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Abstract: Localization systems play an important role in assisted navigation. Precise localization
renders visually impaired people aware of ambient environments and prevents them from coming
across potential hazards. The majority of visual localization algorithms, which are applied
to autonomous vehicles, are not adaptable completely to the scenarios of assisted navigation.
Those vehicle-based approaches are vulnerable to viewpoint, appearance and route changes (between
database and query images) caused by wearable cameras of assistive devices. Facing these practical
challenges, we propose Visual Localizer, which is composed of ConvNet descriptor and global
optimization, to achieve robust visual localization for assisted navigation. The performance of five
prevailing ConvNets are comprehensively compared, and GoogLeNet is found to feature the best
performance on environmental invariance. By concatenating two compressed convolutional layers
of GoogLeNet, we use only thousands of bytes to represent image efficiently. To further improve
the robustness of image matching, we utilize the network flow model as a global optimization of
image matching. The extensive experiments using images captured by visually impaired volunteers
illustrate that the system performs well in the context of assisted navigation.

Keywords: assisted navigation; place recognition; topological localization; impaired vision;
convolutional neural networks; deep feature; network flow; data association graph

1. Introduction

In the world, 253 million people are estimated to be visually impaired, of whom 36 million people
are totally blind [1]. The majority of visually impaired people, especially those in China, still use simple
and conventional assistive tools, e.g., white canes. The extreme lack of assisted navigation approaches
is not a rare situation among visually impaired people. According to our long-term observation
and investigation, one of the most urgent demands for people with impaired vision lies in outdoor
navigation with the goal to reach their destinations. Specifically, localization (i.e., locating oneself
during an outdoor tour) is the critical session of outdoor navigation.

Thanks to the proliferation of intelligent devices and mobile Internet, the visually impaired people
get access to coarse GNSS localization using mobile navigational applications on any ordinary smart
phone. However, the outdoor localization error of consumer-level GNSS module is around 10–20 m,
which is even worse under some severe weather conditions [2]. The errors of GNSS positioning is not
so critical for sighted people, in that the visual capability helps to localize themselves and to reach the
desirable place. However, things go differently for the visually impaired people. Imagining a common
scenario that a person with visual impairments stands at the vicinity of a turning, it is tough for
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her or him to locate the exact position of turning relying merely on inaccurate GNSS localization.
Therefore, the localization precision of those applications, which primarily localizes users relying on
GNSS signals, is insufficient to meet the practical demands of visually impaired people. Obviously,
applying a localization approach with less error to the practical navigational assistance is of vital
importance for alleviating the potential hazards caused by inaccurate positioning.

Visual localization or place recognition, which utilizes the similarity of visual information to
ameliorate localization precision, is a feasible solution to address the localization issues of assisted
navigation, in view that visual appearance is a natural clue to a place or location. In general,
the places to be located or recognized are recorded as a priori knowledge (also called database
images). Visual localization refers to querying the best matching image from database according to the
newly-captured image (also called query images). However, it is possible that the visual information
of a location varies substantially between query and database from multiple environmental variations,
which is a challenging issue for achieving robust visual localization [3].

The majority of visual localization approaches are designed for autonomous vehicles or robots [4–7].
In those scenarios, the typical environmental changes are shown in Figure 1a,b. Meanwhile, the issues
of visual changes in localization for assisted navigation are shown in Figure 1c,d. The visual localization
approaches applied to assisted navigation confront various environmental changes, some of which
are similar to visual localization for autonomous vehicles. For example, the robustness against
environmental changes, which are caused by changing illumination, diverse weather conditions and
different seasons, should be the fundamental of localization reliability. However, other visual changes
are exclusive in assisted localization, considering those changes are derived from cameras embedded in
wearable devices. Thereby, the issues of visual changes are more complicated in assisted navigation.

Figure 1. The exemplary query images (the upper row) and corresponding database images (the lower
row) in: (a) Bonn dataset [8]; (b) Freiburg dataset [9]; and (c,d) the customized dataset.

To achieve precise visual localization in changing environments for people with visual
impairments, we simultaneously face three critical challenges:

1. Viewpoint changes. As shown in Figure 1c, visually impaired people have no concept of
viewpoint, and the wearable camera features large variations of lateral displacement and
orientation during capturing visual images. Therefore, the database images and the query
images of the same location most likely exhibit diverse viewpoints. In the context of autonomous
vehicles, cameras are usually fixed on vehicles, thus the captured images share a relatively
stationary viewpoint.

2. Appearance changes. As shown in Figure 1c,d, dynamic objects (e.g., vehicles, bicycles and
pedestrians) in images result in appearance changes between database and query images. In the
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context of autonomous vehicles, the moving vehicles often maintain a secure distance from
other vehicles or pedestrians, hence those dynamic objects are not salient in images. Moreover,
the images captured by wearable cameras tend to be blurry due to shaking of carriers’ walking.
If visual localization is deficient of the capability of recognizing the same location under different
conditions, the practicability is largely limited.

3. Route changes. The visually impaired people may travel into a new place, which was not recorded
in database. The localization system needs to not only reduce false alarms, but also re-localize the
place when users return to the recorded route.

As presented in Figure 2, we propose Visual Localizer to solve those issues concerning accurate
visual localization using merely color images, instead of using a priori pose information, such as GNSS
signals or visual odometry. Visual Localizer is the core part of a visual localization-assistance system,
which locates oneself by informing the user of the places visited before. In this paper, we only focus on
the core part of an visual localization-assistance system, i.e., robust image matching between database
images and query images.

Figure 2. The general diagram of proposed Visual Localizer for visually impaired people.
The entire framework is bipartite: ConvNet-based image description and network flow model-based
image matching.

Proposed for the context of visual assisted localization, Visual Localizer is composed of the
customized ConvNet descriptor and the global optimization of image matching. To choose an
outstanding ConvNet descriptor, a set of comprehensive comparisons is carried out between five
state-of-the-art ConvNets on the performance of visual localization. With the optimal descriptor,
the matching results of database and query images are organized by data association graph, and are
subsequently optimized globally by network flow model (addressing a minimum-cost problem in the
data association graph). The contributions of the paper lie in:

• Providing comprehensive evaluation of ConvNets on visual assisted localization. Aiming at
practical scenarios of visual localization for the visually impaired, we perform layer-by-layer
comparisons in five prevailing ConvNets on the problems of environmental changes, and analyze
the description capability of layers in different levels.

