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Vincetoxicum versicolor (Bunge) Decne is the original plant species of the Chinese herbal
medicine Cynanchi Atrati Radix et Rhizoma. The lack of information on the transcriptome
and chloroplast genome of V. versicolor hinders its evolutionary and taxonomic studies.
Here, the V. versicolor transcriptome and chloroplast genome were assembled and
functionally annotated. In addition, the comparative chloroplast genome analysis was
conducted between the genera Vincetoxicum and Cynanchum. A total of 49,801
transcripts were generated, and 20,943 unigenes were obtained from V. versicolor.
One thousand thirty-two unigenes from V. versicolor were classified into 73 functional
transcription factor families. The transcription factors bHLH and AP2/ERF were the
most significantly abundant, indicating that they should be analyzed carefully in the
V. versicolor ecological adaptation studies. The chloroplast genomes of Vincetoxicum
and Cynanchum exhibited a typical quadripartite structure with highly conserved gene
order and gene content. They shared an analogous codon bias pattern in which the
codons of protein-coding genes had a preference for A/U endings. The natural selection
pressure predominantly influenced the chloroplast genes. A total of 35 RNA editing sites
were detected in the V. versicolor chloroplast genome by RNA sequencing (RNA-Seq)
data, and one of them restored the start codon in the chloroplast ndhD of V. versicolor.
Phylogenetic trees constructed with protein-coding genes supported the view that
Vincetoxicum and Cynanchum were two distinct genera.

Keywords: Vincetoxicum versicolor (Bunge) Decne, transcriptome, chloroplast genome, comparative analysis,
phylogeny

INTRODUCTION

Apocynaceae is a large family of plants distributed globally, which contains around 4,500 species
in approximately 370 genera (Endress et al., 2014; Fishbein et al., 2018). Vincetoxicum versicolor
(also known as Cynanchum versicolor in Flora of China) belongs to the Apocynaceae family and
is the original plant species of the Chinese herbal medicine Cynanchi Atrati Radix et Rhizoma
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(Chinese Pharmacopoeia Commission, 2015). However, the
genus of this plant has not been unified due to the controversial
phylogenetic relationship between the genera Vincetoxicum and
Cynanchum, which may affect the Cynanchi Atrati Radix et
Rhizoma application in the world. The phylogenetic relationship
between Vincetoxicum and Cynanchum has been controversial
since the first transfer of Vincetoxicum hirundinaria and several
other Eurasian Vincetoxicum species to the genus Cynanchum
by Persoon in 1805 (Persoon, 1805). Some researchers have
suggested that Vincetoxicum should be grouped into the genus
Cynanchum based on the corona structure similarity (Jiang and
Li, 1977; Gilbert et al., 1996). On the other hand, these two
genera were considered to be distinct, and Vincetoxicum was
regarded as an independent genus based on molecular data and
chemical substances (Qiu et al., 1989; Liede-Schumann, 2000).
Besides, the second opinion is supported by studies based on
some regions of the nuclear and chloroplast DNA (Yamashiro
et al., 2004; Fishbein et al., 2018). Although Vincetoxicum is
generally considered an independent genus in Apocynaceae
taxonomy around the world (Goyder et al., 2012; Endress
et al., 2014; Liede-Schumann et al., 2016; Liede-Schumann and
Meve, 2018), the concept of Vincetoxicum as a section of the
genus Cynanchum is still reflected in the taxonomy of modern
flora in China (Feng et al., 2012; Li et al., 2012; Yang J.
et al., 2018). Therefore, more evidence should be provided to
promote the unification of the phylogenetic relationship between
Vincetoxicum and Cynanchum.

