error plot of MolGraph and medium CrystGraph. The dashed line is the linear regression. The area highlighted in gray is the 95% prediction
interval. (f) Dependence of training size on test MAE.
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performed error analysis of them where error was defined as
predicted value minus observed value. First, the observed-
predicted plot showed how predictions distributed (Figure
4a,b). The observed-predicted plot of medium CrystGraph
presented a smaller variance from the reference line than
MolGraph, which is consistent with better test metrics (Table
1). Both training and test MAEs of medium CrystGraph were
lower than those of MolGraph, indicating proper representa-
tion learning of crystal structures. Even though, predictions of
test data ranging from 1 to 5 eV, which was the main fraction
of data set (Figure 2), have some variance from the reference
line compared to the training data set. Error analysis of
MolGraph showed the negative tendency of error (Figure 4c),
meaning that MolGraph tends to overestimate for smaller band
gaps and to underestimate for larger band gaps. This tendency
should indicate there remains bias by missing information on
intermolecular interactions. Medium CrystGraph resolved such
a negative tendency (Figure 4d). This reason should be the
capture of more information on CrystGraph. Crystal graph
captures both intermolecular interactions and intramolecular
interactions in the edge information, which may have reduced
the prediction error. However, we cannot deny that other
unidentified factors may influence the prediction.
We then visualized an error−error plot to find the error

relationship between MolGraph and medium CrystGraph
(Figure 4e). The error−error plot showed roughly linear
tendency with a slope of 0.41 and Pearson’s correlation
coefficient of 0.62. This result means that medium CrystGraph
afforded about 0.4 times smaller error than MolGraph with a
mild correlation. This value is smaller than the value seen in
the MAE because the MAE averages the absolute errors of all
plots, whereas the error−error plot shows the relationship
between the medium CrystGraph and MolGraph at the same
data point. As a result of direct comparison, we can say that the
medium CrystGraph has an error reduction of 0.4 times that of
the MolGraph. However, since the correlation coefficient is not
high and some predictions do not follow this trend, the MAE
reduction effect is considered to have been 0.67 times. We did
not identify the relationship between error distribution and
structural features even though we checked the crystal
structures manually of some outliers. If we find some
relationship, we can speculate the strength and weakness of

the crystal graph and possibly improve the convolution
architecture of GNN, but we did not find so far.
The dependence of the training size on the test MAE was

also compared between MolGraph and medium CrystGraph
(Figure 4f). MolGraph converged faster than medium
CrystGraph probably due to the simpler representation of
graph. Medium CrystGraph reached a smaller MAE than
MolGarph. This result showed the difference of convergence
speed due to the difference of graph complexity and the
sufficiency of training when sufficient training size was
provided.

Generalization Ability and Large Screening. Subse-
quently, we confirmed the generalization ability outside the
above data set. We collected 21 data from publications where
SMILES, crystal structure, and calculated electronic band gap
were reported (Table S3). The distribution of the number of
constituent elements in newly collected data is similar to the
initial data set for model training and testing (Figure S16). In
addition, when crystal structures were represented by SOAP
and then embedded by t-Distributed Stochastic Neighbor
Embedding (t-SNE), the newly collected test data, of which
there are only 21, is not widely distributed throughout the
space, but it is found to be close to the initial data set (Figure
S17). Using the trained MEGNet model, medium CrystGraph
yielded better metrics (RMSE = 0.46, MAE = 0.34) than
MolGraph (RMSE = 0.59, MAE = 0.43), confirming the better
generalization ability of the combination of medium Cryst-
Graph and the MEGNet model (Figure 5a). For further
comparison, we calculated predicted values using the ensemble
model of SchNet and SOAP developed by Olsthoom et al. on
their web application.23 The metrics of the predictions were
comparable with those of MolGraph and worse than those of
medium CrystGraph (Figure 5a). The observed-predicted plot
showed how predictions are made for each data, and light
green plots of medium CrystGraph were tented to be closer to
the reference line (Figure 5b), confirming the better
generalization. This generalization is consistent with the
regression results, as explained in the previous section.
We also tested the prediction ability for polymorphic crystals

using medium CrystGraph, whose compounds are not
included in the training data set (Table S4). There have
been 8 polymorphs of 5-methyl-2-[(2-nitrophenyl)amino]-3-
thiophenecarbonitrile, commonly known as ROY, and their

Figure 5. Generalization performance. (a) Comparison of the test metrics between MolGraph and medium CrystGraph developed by this work
and the ensemble model developed in the literature. (b) Observed-predicted plot of the generalization data set.
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electronic band gaps have been calculated to be 1.12−1.84 eV
depending on crystal structures.30 In another case, band gaps
of two polymorphs of 9,10-bis((E)-2-(pyridin-4-yl)vinyl)-
anthracene (BP4VA) have been reported to be 1.58 and
1.26 eV in the literature.31 Using the trained model, medium
CrystGraph of ROY afforded 0.40 eV MAE, and BP4PV
resulted in 0.52 eV MAE (Figure 6). The result, a smaller error

of ROY than BP4VA, may be attributed to the difference in a
polymorphic manner. In the ROY crystal, molecular
conformations differ from each polymorph due to the
molecular flexibility, while the stacking manner of relatively
rigid molecules differs in the polymorphs of BP4VA. Such
polymorphic differences may have resulted in different MAEs.
In addition, these values were worse than the previous
generalization test, and this result suggests that medium