• Proposing a visual localization framework—Visual Localizer. Considering the comprehensive
comparison of different ConvNets, a lightweight ConvNet-based descriptor is put forward to
depict holistic information of images. The possible image matching results are organized as a data
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association graph, based on which a minimum-cost flow problem is addressed to obtain optimal
matching results and refuse potential mismatching images. In addition, the ConvNet descriptor
and global optimization do not require training or tuning for specific environments.

• Adaptability to real-world scenarios. Visual Localizer is tested sufficiently both on public datasets
and in practical environments, which demonstrates the robustness against viewpoint changes,
appearance changes and route changes. The database and query images used in the real-world
experiments are captured by visually impaired volunteers. Beyond the domain of assisted
navigation, the system can also be applied to autonomous driving and robotics context.

We discuss related work in Section 2, and describe the system configuration of Visual Localizer in
Section 3. In Section 4, the evaluation results of ConvNet-based image descriptors and localization
performance are elaborated. Finally, we conclude the paper along with an outlook to future work in
Section 5.

2. Related Work

In this section, we discuss related work on localization approaches applied to assisted navigation
as well as visual place recognition.

2.1. State-of-the-Art Assisted Localization

In the research field of assisted navigation, localization systems aim to locate the user by exploiting
different types of sensors. Beacon-based localization approaches locate the user by the proximity to
a beacon, which could be Bluetooth beacons [10], RFID beacons [11], etc. Beacon-based localization is
usually applied to indoor environments, and is not very suitable for outdoor localization. Although
we could deploy RFID beacons in outdoor environments, it still has some drawbacks. The deployment
of passive RFID tags for each person with visual impairments even on his or her familiar routes is
still a great deal of work, if the outdoor localization systems are broadly used. Ivanov [12] proposed
a simulated indoor navigation system, which requires a priori knowledge of building topology and
geometry. Al-Khalifa and Al-Razgan [13] constructed building map based on floor plans and located
the user at key positions represented by QR code. With a similar purpose, Li et al. [14] aligned
visual features derived from camera images with semantic maps derived from architectural floor
plans to achieve localization. Murata et al. [15] proposed a smart phone-based indoor localization
system for blind navigation to address the localization issues in large-scale environments. Apparently,
those localization approaches relying on architectural floor plans are not flexible enough, thus their
applications are usually constrained, e.g., within or around public architectures.

The striking development of visual sensors and computer vision spurred the research community
of assisted navigation to orient to visual localization. To perceive the locations once visited, compressive
sensing [16] and GIST features [17] are applied to scene recognition. Nevertheless, those approaches
are not designed to locate users, hence the localization performance (i.e., the localization precision
and robustness against environmental changes) is not guaranteed. Fusco et al. [18] proposed
a self-localization approach based on a street-view panorama and an aerial image. The algorithm
locates visually impaired people by extracting crosswalk stripes from both images, so it is only valid at
street intersections. Brilhault et al. [2] achieved precise localization by combining landmarks detected
from visual images with corresponding labels in GIS. Unfortunately, localization is constrained around
the limited landmarks, which need to be labeled artificially in GIS.

2.2. Visual Localization System

The concept of visual localization was coined originally by the community of autonomous robots
and vehicles, which has achieved plenty of visual localization systems. As a prevalent mapping and
localization approach, SLAM [19] is widely used in the research area of robotics to build the metric
map and localize the current position. For instance, ORBSLAM2 [20] leveraged visual odometry to
track unmapped regions and matches with map points that allow for zero-drift localization. The visual
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information is converted into image key points stored in dense or sparse metric maps. SLAM-based
localization approaches, which are complicated to achieve in dynamic environments, pay more
attention to mapping and localization in ambient environments, hence it is not applicable to facilitate
localization in a long-range outdoor navigation.

Visual localization based on topological maps [3], which remove metric information from metric
maps but maintain transition information, is usually adopted to achieve unconstrained outdoor
localization. In those system, both database images (a priori knowledge) and query images are
processed by image representation, and database images are organized in a topological structure.
Those localization approaches perform well on the precise localization of autonomous robots and
vehicles, but their adaptability to assisted navigation for visually impaired people still needs to
be validated.

In the next section, we review the prevailing visual localization approaches in terms of image
representation and image matching.

2.2.1. Image Representation

Originated from scene categorization or object classification, various image descriptors have been
taken advantage of in visual localization. Bag-of-word place recognition module is applied to achieve
loop detection in ORBSLAM2 [20]. Due to the large dimensions of BoW descriptor, inverse index
of vocabulary tree is used to quickly access the nearest neighbors of query images [21], and the
distance between any two descriptors are not obtained directly, which hampers the building of
topological structure. With much smaller dimensions, the global descriptor LDB is used by Arroyo et al.
to implement a visual localization algorithm [22]. Similarly, HOG descriptors that are extracted from
image cells served as the holistic representation of scenes [23]. However, those descriptors are sensitive
to the changing pose and FOV of cameras, which is difficult to keep stable on wearable devices.
Moreover, local features, such as SURF [24], are also used to match images and achieve localization,
but the performance of localization degrades with the high computational complexity and the low
recall rate.

Features learned from deep neural networks have recently been used as robust feature detectors
for visual localization. Motivated by their ability to learn generic features that are transferable to
a variety of related but different visual tasks, some studies utilized ConvNet features as holistic image
descriptors. Recent studies on deep ConvNets have concentrated on improving the classification
accuracy. AlexNet [25], VGG [26], GoogLeNet [27] and ResNet [28] achieve better performance as the
size and depth become larger. However, all of the networks above have large scale of parameters,
which pose a huge challenge for deploying these deep learning algorithms on the mobile devices and
embedded applications with limited computational resources. The compression and acceleration of
ConvNet models have become one of the most important research fields in both academia and industry.
For instance, SqueezeNet [29], MobileNet [30] and ShuffleNet [31] achieve AlexNet-level accuracy
with fewer parameters. There are several major gaps in our knowledge and capability regarding
deep learning and place recognition. It is still unclear what kind of ConvNet specifically for the
task of place recognition will yield the best robustness. Currently, few studies have investigated and
analyzed the performance of different ConvNets for visual localization, including standard ConvNets
and lightweight ConvNets mentioned above. It is worth mentioning that the mid-level features
are relatively more robust against the appearance changes, while the higher-level features exhibit
robustness against viewpoint changes [32–34].