Chloroplasts originated from ancient endosymbiotic
cyanobacteria and are active metabolic centers that sustain
life on Earth by converting solar energy into carbohydrates via
the photosynthesis process and oxygen release (Leister, 2003;
Daniell et al., 2016). Chloroplasts carry their own genomes
and genetic systems. The typical angiosperm chloroplast
genome has a quadripartite structure, with a genome size
of 107–218 kb and gene content of 120–130 genes (Daniell
et al., 2016; Kim et al., 2019). The chloroplast genome has
the characteristics of uniparental inheritance, moderate
nucleotide substitution rate, haploid status, and no homologous
recombination (Shaw et al., 2005; Hansen et al., 2007; Yang
et al., 2019b). These features make it a suitable tool for
molecular identification of species and genetic diversity
studies (Zhang et al., 2017; Chen et al., 2018). Moreover,
the entire chloroplast genome contains more informative
sites than chloroplast DNA fragments, which can provide a
higher resolution of the phylogenetic relationship at multiple
taxonomic levels (Yang X.-Y. et al., 2018). The development
of next-generation sequencing technology has led to more
and more angiosperm chloroplast genomes available, making
comparative chloroplast genomics a convenient and efficient
method for phylogenetic and evolutionary studies (Ge et al.,
2018; Gu et al., 2019).

Next-generation sequencing not only greatly improves our
ability to obtain genomic resources in non-model species but
also facilitates the development of the RNA-Seq technique. RNA-
Seq is an efficient technology for large scale transcriptome
investigations, which provides a convenient way to obtain

information from expressed genomic regions quickly and
offers an opportunity to solve comparative transcriptomic-level
problems for non-model organisms (Logacheva et al., 2011;
Zhang et al., 2013). Transcriptome analysis provides an effective
way for novel gene discovery (Emrich et al., 2007) and expression
profile construction (Fox et al., 2014), as well as for molecular
marker development (Zhang et al., 2013) and analysis of adaptive
evolution (Jia et al., 2017). As a non-model species, V. versicolor
lacks transcriptome analysis, delaying molecular studies at the
transcriptional level.

RNA editing, which is identified primarily by the RNA-Seq
technique, is a repair mechanism derived by species in response
to abnormal DNA mutations during evolution. RNA editing is
a post-transcriptional process in which the nucleotide in the
transcript differs from the encoded DNA sequence by nucleotide
insertion, deletion, or conversion (Takenaka et al., 2013). Most
RNA editing events occur in internal codons, resulting in amino-
acid substitutions. However, in some cases, the ACG codon is
restored to the AUG start codon because of the C-to-U RNA
editing, contributing to the conservation of the translation start
signals at the gene level, which is essential for protein synthesis
(Hirose and Sugiura, 1997). This editing-restored start codon
has been reported in the chloroplast transcripts from maize
(rpl2), tobacco (psbL), but especially in the ndhD transcript of
several species, including Arabidopsis, Betula, tobacco, spinach,
and snapdragon (Neckermann et al., 1994; Wang et al., 2018).

Here, we de novo assembled the transcriptome and chloroplast
genome of V. versicolor and performed a comparative chloroplast
genome analysis between species of the genera Vincetoxicum and
Cynanchum. The aims of this study were (1) to characterize the
transcriptome and chloroplast genome of V. versicolor, (2) to
explore the V. versicolor molecular evolution, and (3) to provide
insights into the phylogenetic relationship between the genera
Vincetoxicum and Cynanchum.

MATERIALS AND METHODS

Plant Materials Collection and DNA and
RNA Extraction
The young fresh leaves of a single plant of V. versicolor
were collected in August 2019 from Tianjin University of
Traditional Chinese Medicine (117.06◦E, 38.96◦N), Tianjin
City, China. The voucher specimens were deposited at
Tianjin State Key Laboratory of Modern Chinese Medicine,
Tianjin University of Traditional Chinese Medicine, Tianjin,
China (voucher number 2019bsbq). The collected leaves
were snap-frozen in liquid nitrogen and then stored at
-80◦C until DNA and RNA extraction. The total DNA
was extracted using the extract Plant DNA kit (QIAGEN,
Germany) following the manufacturer’s instructions. Total
RNA was extracted using the QIAGEN RNeasy Plant Mini
Kit (QIAGEN, Germany) following the manufacturer’s
instructions. The purity and concentration of DNA and RNA
were checked using NanoPhotometer R©spectrophotometer
(IMPLEN, CA, United States) and Qubit R© DNA Assay
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Kit in Qubit R© 2.0 Fluorometer (Life Technologies, CA,
United States), respectively.