Crystal may have a weakness in the distinction of polymorphs.
Error plot also presented a negative tendency, suggesting
insufficient learning. This result may originate from the
deficiency of training data of polymorphic crystals because
the original OMDB database does not contain polymorphic
crystals. Such model extensions to the polymorphs should be
tackled in the future.
Since medium CrystGraph afforded better generalization

ability, we screened a large data set of crystal structures
downloaded from the Cambridge Structural Database (CSD).
It is important to find molecular crystals with high and low
band gaps by screening for efficient material design. The
number of downloaded crystal structures is 111936, identified
with the unique CSD reference code. The distribution of the
data set for screening was similar to that of the initial data set,
after their structures encoded by SOAP descriptor were
embedded in 2D plot (Figure S18). The band gap, predicted
by medium CrystGraph on the trained MEGNet model, is
distributed with a mean of 2.86 eV, a maximum of 7.39 eV, and
a minimum of 0.13 eV, respectively (Figure 7a). This
distribution is similar to the data distribution curated from
the OMDB (Figure 2).
Some crystal structures were visualized to find structural

features from the screening. The smallest predictions were
found in compounds with sulfur atoms, as exemplified by the
top-3 smallest predictions (Figure 7b). Two of the three
structures consist of thiophene-based compounds, and the
smallest prediction is consistent with that thiophene-based
compounds such as tetrathiafulvalene (TTF) salt are known as
conductive materials.32 The largest predictions were found in
the hydrocarbon and similar compounds (Figure 7b). Because
the crystal of propane has the highest band gap (8.54 eV) in
the original data set, the inferred structures reflected the trend
of a high band gap. The inferred band gap in the large
screening was almost consistent with the known structural
features, and therefore, we successfully screened potential
crystal structures with varying band gaps. All inferred band
gaps were available at https://github.com/takuyhaa/
OrgCrystGNN/.

Figure 6. Band gap prediction of polymorphic crystals, ROY and
BP4VA, using a medium CrystGraph.

Figure 7. Comprehensive screening of band gap of crystal structures from CSD. (a) Histogram of band gap predicted by the trained model of
medium CrystGraph. (b) Top-3 crystal structures with the smallest and largest predicted band gap. CSD reference code, space group, and predicted
band gap are also shown.
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■ CONCLUSIONS
In summary, this work compares graph representations of
molecular crystals for the exemplified task of band gap
prediction. The representation of medium CrystGraph
afforded the best regression metrics compared with molecular
graphs and other crystal graphs with different complexities.
While this result is not surprising, it was beneficial to find that
medium CrystGraph reduced error by about 0.4 times with a
moderate correlation coefficient than MolGraph. A general-
ization test using manually collected data validated better
performance using medium CrystGraph than MolGraph and
the ensemble model developed in the literature. The band gap
of large data set downloaded from CSD was screened, and the
reasonable inference result was obtained, identifying potential
crystals with lowest and highest band gaps. The novelty of this
work should lie in clarifying the relative effect of crystal graph
over molecule graph through the representation comparison.
This workflow can be applied to other properties, potentially
contributing to the efficient screening and design of functional
molecular crystals.

■ METHODS
Data Collecting. The original data set was obtained from

the Organic Materials Database (OMDB). The data set
contains 12500 data, where the crystal structure and band gap
corresponded. The crystal structures were assigned as the ID
number of the Crystallography Open Database (COD). The
DFT calculation has been performed using the projector
augmented wave method33,34 implemented in the Vienna Ab
initio Simulation Package (VASP). The exchange-correlation
function was approximated by the generalized gradient
approximation (GGA) according to Perdew, Burke, and
Ernzerhof.35 The band gap was calculated after each crystal
structure was geometrically optimized. Because this data set
did not contain SMILES, we independently downloaded a list
of SMILES with COD ID. The SMILES was added to the data
set when the COD ID was matched. Additionally, the data set
was modified to exclude data that arise execution errors in the
conversion from SMILES to mol object using rdkit package.
This modification finally afforded a data set of N = 10472,
where SMILES, crystal structure, and band gap correspond.
For the generalization test, we collected 21 data from
published works, where SMILES and CCDC reference codes
and band gaps were reported (Table S3). For large screening,
we downloaded the cif files from Cambridge Structural
Database (CSD) by the following conditions: only organic,
calculated density larger than zero, temperature is not none, R
factor less than 0.1, no disorder, and atmospheric pressure. The
downloaded data contained various measurement temper-
atures, and thus, data were limited to data measured in the
range of 273−313 K. This curation resulted in data size of
111936 corresponded to unique CSD reference codes.