By achieving impressive localization accuracy in spite of significant environmental changes,
ConvNet landmark-based approach [34] has attracted the attention of several research communities
including autonomous vehicles and robotics. It takes advantage of Edgebox [35], a landmark proposal
system, and AlexNet to extract features from the landmark proposals. Hou et al. [36] leveraged MRoI
pooling to exploit multi-level and multi-resolution information from multiple convolutional layers,
and then fused them to improve the discriminative capacity of the final ConvNet features.
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Other studires rely heavily on the outstanding discrimination power of ConvNet features between
images. PoseNet [37] presented a framework of computing continuous pose directly from appearance,
and replaced all three softmax classifiers of GoogLeNet with affine regressors. NetVLAD [38] was
designed for place recognition that aggregates mid-level convolutional features extracted from the
entire image into a compact single vector representation amenable to efficient indexing. However,
none of the above networks have been analyzed comparatively regarding the adaptation to visual
changes in the application of assisted navigation.

2.2.2. Image Matching

The pure image retrieval is a straightforward approach to match query images with database
images, which ignores the transition information between adjacent database images and regards
them as equal during image retrieval. Dzulfahmi and Ohta [39] evaluated the image retrieval
performance based on conventional local features. In view that topological structure is lacking
in the algorithm, the parameters of the algorithm need to be refined carefully for precise localization.
Besides, to cope with multiple changes between query images and database images, robust image
representation is far from sufficient, and the topological structure among the images is required to
achieve precise localization.

Instead of querying the most likely location from a single image, SeqSLAM [40] achieves
localization by recognizing coherent sequences of best matching images. In a similar way, ABLE [7]
concatenates adjacent image descriptors to build a final descriptor and located the current position
by matching sequential images matching. Identifying localizations as sequences of images is not
effective all the time, considering the query images are possibly recorded at different speed with those
in database images.

The two kinds of solutions above merely make use of several image matching results to optimize
localization performance, and are not robust against fallible image matching. To address the issues,
the global optimization of images matching results is necessary. As a feasible topological structure to
globally optimize the matching results between query images and database images, data association
graph [23] outperformed SeqSLAM [40] in higher localization precision.

Notably, to the best of our knowledge, no visual localization solution aims or manages to promote
the localization precision of visually impaired people under unconstrained outdoor environments.
Based on these observations, we aimed to design a visual localization framework for assisted navigation
that can locate the visually impaired user in real-world scenarios.

3. Visual Localizer

In this section, we elaborate the proposed Visual Localizer, a visual localization framework which
is robust against viewpoint, appearance and route changes. The detailed flow chart of Visual Localizer
is shown as Figure 3. The entire visual localization system involves two successive sessions: image
representation and matching optimization. In the former session, database images (labeled with red
in Figure 3) and query images (labeled with green in Figure 3) featuring different visual changes are
depicted by the optimal ConvNet layers. After that, the raw descriptors are processed by selection
compression to reduce the dimension of descriptors. In the latter session, the database descriptors and
query descriptors are utilized to organize a directed data association graph, where a node denotes
a pair of matching combination and an edge weight directed to a node denotes the similarity of that
pair. The optimized localization results are obtained by addressing a minimum-cost flow problem of
the data association graph.



Sensors 2018, 18, 2476 7 of 27

Figure 3. The flow chart of the proposed Visual Localizer.

3.1. ConvNet-Based Image Representation

Database images and query images feature different visual changes, including viewpoint changes,
illumination changes, season changes, route changes, etc. In this part, we select the optimal ConvNet
descriptor to robustly depict images captured at the same location but with various changes. To achieve
efficient image matching, the optimal descriptors are compressed to a smaller scale.

Neuron weights over all stages of ConvNets are trained on datasets featuring artificially labeled
images, such as ImageNet dataset [41] or Places dataset [42]. After that, the ConvNet has acquired
the capability of distinguishing objects of different classes. Pre-trained convolutional layer has a set
of learnable filters that are of equal depth to the input volume. By sliding each filter over the input
volume and performing the convolution operation at every position, we obtain a two-dimensional
array called feature map, which contains simple structural features or semantic features extracted by
the corresponding filter. For each filter, we get a distinct feature map, which means that the number
of feature maps at a convolutional layer is determined by the number of filters of that layer. Finally,
the output volume is formed by concatenating all feature maps along the depth dimension. However,
some filters failed to be learned to deliver any feature representation and the feature maps are totally
meaningless. By vectorizing the feature maps to one-dimensional feature vectors and concatenating the
vectorized features obtained by different layers, we generate a holistic image descriptor, which aims
to be robust to environmental changes of the whole input image instead of a part of input image.
The appearance changes fall into different aspects: viewpoint, illumination, season, etc.

To select a optimal image descriptor robustly against environmental changes, a high- performance
ConvNet model is selected from off-the-shelf ConvNet models (i.e., AlexNet, VGG16, GoogLeNet,
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SqueezeNet and MobileNet) in the consideration of robustness and computational cost. In the
following, we introduce the five ConvNets with the corresponding architecture, which are various in
filter size, convolution operation, width and depth of the network, etc.

3.1.1. AlexNet

Benefitting from large datasets and parallel computing technology, AlexNet first achieved its
success on object classification task in 2012 [25], which really changed the field of deep learning in
the computer vision community. As shown in Figure 4, AlexNet consists of five convolutional layers
followed by two fully connected layers. The sizes of convolution filters at the first and the second
convolutional layer are 11 × 11 and 5 × 5, respectively, but the size of convolution filters at the rest
layers is 3 × 3.
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Figure 4. The architecture of AlexNet.

3.1.2. VGGNets

To further promote the classification accuracy, VGGNets increase the depth of the networks
by simply stacking standard convolutional layers. VGGNets replace large filters with 3 × 3 filters,
which are the smallest size to capture the information of left, right, up, down and center portion of input
layer. As shown in Figure 5, a stack of 13 convolutional layers are followed by two fully-connected
layers. Using multiple convolutional layers with smaller filter size not only reduces the quantity of
parameters, but also performs more nonlinear mappings thus increases the fitting ability of the network.

co
n
v
1
_
1

co
n
v
1
_
2

p
o
o
l1

co
n
v
2
_
1

co
n
v
2
_
2

p
o
o
l2

co
n
v
3
_
1

co
n
v
3
_
2

co
n
v
3
_
3

p
o
o
l3

co
n
v
4
_
1

co
n
v
4
_
2

co
n
v
4
_
3

p
o
o
l4

co
n
v
5
_
1

co
n
v
5
_
2

co
n
v
5
_
3

p
o
o
l5

fc
6

fc
7

Figure 5. The architecture of VGG16.