DNA and RNA Sequencing, Assembly,
and Annotation of Chloroplast Genome
and Transcriptome
The DNA-Seq library with an average insert size of 350 bp
was constructed using the Truseq Nano DNA HT Sample
Preparation Kit (Illumina United States). The strand-specific
RNA-Seq library was constructed using the protocol described by
Zhong et al. (2011). Then, the RNA-Seq library was sequenced
on the Illumina HiSeqTM 2,500 platform. Subsequently,
clean DNA and RNA data were obtained by removing
adaptors and low-quality reads from the raw data. The
V. versicolor chloroplast genome was de novo assembled using
NOVOPlasty3.7.2 (Dierckxsens et al., 2017). To validate the
reads coverage of the assembled chloroplast genome, clean data
were mapped to the V. versicolor chloroplast genome using
bowtie 2 (Langmead and Salzberg, 2012), and the average
reads coverage was 2,418×. The V. versicolor chloroplast
genome was annotated using GeSeq (Tillich et al., 2017),
coupled with manual corrections for the start and stop
codons. Finally, the V. versicolor chloroplast genome was
deposited in the National Center for Biotechnology Information
(NCBI) GenBank under accession number MT558564. For
the transcriptome assembly, high-quality RNA-Seq data were
de novo assembled into transcripts using Trinity (Grabherr
et al., 2011) with min_kmer_cov set to two and other
parameters set to default. The trinity-obtained contigs were
then linked into transcripts. To remove redundant transcripts
and obtain the primary representative of each gene locus,
only the longest transcript in each cluster was selected as the
unigene for subsequent analysis. Finally, the obtained unigenes
were annotated using a BLAST search against the following
databases, namely KOG (euKaryotic Ortholog Groups), GO
(Gene Ontology), KO (KEGG Ortholog), Swiss-Prot (a manually
annotated and reviewed protein sequence database), Nr (NCBI
non-redundant protein sequences), Nt (NCBI non-redundant
nucleotide sequences), and Pfam (protein family).

Annotation of Functional Genes,
Prediction of Biochemical Pathways, and
Detection of Transcription Factors
Gene Ontology functional analysis was implemented using
blast2go tool (Götz et al., 2008). The KAAS software (Moriya
et al., 2007) was used to predict the biochemical pathways
of the V. versicolor unigenes based on the KO database. The
transcription factors were detected using the iTAK program
(Zheng et al., 2016).

Identification of RNA Editing Sites
RNA-Seq reads were mapped to the chloroplast genome
of V. versicolor using bowtie 2 (Langmead and Salzberg,
2012). Then, samtools was applied to call single nucleotide

polymorphisms to recognize editing sites in the V. versicolor
chloroplast genome.

Codon Usage Calculation
The number of codons and the relative synonymous codon
usage (RSCU) were calculated using Mega X (Kumar et al.,
2018). The effective number of codons (ENc) values against
GC content in the third position of synonymously variable
codons (GC3s) values of protein-coding genes of chloroplast
genome were calculated using CodonW v1.4.4 (Peden, 1999).
Then, the relationships between ENc and GC3s were analyzed
using the R script.

Phylogenetic Analyses
A total of 20 chloroplast genomes (Supplementary Table 1) of
18 Apocynaceae species and two Gentianaceae species available
in GenBank were collected to reconstruct phylogenetic trees.
Besides, another Vincetoxicum species (V. rossicum) was added
to phylogenetic analysis. Although the full-length chloroplast
genome of V. rossicum was not available, its raw reads were
present in NCBI Sequence Read Archive under accession number
SRR934046 (Straub et al., 2013). So, a draft chloroplast genome
of V. rossicum was assembled using NOVOPlasty3.7.2. The
draft chloroplast genome was incomplete and contained many
degenerate bases in the intergenic regions, but its protein-
coding genes were complete and could be used for phylogenetic
analysis. The protein-coding genes from 21 chloroplast genomes
were extracted, aligned separately, and recombined to construct
a matrix using PhyloSuite_v1.1.15 (Zhang et al., 2020). The
generated matrix was used to conduct the Bayesian inference
(BI) and Maximum likelihood (ML) phylogenies. The BI
phylogenies were inferred using MrBayes 3.2.6 (Ronquist et al.,
2012) under JC + I + G model, which was determined
from the ModelFinder (Kalyaanamoorthy et al., 2017). The ML
phylogenies were inferred using IQ-TREE (Nguyen et al., 2015)
under an edge-linked partition model for 5,000 ultrafast (Minh
et al., 2013) bootstraps, as well as the Shimodaira–Hasegawa-like
approximate likelihood-ratio test (Guindon et al., 2010).