Molecular and Crystal Representations. For molecular
graphs (MolGraph and MolGraphH), SMILES was converted
to mol object using the rdkit package, and node and edge
features were stored as graph data using PyTorch and
PyTorch-Geometric. For crystal graphs (simple, medium, and
complicated CrystGraphs), the atomic coordinates in the
crystal structures were obtained from cif or json file and then
converted to graph data using PyTorch and PyTorch-
Geometric.

Graph Neural Networks. The GNN models (CGCNN,
SchNet, and MEGNet) were originally developed in
independent studies.6−8 These GNN models commonly
consist of convolution layers, readout operation, and a fully
connected neural network. The difference in GNN models
relies solely on convolutional operations that update node and
edge features without changing graph adjacency.
In the SchNet,6 the convolution operation is

hx x d(exp( ( )))i
j i

j j i
( )

,=

where xi′ is the aggregated feature added to node feature xi, xj is
the adjacency node feature of node i, hΘ denotes a multiple
linear perceptron (MLP), dj,i denotes the interatomic distances
between atoms, μ is values for Gaussian expansion, and γ is a
coefficient. In this work, we set 0 ≤ μ ≤ 1 for equally spaced
sampling (n = 50) and γ = −12.5.
In the CGCNN model,7 the convolutional operation is

gx x z W b z W b( ) ( )i i
j i

i j f f i j s s
( )

, ,= + + +

where zi,j = [xi,xj,ei,j] denotes the concatenation of central node
features, neighboring node features and edge features. Here, ei,j
= exp(−γ(dj,i − μ)). In addition, σ and g denote the sigmoid
and softplus functions, respectively. W and b represent the
weight and bias matrices, respectively.
In the MEGNet model,8 the convolution operation is
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where hΘde
and hΘdv

are the edge and node update functions of
the MLP, respectively. Two dense layers were added at the
beginning of each convolution layer to preprocess the inputs.
The update operation is performed in the order of the edges,
nodes, and global attributes. These GNN models have the
following hyperparameters: the dimension of the dense layer
for preprocessing in convolution, the dimension of the update
function (MLP), the dimension of the MLP after the readout
operation, the number of convolution layers, the number of
dense layers after the readout, the pooling operation, and the
learning rate. The batch size and number of epochs were fixed
to 64 and 200, respectively. Hyperparameter optimization was
performed using Optuna in a manually defined search space
(Table S2). GNN models were trained to minimize L1 loss on
a Windows computer equipped with GPUs (NVIDIA RTX
A6000). The codes were written based on PyTorch and
PyTorch-Geometric libraries. Codes are available at https://
github.com/takuyhaa/OrgCrystGNN/.
The model training was repeated three times, and the test

metrics were calculated by averaging three results. For the
dependency of training size on test metrics, three different
training data sets with a fixed data size were created by
different random state and three trainings were performed on a
training data set. In all cases, the same test data set was used
for evaluation.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c05224
ACS Omega 2023, 8, 39481−39489

39487

https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c05224/suppl_file/ao3c05224_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c05224/suppl_file/ao3c05224_si_001.pdf
https://github.com/takuyhaa/OrgCrystGNN/
https://github.com/takuyhaa/OrgCrystGNN/
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c05224?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.3c05224.

Hyperparameters, data set for generalization test, data
distribution (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Takuya Taniguchi − Center for Data Science, Waseda
University, Tokyo 169-8050, Japan; orcid.org/0000-
0002-7885-2962; Email: takuya.taniguchi@aoni.waseda.jp

Authors
Mayuko Hosokawa − Department of Advanced Science and
Engineering, Graduate School of Advanced Science and
Engineering, Waseda University, Tokyo 169-8555, Japan

Toru Asahi − Department of Advanced Science and
Engineering, Graduate School of Advanced Science and
Engineering, Waseda University, Tokyo 169-8555, Japan

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.3c05224

Author Contributions
T.T. contributed to conceptualization, investigation, software,
formal analysis, visualization, writing − original draft, writing −
review and editing, funding acquisition, project administration,
supervision. M.H. contributed to data curation. T.A.
contributed to supervision for M.H.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was partly executed under the cooperation of
organization between Waseda University and ENEOS
Corporation. This work was financially supported by the
JSPS Grant-in-Aid (22K14747) and Waseda University Grant
for Special Research Projects (2020C-530, 2021C-404, and
2022C-313).

■ REFERENCES
(1) Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.;
Kim, C. Machine learning in materials informatics: recent applications
and prospects. npj Comput. Mater. 2017, 3, 54.
(2) Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh,
A. Machine learning for molecular and materials science. Nature 2018,
559, 547−555.
(3) Schmidt, J.; Marques, M. R.; Botti, S.; Marques, M. A. Recent
advances and applications of machine learning in solid-state materials
science. npj Comput. Mater. 2019, 5, 83.
(4) Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J.
Chem. Inf. Model. 2010, 50, 742−754.
(5) Musil, F.; Grisafi, A.; Bartók, A. P.; Ortner, C.; Csányi, G.;
Ceriotti, M. Physics-inspired structural representations for molecules
and materials. Chem. Rev. 2021, 121, 9759−9815.
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