3.1.3. GoogLeNet

Another way to get higher classification accuracy is to widen the networks, hence GoogLeNet
constructs an Inception module, which includes four parallel operations: 1 × 1 convolution, 3 × 3
convolution, 5 × 5 convolution and max pooling. Then, the output of these four operations are
concatenated along the depth dimension and fed to next layer. GoogLeNet effectively increases the
network width, but causes a boost in space and time complexity due to the large computational cost of
5 × 5 convolution operation. To reduce the side-effect of large convolution filters, the solution is to add
1 × 1 convolution to reduce the dimension of input channels followed by the standard convolution as
shown in Figure 6. As presented in Figure 7, GoogLeNet includes three convolutional layers and nine
Inception modules. Even though GoogLeNet is deeper and wider than VGGNets, the computational
cost and memory consumption of GoogLeNet is much smaller than VGGNets.
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Inception/1 1
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Figure 6. The architecture of Inception module.
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Figure 7. The architecture of GoogLeNet.

3.1.4. SqueezeNet

To reduce the number of parameters, SqueezeNet proposes the Fire module comprising a squeeze
convolutional layer, which has only 1 × 1 filters since a 1 × 1 filter has much fewer parameters than
a 3 × 3 filter. Then, the layer is fed into an expand layer that has a mix of 1 × 1 and 3 × 3 convolution
filters as shown in Figure 8. The squeeze layer is responsible for compressing the input channels while
the expand layer utilizes different filters to extract features, which is similar to the Inception module
of GoogleNet. As presented in Figure 9, SqueezeNet begins with a standalone convolutional layer,
followed by eight Fire modules and three max pooling layers, and ends with a final convolutional
layer. SqueezeNet has only 1.25 million parameters, while maintaining competitive accuracy.

Fire/concat

Previous Layer

Fire/expand 1 1 Fire/expand 3 3 

Fire/squeeze

Figure 8. The architecture of Fire.
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Figure 9. The architecture of SqueezeNet.

3.1.5. MobileNet

Assuming that cross-channel correlations and spatial correlations can be mapped completely
separately, MobileNet utilizes depthwise separable convolutions instead of standard convolutions
to extract features, thus it reduces the computational complexity in a way that is different from
SqueezeNet. As presented in Figure 10, depthwise convolution splits convolution into two separate
layers: depthwise convolutional layer and pointwise convolutional layer. Depthwise convolution
performs lightweight filtering by applying a single convolutional filter per input channel. Pointwise
convolution is responsible for building new features through computing the combinations of depthwise
convolution outputs. As shown in Figure 11, the network contains a standalone convolutional layer
followed by 13 depthwise separable convolutional blocks without pooling layers. Downsampling is
engineered into the architectures by setting the stride in some of the convolutional layers. Recently
proposed MobileNet v2 [43] is based on an inverted residual structure and has better performance on
recognition task than MobileNet v1.

Previous Layer

conv 3 3/depthwise

conv 1 1/seperation

Figure 10. The architecture of depthwise separable convolution.
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Figure 11. The architecture of MobileNet.

3.2. Global Optimization of Image Matching

Network flow model based on data association graph was used to achieve robust visual
localization across seasons [23]. In this paper, data association graph is also applied to the global
optimization of Visual Localizer.

Herein, we interpret the configuration of data association graph briefly. As shown in Figure 12a,
the data association graph is a directed graph, which consists of three elements:



Sensors 2018, 18, 2476 11 of 27

• Node. Nodes fall into three types: source node, sink node and ordinary “node”. The ordinary
“node” (i, j) reflects the state that the i-th query image matches with j-th database image.
As Figure 12c showing, each ordinary “node” is actually comprised of a matching node and
a hidden node, which denotes the matching or mismatching state of two images, respectively.

• Edge. We define a directed connection between two “nodes” as an arc, which is represented with
an arrow in Figure 12a,b. Meanwhile, as shown in Figure 12c, a directed connection between
actual nodes is defined as an edge. The arc is the encapsulation of multiple edges. Source node
connects with all of the nodes in the first row of graph. Similarly, sink node connects with all of
the nodes in the last row of graph. As Figure 12b,c shows, the number of arcs originated from one
ordinary node is equal to or less than k + 1, and those arcs merely point to nodes in the next row
of graph.

• Cost. Cost w is associated to each edge. The cost of edges associating with source or sink node is
set to 0. The cosine distance [23] is utilized to measure the similarity of two images in a matching
node. The cost of edges pointing to a matching node is the reciprocal of corresponding cosine
distance. Moreover, the cost of edges pointing to a hidden node is set to c.

1,d

2,d

3,d

q,d

i, j i, ji, j

=

i+1,j i+1,ji+1,j

i+1,j
i+1,

j+k

(b)

i, j

i+1,

j+1

(c)

(a)

Source Database

Q
u
e
ry

Sink

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

q,1 q,2 q,3

Figure 12. The global optimization model of Visual Localizer: (a) data association graph is comprised of
“nodes” and directed arcs which are derived from database and query descriptors; (b) the arcs connect
a “node” (i, j) with k + 1 adjacent “nodes” (i + 1, j + s), where 0 ≤ s ≤ k and j + s ≤ d; and (c) a “node”
in graph involves a matching node (white node) and a hidden node (black node), while the arc
interconnecting “nodes” is composed of edges interconnecting with matching and hidden nodes.

Minimum-cost flow problem [44] is to find a flow with minimal cost such that all the fluid
flows from the source nodes to the sink nodes. In our cases, the only source node produces flow,
meanwhile the only sink node consumes flow. The quantity of flow generated by the source node is set
to f . The capacity of an edge, which denotes the number of units that can flow over that edge, is set to
f + 1 at edges interconnecting the hidden nodes and 1 at other edges. In our cases, the minimum-cost
flow problem is solved by Google Optimization Tools [45]. The solutions to the problem yield a path
in the graph, as blue arrows shown in Figure 12a. It is the nodes on the path that serve as optimized
image matching result of visual localization.