RESULTS AND DISCUSSION

Transcriptome Features
Illumina pair-end sequencing produced 52,502,062 raw reads
for V. versicolor, and 51,764,112 clean reads were obtained
after removing adaptors and low-quality data (Table 1). The
base quality value Q20 and Q30 reached 97.51 and 93.01%,
respectively, which indicated that the produced data could
be used for further analysis. A total of 49,801 transcripts
were generated in V. versicolor, of which 20,943 unigenes
(N50 = 2,128 bp, average length = 1,491 bp) were identified.
Most transcripts and unigenes were 1,001–2,000 bp, and the
number of transcripts and unigenes over 2,000 bp were 14,787
and 5,443, respectively (Supplementary Figure 1). There were
16,895 unigenes (80.60%) for V. versicolor with at least one
significant match to the databases discussed earlier and 3,177
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TABLE 1 | Summary of statistics for the transcriptomes of V. versicolor.

Assembly results Annotation results

Type Number Database Number
(percentage)

Total number of raw
reads

52,502,062 KOG 5,344 (25.52%)

Total number of
clean reads

51,764,112 GO 12,369 (59.06%)

Q20 of clean data
(%)

97.51 KO 6,705 (32.02%)

Q30 of clean data
(%)

93.01 Swiss-Prot 13,334 (63.67%)

Total number of
transcripts

49,801 NR 16,025 (76.52%)

Total number of
unigenes

20,943 NT 11,680 (55.77%)

Min length of
unigenes (bp)

301 PFAM 12,369 (59.06%)

Max length of
unigenes (bp)

15,605 At least one
database

16,895 (80.60%)

N50 of unigenes
(bp)

2,128 All 3,177 (15.17%)

Mean length of
unigenes (bp)

1,491

unigenes (15.17%) with all significant matches to the databases
mentioned earlier (Table 1).

Gene Ontology and Biochemical
Pathways Prediction
The GO concept aims to use a common vocabulary to
annotate homologous genes and protein sequences in various

organisms in a flexible and dynamic way. Thus, scientists
can query and retrieve genes and protein sequences based on
their shared biology (Ashburner et al., 2000). The functional
classification of unigenes in the GO database was assigned into
three categories: biological processes, cellular components, and
molecular functions (Figure 1). A total of 12,369 unigenes were
assigned to the GO classification groups. In the “Biological
processes” group, “Cellular process” (7,374) was the most
abundant term. Regarding “Cellular components,” “Cell” (4,159),
and “Cell part” (4,159) were the dominant items. In the
“Molecular functions” category, “Binding” (7,101) was the
largest cluster. Interestingly, the most abundant terms in the
corresponding GO categories in V. versicolor were highly similar
to other angiosperm transcriptomes, such as Raphanus (Mei et al.,
2016), Glycyrrhiza (Jiang et al., 2020), and Dipteronia (Zhou et al.,
2016). These data suggested that these gene groups are highly
expressed and have functional importance in angiosperms.

The KO database is an integrated database resource composed
of genes, protein, small molecules, reactions, pathways, diseases,
drugs, organisms, and viruses, as well as more conceptual
objects, aiming to assign functional meanings to genes and
genomes, both at the molecular and higher levels (Kanehisa
et al., 2017). For the biochemical pathways prediction in the
KO database, a total of 6,705 unigenes were assigned to
the KO pathways (Figure 2). The cluster for “Translation”
(799) represented the largest group, followed by “Carbohydrate
metabolism” (542) and “Folding, sorting and degradation” (477),
which indicated that these pathways might be crucial for the
V. versicolor development.