Solving a minimum-cost flow problem of the proposed data association graph is arguably
an effective way to achieve global optimization of single image matching. Compared with single image
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matching, network flow model fulfills image matching in the global level, hence it is robust to cope
with more complicated localization scenarios. Due to hidden nodes, the localization algorithm can
refuse bad image matching results.

4. System Evaluations and Experiments

In this section, we elaborate the experiments on promoting the performance of Visual Localizer.
Firstly, robust ConvNet-based image descriptor is determined after evaluating different layers from
five ConvNets. Subsequently, the parameters in the net flow model of data association graph are tuned
for the optimal performance of image matching.

4.1. Datasets

Challenging datasets featuring various changes between query and database images are utilized
to evaluate the performance of each layers derived from different ConvNets. The datasets that are
used in this paper are listed below.

1. Gardens Point Walking dataset [32]. The Gardens Point dataset consists of three traverses of
the Gardens Point Campus of QUT in Brisbane. Two subsets were captured. One was captured
during the day, which forms viewpoint change (left vs. right). The other one subset was captured
during the night, which forms illumination change (day vs. night).

2. Nordland dataset [46]. The Nordland dataset consisting of 10-h video footages of sceneries
captured on the train in different seasons exhibits no viewpoint variations, and therefore allows
testing the ConvNets on pure condition changes and appearance (across-season) changes. In our
experiments, 400 images are extracted from the summer videos (as database images) and winter
videos (as query images), respectively.

3. Bonn dataset [8]. Recorded by the car-mounted camera in Bonn city during different time,
the Bonn dataset consists of 488 images (as database dataset) and 544 images (as query dataset).
The query as well as database trajectory contains several revisits of the same places. The dataset
features illumination changes and viewpoint changes.

4. Freiburg dataset [9]. Recorded by the car-mounted camera during different seasons, the Freiburg
dataset consists of 361 images (as database dataset) and 676 images (as query dataset). The dataset
captures significant perceptual and structural changes over the span of three years, which includes
viewpoint changes and extreme seasonal variations. The database images and query images have
the same start and end points. It is worth noting that the query images include the situation that
the vehicle encounters red traffic light and stays for a while on the road.

4.2. Evaluation Criteria

Herein, we define true positives, false positives and false negatives, according to the consistency
between ground truths and localization predictions.

• True positive (TP). The localization system matches the query image with a database image and
the matching result is consistent with the ground truth.

• False positive (FP). The localization system matches the query image with a wrong image,
which is different from the ground truth.

• False negative (FN). The localization system gives no response for a query image, but there are
database images associated with the query image.

The performance of Visual Localizer is evaluated and analyzed in terms of precision and recall.
As defined in Equation (1), precision is the proportion of true positives out of all predicted positives.
Moreover, recall is the proportion of true positives to all of actual positives, as defined in Equation (2).

Precision =
TP

TP + FP
(1)
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Recall =
TP

TP + FN
(2)

Considering both the precision and the recall, F1 score is the harmonic average of the precision
and recall. F1 score reaches its best value at 1 and worst at 0.

F1 = 2 × Precision × Recall
Precision + Recall

(3)

We inspect each individual layer of different ConvNets on viewpoint, illumination and
cross-season performance. Each individual layer extracted from networks is taken as a holistic
descriptor of input image, which is resized to 224 × 224 in advance. Originally in a float format,
the descriptors extracted from ConvNets should be cast into a normalized 8-bit integer format.

dint = [d f loat − min(d f loat)]
255

max(d f loat)− min(d f loat)
(4)

The length of the vectorized descriptors can be calculated as exposed in Equation (5), where hi,
wi, and di are the height, width and dimensions of each layer, respectively. n is the number of layers to
be concatenated together.

l f eature =
n

∑
i=1

hi × wi × di (5)

During the evaluation of ConvNet layers, the simplest single-image nearest-neighbor matching
based on Hamming distance [47] is adopted as image matching strategy, so as to avoid the influence of
image matching on the performance evaluation of ConvNets. All of the layers in different ConvNets
are checked, and their performance are presented as precision–recall curves. The variable creating the
precision–recall curves is the threshold of ratio test [32], which is the ratio of the distance of the best
over the second best match found in the nearest neighbor search. The localization result of a query
image is regarded as a true positive only if the image matching result passes the ratio test.

4.3. Performance Analysis and Comparison between Different ConvNet Layers

In this section, the detailed layer-by-layer analysis concerning visual localization performance
is presented. To evaluate the performance of the prevailing ConvNets, we used the representative
datasets featuring three aspects: viewpoint changes, illumination changes and cross-season changes.
The precision–recall curves of different ConvNet layers on different datasets are shown in Figure 13.

AlexNet. As presented in Figure 13, the features extracted from the AlexNet have a similar
behavior to the observation of [32]. The mid-level features derived from conv3 are most robust against
appearance changes. Furthermore, conv3 achieves a precision of around 50% at 100% recall rate on the
viewpoint change dataset, which is merely inferior to the performance of high-level fc6 of AlexNet.

VGG16. Features extracted from layers ranging from conv4 to fc6 of VGG16 have similar
robustness against several changes, as the Top 6 results presented in Figure 13. However, the features
have sub-optimal performance on viewpoint invariance and illumination invariance, in view that
the precision at 100% recall rate are less than 40%. The poor performance on cross-season invariance
illustrates that the features from single layer are not able to overcome all kinds of appearance variances.
For example, the features extracted from conv4_1 display opposite performance between illumination
invariance and cross-season invariance.

GoogLeNet. The Inception module was proposed to eliminate the influence of different size
filters on the recognition task [27]. The extraordinary performance of GoogLeNet illustrates that
using different filters simultaneously is able to allow the ConvNet to choose the most appropriate
features for visual localization, as shown in Figure 13. On the viewpoint change dataset, the precision
of Inception5b/1 × 1 at 100% recall rate is about 60%. The features from Inception3a/3 × 3 are
most robust against both illumination and cross-season changes, and the precisions on illumination
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and cross-season changes dataset are more than 70% and 80% respectively. The second best
feature for illumination invariance and cross-season invariance are Inception3a/3 × 3_reduce and
Inception3b/3 × 3_reduce, respectively. We find that the filter size of most top-rank layers is 1 × 1.
In other words, the capability of feature extraction is not proportional to the filter size. Instead,
the feature maps of convolutional layers with small filter size (especially 1 × 1) have better performance
on appearance invariance and viewpoint invariance.

SqueezeNet. The high-level features ranging from Fire6 to Fire9 are robust against appearance
changes and mid-level features ranging from Fire2 to Fire5 are robust against viewpoint changes.
Particularly, Fire9/squeeze1 × 1, consisting of 13 × 13 × 64 feature maps, performs well both on
illumination and viewpoint invariance. However, it displays a limited performance on cross-season
invariance. The precision at 100% recall rate of all the layers (except Fire9/squeeze1 × 1) are less than
40% on the three datasets because of the drastic compressing operation of squeeze layer, which might
loses key attributes for visual localization.

MobileNet. The lightweight depthwise convolution of MobileNet not only requires less
computational resources than fully convolution, but also retains higher accuracy on image recognition
tasks compared with AlexNet and GoogLeNet [30]. Nevertheless, on the visual localization
task, each layer of both MobileNet performs inferiorly compared with AlexNet and GoogLeNet.
The depthwise separable convolutional block impedes information flow between different channels,
which might result in the degradation of an individual convolution filter and weaken the representation
of the corresponding feature map. It is the most critical reason the ability of feature extraction of the
depthwise separable convolutional block is far worse than standard convolutional layer.

Furthermore, the performance comparison between the best results selected from each ConvNet is
also shown in Figure 14. In Table 1, we conclude the performance of each ConvNet trained on ImageNet
datasets and the assessment on the three aspects. From the results of experiments, we summarize
four conclusions:

1. In AlexNet, VGG16 and GoogLeNet, the features extracted from the mid-level layers are
more robust against appearance changes, which is consistent with the conclusion made by
Sünderhauf et.al. [32]. If the feature is illumination-invariant, it also exhibits season-invariant
robustness, such as conv3 of AlexNet, conv4 and conv5 of VGG16 and Inception3a module
of GoogLeNet. However, lightweight CovNets, such as SqueezeNet, seem contrary to the
conclusions mentioned above.

2. As shown in Table 1, the object recognition accuracy on the ImageNet dataset of VGG16 and
MobileNet are 71.5% and 70.6%, respectively, which are better than other ConvNets. However,
the features from VGG16 and MobileNet have inferior performance on appearance invariance.
It illustrates the fact that the performance on the object recognition is not completely transferable
to the task of visual place localization.

3. As presented in Figure 14, the most layers of each ConvNet exhibit satisfactory precision on the
viewpoint changes dataset, which illustrates the fact that convolutional layer features the nature
of translation invariance. Given this insight, appearance changes will be paid more attention to in
our selection of robust convolutional layer.

4. GoogLeNet has overwhelming advantages against other ConvNets because of best performance
on both appearance invariance and viewpoint invariance as well as modest computational
complexity. Based on this observation, we choose GoogLeNet as the optimal ConvNet, from which
we select robust layers to depict images.
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Figure 13. Precision–Recall curves comparing results about different layers of five ConvNets
on different datasets: (a) comparison results about left vs. right in Gardens Point dataset;
(b) comparison results about day vs. night in Gardens Point dataset; and (c) comparison results about
summer vs. winter in Nordland dataset.
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Figure 14. Precision–Recall curves comparing between the best result selected from each
ConvNets on different datasets: (a) comparison results about left vs. right in Gardens Point dataset;
(b) comparison results about day vs. night in Gardens Point dataset; and (c) comparison results about
summer vs. winter in Nordland dataset.

Table 1. The performance of state-of-the-art ConvNets trained on ImageNet [41] datasets and the
assessment on three aspects. The bold and italic items denote the optimums.

Model ImageNet Million Million Viewpoint Illumination Cross-Season
Accuracy Multi-Adds Parameters Invariant Invariant Invariant

AlexNet 57.2% 720 60 Good Good Good
VGG16 71.5% 15,300 138 Normal Normal Bad

GoogLeNet 69.8% 1550 6.8 Best Best Best
SqueezeNet 57.5% 1700 1.25 Normal Good Normal
MobileNet 70.6% 569 4.2 Normal Bad Bad

4.4. Visualization Analysis of Features Extracted from Different Levels of GoogLeNet

Low-level and mid-level feature maps have larger size than high-level feature maps. Lower-level
features assemble simple but discriminating shape features such as oriented edges and colors,
which benefits place recognition under severe appearance changes. Derived from the Freiburg dataset,
feature maps of Inception3a/3 × 3 layer and Inception3a/3 × 3_reduce layer (the second best layer on
illumination change) of GoogLeNet are shown in Figure 15a,b, respectively. Some feature maps focus
on the structural parts which preserve the shape features of landmarks and trees in the environment,
while some feature maps focus on the non-salient parts like the sky region in the image. The other
feature maps have no response due to the corresponding filters failed to be learned to deliver any
feature representation.

The high-level features are more abstract and semantically meaningful, but lose their ability to
discriminate between individual places within the same semantic type of scenes. Figure 15c shows the
feature maps of Inception5b/1 × 1 layer in GoogLeNet, which are derived from the same image of the
Freiburg dataset. It is shown that the feature maps lose the details of the environment but still have
the ability to retain important semantic information to a certain extent. Meanwhile, the position of
semantic pixels always changes with the variations of camera pose, which refers to lateral displacement,
orientation and scale.
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(a) (b) (c)

Figure 15. The feature maps extracted from different layers of GoogLeNet: (a) Inception3a/3 × 3 is
comprised of 28 × 28 × 128 feature maps; (b) Inception3a/3 × 3_reduce is comprised of 28 × 28 × 96
feature maps; and (c) Inception5b/1 × 1 is comprised of 7 × 7 × 384 feature maps.