Detection of Transcription Factors
Transcription factors play pivotal roles in complex biological
processes under multiple environmental signals by regulating

FIGURE 1 | Functional classification of unigenes of V. versicolor in GO database. GO terms were annotated according to three main categories “biological
processes,” “cellular components,” and “molecular functions.”
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FIGURE 2 | Annotation of unigenes of V. versicolor in KO database. “A” presents “Cellular processes,” “B” presents “Environmental information processing,” “C”
presents “Genetic information processing,” “D” presents “Metabolism,” and “E” presents “Organismal Systems.”

TABLE 2 | Transcription factor families and corresponding unigenes number identified in V. versicolor.

Family Count Family Count Family Count Family Count Family Count

Alfin-like 4 CPP 1 HRT 1 NF 24 STAT 1

AP2/ERF 56 CSD 4 HSF 13 OFP 5 SWI/SNF 17

ARID 8 DBB 2 IWS1 5 Others 36 TAZ 5

AUX/IAA 20 DBP 1 Jumonji 14 PHD 25 TCP 16

B3 27 DDT 6 LIM 2 PLATZ 3 Tify 7

BBR-BPC 5 E2F-DP 5 LOB 9 Pseudo ARR-B 4 TRAF 16

BES1 7 EIL 2 LUG 2 RB 1 Trihelix 22

bHLH 57 FAR1 20 MADS 17 Rcd1-like 2 TUB 9

BSD 1 GARP 25 MBF1 2 RWP-RK 5 ULT 1

bZIP 35 GeBP 6 MED6 1 S1Fa-like 2 VOZ 1

C2C2 46 GNAT 22 MED7 1 SBP 12 Whirly 2

C2H2 46 GRAS 29 mTERF 24 SET 24 WRKY 13

C3H 38 GRF 1 MYB 31 SNF2 26 zf-HD 7

CAMTA 2 HB 37 MYB-related 46 SOH1 1

Coactivator p15 3 HMG 6 NAC 28 SRS 1

the gene transcription through binding to specific DNA
sequences in the target gene promoters (Honys and Twell,
2004). Transcription factors are generally classified into different

families based on their DNA-binding domains (Jin et al., 2014).
A total of 1,032 unigenes V. versicolor were classified into
73 functional families (Table 2). Among these families, bHLH
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transcription factors were the most abundant (57), followed
by AP2/ERF (56). It is worth paying attention to these two
transcription factor families in the ecological adaptation studies
of V. versicolor, as they play essential roles in resistance to abiotic
stress in plants (Chinnusamy et al., 2003; Yang et al., 2016;
Tripathi et al., 2017).

Chloroplast Genome Features
The complete chloroplast genome of V. versicolor was 159,907 bp
in length, including a pair of 24,971-bp IRs separated by 19,456-
bp SSC and 90,509-bp LSC regions (Figure 3). This quadripartite
structure was a typical feature of the chloroplast genome of

most angiosperms (Yu et al., 2019, 2020; Tan et al., 2020). The
AT content of the V. versicolor chloroplast genome was 62.2%,
whereas the AT contents of the LSC, SSC, and IR regions were
63.9, 68.8, and 56.8%, respectively. These data showed that the
chloroplast genome exhibited an obvious AT preference and such
preference was most evident in the SSC region. The chloroplast
genome of V. versicolor contained 133 genes, of which 88 were
protein-coding genes, 37 were tRNA genes, and 8 were rRNA
genes (Table 3). Among these genes, 19 were duplicated in the IR
regions, including eight protein-coding genes (rpl2, rpl23, ycf2,
ndhB, rps7, rps12, ycf15, and ycf1), seven tRNA genes (trnR-
ACG, trnL-CAA, trnV-GAC, trnI-CAU, trnI-GAU, trnA-UGC,

FIGURE 3 | Chloroplast genome map of V. versicolor. Genes inside the circle are transcribed clockwise, whereas those on the outside are transcribed
counterclockwise. Genes belonging to different functional groups are color-coded. Darker gray in the inner circle represents the GC content, whereas the lighter gray
represents the AT content.
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TABLE 3 | Summary statistics of chloroplast genomes of Vincetoxicum and
Cynanthum species.