4.5. Concatenation and Compression

Because the features from single layer are not able to overcome all kinds of changes, it is obvious
that utilizing concatenated layers rather than a single layer as the holistic image descriptor gets more
robust performance. However, it is necessary to select and concatenate a handful of layers that perform
robust against changes, as the computational cost of image matching is proportional to the dimension
of holistic image descriptor. As shown in Figure 16, we compare the performance of different layers
of GoogLeNet and different combinations of layers on the Freiburg dataset. The combination of
the Inception3a/3 × 3 and Inception3a/3 × 3_reduce achieves robust and satisfying performance
while maintaining less computational complexity than other combinations. Hence, we concatenate
Inception3a/3 × 3 and Inception3a/3 × 3_reduce together as the holistic descriptor.

It matters that computing substantial distances between 175,616-dimensional descriptors is
an expensive operation and is a bottleneck of the ConvNet-based place recognition. To reduce
the size of the ConvNet descriptors without losing a great accuracy, the redundant and irrelevant
features should be omitted to compress the size of descriptors. We perform a random selection [47]
of features (i.e., randomly choosing a specific set of elements among the descriptors), which only
sacrifices little precision to reduce most of the descriptor size. Our compression proposal is supported
by the satisfactory results displayed in Table 2. Finally, we choose the descriptor with the size of
8192 dimensions as the optimal descriptor.

Table 2. Study about the performance of compressed features. The bold and italic items denote
the optimums.

Size in Bytes F1-Score Percentage Percentage of Speedup for
of Compression Calculating Cosine Distance

175,616 0.8406 0% 0%
131,072 0.8304 25.36% 25.75%
65,536 0.8372 62.68% 36.36%
32,768 0.8338 81.34% 80.31%
16,384 0.8095 90.67% 89.39%
8192 0.8131 95.34% 93.94%
4096 0.7889 97.67% 96.97%
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Figure 16. The performance of different layers and different combinations of layers in GoogLeNet on
the Freiburg dataset. In detail, the Inception3a/3 × 3 (28 × 28 × 128) is most robust against illumination
changes and cross-season changes. The Inception3a/3 × 3_reduce (28 × 28 × 96) and Inception3b/3 ×
3_reduce (28 × 28 × 128) are second best layer for illumination invariance and cross-season invariance,
respectively. The Inception5b/1 × 1 (7 × 7 × 384) and Inception3a/pool_proj (28 × 28 × 32) are best
and second best layer for viewpoint invariance, respectively. The black line denotes the ground truth
matches, and the mulberry line denotes the matching results predicted by Visual Localizer.

4.6. Parameter Tuning of Global Optimization

To achieve the best global optimization performance, the parameters in network flow model need
to be tuned to adequate values. The parameters to be tuned are summarized in Table 3. Quantity of
flow ( f ) denotes the number of matching images retrieved from database images for a query image.
Number of children nodes in graph (k + 1) denotes the number of possible database images for the
next query image. Cost of edges pointing to hidden nodes (c) denotes the threshold of descriptor
distance that are used to refuse the corresponding mismatched images.

Table 3. Parameters tuning in the minimum-cost flow model.

Parameter Denotation

f quantity of flow
k + 1 number of children nodes

c cost of edges pointing to hidden nodes
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Out of the three parameters, we first determine f is 1, which means more than one image could be
retrieved from database for a query image. The other two parameters (k + 1 and c) are determined by
the grid search [48] on Bonn dataset. Different values of the two parameters constitute a grid, where
the parameter combination that achieves highest precision (defined as Equation (1)) is the optimal
parameters. According to the testing on Bonn dataset, the parameter k + 1 does not make a difference
in a large range, hence k + 1 is set to 4. The precisions and recalls using different values of parameter c
are shown in Figure 17, from which we conclude that c = 1.8 is the optimal value. If the parameter
c is too small, the fluid flow is prone to going through the hidden nodes, so that the recall of image
matching is too low. Contrarily, the hidden nodes with too large c result in their invalidity. It is obvious
that localization by the net flow model is superior to single-image matching.
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Figure 17. The precision–recall curve derived by tuning parameter c, and the precision and recall
obtained by single-image matching.

To validate the superiority of network flow in coping with complicated scenarios, we test the
performance of network flow model on a modified dataset, where one-third of images from the start of
database are removed. It is to simulate a sporadically occurring situation that the image to be queried
does not correspond to any database image. As presented in Figure 18, single image matching does not
refuse bad matching results, meanwhile network flow model achieves higher localization precision.
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Figure 18. Performance comparison between: (a) single image matching; and (b) global optimization
with network flow on the modified Bonn dataset. The red trajectory denotes the ground truth, and the
blue points denote visual localization results.
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4.7. Real-World Experiments

To achieve navigational assistance for people with visual impairments, we developed a wearable
assistance system Intoer [49], which is comprised of the multi-modal camera RealSense [50],
a customized portable processor with GNSS module, and a pair of bone-conduction earphones [51],
as shown in Figure 19a. Based on the system, we have previously achieved various assisted utilities,
including traversable area and hazard awareness [52–54], crosswalks, traffic lights detection [55,56], etc.
In this paper, we use the Intoer to capture color images, and the image matching is processed off-line.

(b)(a)

Figure 19. (a) Intoer: the wearable assistive devices for visually impaired people; and (b) visually
impaired volunteers are wearing Intoer to capture images.

Utilizing the off-the-shelf system, we perform the visual localization experiments in the real-world
environments. Five visually impaired volunteers (as shown in Figure 19b) are invited separately to wear
Intoer, which is set to autonomously capture color images when the user traverses a route. The routes
lie in the Yuquan Campus of Zhejiang University (as shown in Figure 20a) and the landscape area of the
West Lake (as shown in Figure 20b), Hangzhou City, China. On those practical routes, the volunteers
walk on the sidewalk and encounter pedestrians or vehicles going along or in the opposite direction.
Besides, illumination changes, season changes and viewpoint changes exist in the real-world images,
which offer the possibility to validate the proposed Visual Localizer in practical environments.

(a) (b)

Figure 20. The trajectory of experiments carried out by visually impaired volunteers in: (a) the Yuquan
Campus of Zhejiang University; and (b) the landscape area of the West Lake.

The Visual Localizer’s robustness against viewpoint changes is validated firstly. For the sake of it,
both the query images and the database images are captured on the same route by a visually impaired
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volunteer in a summer afternoon. The localization results are shown in Figure 21. Because the volunteer
with visual impairments has no concept of viewpoint, query and database images exhibit viewpoint
variations, which are also caused by the movement during visually impaired volunteer’s walking.
From the visual localization results, Visual Localizer is robust against viewpoint changes. It further
confirms the consumption that the concatenation of Inception3a/3 × 3 and Inception3a/3 × 3_reduce
is also viewpoint invariant. With the partial occlusions caused by dynamic objects (e.g., vehicles,
pedestrians, etc.), Visual Localizer successfully matches query images with correct database images,
as shown in Figure 21.

Query 

Images

Database 

Images

Query 

Images

Database 

Images

Query 

Images

Database 

Images

Figure 21. The localization results of a 1000-m trajectory, which is the red route in Figure 20a.
Visual localization is achieved under the circumstances of viewpoint changes.

To validate the robustness against illumination changes and season changes, we invited three
volunteers with visual impairments to travel three different routes in the landscape area of the West
Lake. The database images were captured on a sunny summer day, while the query images are
captured on a rainy winter day. The corresponding visual localization results of the three different
routes are presented in Figure 22, from which it is not hard to find the significant examples of image
matching under illumination changes. Thereby, it demonstrates that Visual Localizer is robust enough
under contrast sunlight intensity. The foliage color changes and vegetation coverage changes appearing
in Figure 22a demonstrate that our approach also addresses the visual localization in the cross-season
conditions. Furthermore, the appearance changes of the outdoor cafe (Figure 22b) also illustrate the
appearance robustness of Visual Localizer. In all of those situations, the visual localization delivers
accurate results, even when there are some partial occlusions caused by dynamic objects in the images.

We also performed an experiment to validate the robustness against route changes. The experiment
results are presented as Supplementary Material Video S1, where the user firstly visit a recorded route,
then the user turn into a new route. When the visually impaired navigator travels into a new route
which is not recorded in the database, the query images are no longer matched with any database
image. Only if the user returns back to the recorded route, the query images are matched with the
corresponding database images again. The localization results under the condition of route changes
illustrate that our approach performs well when the user enters a new place.

In general, our approach is robust against viewpoint changes, illumination changes (dim
light vs. bright daylight), cross-season changes (winter vs. summer) and route changes. Therefore,
Visual Localizer performs well under the visual changes of outdoor assisted navigation.
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Figure 22. The localization results of experiments carried out by three visually impaired volunteers in
the landscape area of the West Lake: (a) the visual localization results of the red route in Figure 20b;
(b) the visual localization results of the yellow route in Figure 20b; and (c) the visual localization results
of the blue route in Figure 20b.

We performed localization experiments to compare the positioning accuracy of our approach
with GNSS-based localization. The route of comparison experiment is shown in Figure 23. The query
images were captured on an afternoon in summer, and the database images were captured on an early
evening in winter. The query sequence are composed of 255 images, and localization results are shown
in Figure 24 and Table 4. Mean error refers to the mean index error between the localization results and
the ground truths. Precision is defined as the percentage of matching pairs with index error less than
5. Visual Localizer and GNSS-based localization retrieve 58 and 255 matched positions respectively.
Despite Visual Localizer has the lower recall of image matching, the positioning error and precision of
Visual Localizer are superior to those of GNSS-based localization.

Table 4. The performance comparison between Visual Localizer and GNSS-based localization. The bold
and italic items denote the optimums.

Visual Localizer GNSS-Based

Mean Error 7.95 24.09
Precision 89.66% 39.22%

Matched Number 58 255
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Figure 23. The trajectory of experiments carried out by a volunteer, traveling from a teaching building
to the gate of the Yuquan Campus of Zhejiang University. When the camera captured color images,
the GNSS module also recorded the longitude and latitude coordinates.

(c)

(b)

(a)

Figure 24. The comparisons of localization results between Visual Localizer and GNSS-based approach:
(a) query images; (b) visual localization results; and (c) GNSS-based localization results. The localization
results denote the matching images along the orange route as shown in Figure 23.

According to Figure 24, Visual Localizer achieves better localization precision than GNSS-based
approach. As shown in the fourth and fifth rows of Figure 24, two query images from different location
are matched with the same wrong database image by GNSS-based localization, which is avoided by
Visual Localizer.

5. Conclusions and Future Work

Aiming to address the problems of viewpoint, appearance and route changes on visual localization,
we propose a novel visual localization system—Visual Localizer.

To achieve robust image representation, different layers derived from five prevailing ConvNets
are evaluated on their robustness against various environmental changes. We find that the robustness
of ConvNet-based descriptor is not positively correlated to the object classification accuracy as well
as the filter size. GoogLeNet has overwhelming advantages against other ConvNets because of best
performance on both appearance invariance and viewpoint invariance as well as modest computational
complexity. Under severe appearance changes, GoogLeNet achieves a precision of more than 60%
and a recall of 100%. Data association graph is utilized to organize database and query images,
and minimum-cost flow problem is addressed to resolve the best localization results. Applying
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global optimization of image matching to Visual Localizer promotes the localization precision under
route changes.

Our preliminary research has validated the reliability of our proposed assistance system—
Intoer—in the application of assisted navigation. Thereby, we utilized the practical images captured by
visually impaired volunteers wearing Intoer to validate the performance of Visual Localizer. The results
of experiments illustrate that the proposed Visual Localizer performs well in the application of assisted
navigation. Currently, image matching is executed off-line. In the future, we plan to achieve effective
on-line image matching and to design audio feedback for Visual Localizer on Intoer.

Visual place recognition over perceptually-changing environments generally falls into two categories:
utilizing feature representations that are robust to perceptual changes, and learning and predicting
appearance changes. In this paper, we have achieved the former task, but there is more work to do beyond
Visual Localizer. Future work involves understanding visual information, autonomously labeling key
places, and recognizing multiple images captured at the same place as one place.

Supplementary Materials: The following is available online at http://www.mdpi.com/1424-8220/18/8/2476/s1,
Video S1: Performance of Visual Localizer on route changes.
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The following abbreviations are used in this manuscript:

ABLE Able for Binary-appearance Loop-closure Evaluation
BoW Bag of Words
ConvNet Convolutional Neural Network
FOV Field Of View
GIS Geographic Information System
GNSS Global Navigation Satellite System
HOG Histogram of Oriented Gradient
LDB Local Difference Binary
MRoI Multiple Regions of Interest
QR Quick Response
RFID Radio Frequency IDentification
SLAM Simultaneous Localization And Mapping
SURF Speeded Up Robust Features
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