Genome
features

V. versicolor V. shaanxiense C. wilfordii C. auriculatum

Genome size
(bp)

159,907 160,308 161,241 160,840

LSC size (bp) 90,509 91,335 91,995 91,973

SSC size (bp) 19,456 19,185 19,930 19,667

IR size (bp) 24,971 24,894 24,658 24,600

Number of
genes

133 133 133 133

Protein genes
[unique]

88 (80) 88 (80) 88 (80) 88 (80)

tRNA genes
[unique]

37 (30) 37 (30) 37 (30) 37 (30)

rRNA genes
[unique]

8 (4) 8 (4) 8 (4) 8 (4)

Duplicated
genes in IRs

19 19 19 19

AT content (%) 62.2 62.2 62.2 62.2

AT content in
LSC (%)

63.9 63.9 63.9 63.9

AT content in
SSC (%)

68.2 68.1 68.0 68.0

AT content in
IRs (%)

56.8 56.7 56.8 56.8

and trnN-GUU), and four rRNA genes (rrn23, rrn16, rrn5, and
rrn4.5). There were 21 genes with introns, and 19 of which (atpF,
petB, petD, ndhA, ndhB × 2, rpoC1, rps16, rpl16, rpl2 × 2,
trnK-UUU, trnL-UAA, trnG-GCC, trnV-UAC, trnA-UGC × 2,
trnI-GAU × 2) contained one intron, while two genes (clpP,
ycf3) contained two introns. Although the chloroplast genome
sizes of V. versicolor, Vincetoxicum shaanxiense (NCBI accession
number MH210646), Cynanchum wilfordii (NC_029459), and
Cynanchum auriculatum (NC_029460) ranged from 159,907
to 161,241 bp, the gene order, gene content, intron content,
and AT content of these genomes were similar (Table 3 and
Supplementary Table 2).

Detection of Chloroplast RNA Editing
Sites
The RNA editing sites in the V. versicolor chloroplast genome
were identified based on RNA-Seq data. The type and position
of the editing sites are shown in Table 4. All RNA editing sites
identified were C-to-U. A total of 35 RNA editing sites were
detected in the V. versicolor chloroplast genome, of which 33
were located in the protein-coding region, and the remaining
two were located in the tRNA region (trnN-GUU). All identified
RNA editing sites occurred at the first and second positions of the
codon, resulting in amino acid changes at the transcription level.
Among these changes, the change from serine (S) to leucine (L)
was the most abundant.

We found an interesting phenomenon when checking
the annotated genes, in which the chloroplast ndhD of
V. versicolor did not seem to have a start codon at the
genome level (the sequence was validated by a polymerase

TABLE 4 | RNA editing sites in the V. versicolor chloroplast genome detected by
RNA-Seq data.

Gene
name

Genome
position

Gene
position

Codon
position

Editing
type

Codon
change

Amino
acid

change

matK 2,257 1,195 1 C => U CGG => UGG R => W

atpA 10,941 914 2 C => U UCA => UUA S => L

11,064 791 2 C => U CCC => CUC P => L

11,082 773 2 C => U UCA => UUA S => L

atpI 15,016 620 2 C => U UCA => UUA S => L

rps2 16,340 248 2 C => U UCA => UUA S => L

16,454 134 2 C => U ACA => AUA T => I

rpoC2 21,942 2,840 2 C => U UCU => UUU S => F

rpoB 28,538 2,426 2 C => U UCA => UUA S => L

30,398 566 2 C => U UCG => UUG S => L

30,413 551 2 C => U UCA => UUA S => L

30,491 473 2 C => U UCA => UUA S => L

rps14 42,255 149 2 C => U CCA => CUA P => L

42,324 80 2 C => U UCA => UUA S => L

accD 64,582 1,214 2 C => U UCG => UUG S => L

psaI 65,640 71 2 C => U UCU => UUU S => F

65,645 76 1 C => U CAU => UAU H => Y

psbE 70,280 214 1 C => U CCU => UCU P => S

petB 82,349 611 2 C => U CCA => CUA P => L

rpl23 92,256 71 2 C => U UCU => UUU S => L

92,274 89 2 C => U UCA => UUA S => F

trnN-
GUU

113,909 39 / C => U / /

ndhF 117,658 290 2 C => U UCA => UUA S => L

ndhD 121,200 1,490 2 C => U UCU => UUU S => F

121,380 1,310 2 C => U UCA => UUA S => L

121,392 1,298 2 C => U UCA => UUA S => L

121,812 878 2 C => U UCA => UUA S => L

122,016 674 2 C => U UCG => UUG S => L

122,091 599 2 C => U UCA => UUA S => L

122,688 2 2 C => U ACG => AUG T => M

ndhG 123,911 347 2 C => U CCA => CUA P => L

ndhA 125,380 1,079 2 C => U UCC => UUC S => F

trnN-
GUU

136,508 39 / C => U / /

rpl23 158,143 71 2 C => U UCU => UUU S => L

158,161 89 2 C => U UCA => UUA S => F

“Genome position,” “gene position,” and “codon position” refer to the positions of
RNA editing in the chloroplast genome, genes, and codons, respectively.

chain reaction and Sanger sequencing data). A further
comparison of the chloroplast ndhD between species of
the genera Vincetoxicum and Cynanchum showed that only
the C. auriculatum ndhD started with the standard AUG.
In contrast, the ndhD of V. versicolor, V. shaanxiense,
and C. wilfordii exhibited ACG instead of AUG at the
corresponding codon position (Figure 4). Therefore, we
speculated that RNA editing restored the start codon AUG
in V. versicolor, V. shaanxiense, and C. wilfordii, as observed
in Arabidopsis, tobacco, spinach, Betula, and snapdragon
(Neckermann et al., 1994; Wang et al., 2018). Examination
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FIGURE 4 | Comparison of chloroplast ndhD in Vincetoxicum and Cynanchum species. Red dotted box represents the amino acid changes at the transcription level.
“Start” represents the start codon, whereas “T,” “S,” “L,” and “F” represent threonine, serine, leucine, and phenylalanine, respectively.

FIGURE 5 | ENc plotted against GC3s based on protein-coding genes of chloroplast genomes of Vincetoxicum and Cynanchum species. (A) V. versicolor;
(B) V. shaanxiense; (C) C. wilfordii; (D) C. auriculatum.

of V. versicolor transcripts revealed seven RNA editing sites
in ndhD, one of which appeared on the ndhD first codon,
causing the codon change from ACG to AUG (this editing
site was validated by a reverse transcription-polymerase chain

reaction, Supplementary Figure 2). This confirmation of the
editing-restored ndhD start codon in V. versicolor strongly
supported our hypothesis despite lacking the transcripts from
the other two species.
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FIGURE 6 | ML and BI phylogenetic trees of Apocynaceae based on 88 protein-coding genes in the chloroplast genome. Numbers below the lines represented ML
bootstrap proportions and BI posterior probabilities. Halenia corniculata and Swertia leducii were set as the outgroups. (A) ML tree; (B) BI tree.
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To further verify whether the editing-restored ndhD start
codon was a common phenomenon in Apocynaceae, the ndhD of
17 Apocynaceae species was compared (Supplementary Table 3).
The results showed that almost all of the examined Apocynaceae
species exhibited ACG in the first ndhD codon (except for
C. auriculatum), suggesting that the editing-restored ndhD start
codon was prevalent in Apocynaceae. This kind of editing-
restored ndhD start codon had also been reported in other
angiosperms, especially in dicots (López-Serrano et al., 2001;
Tsudzuki et al., 2001). In Apocynaceae, only C. auriculatum
showed the appropriate AUG start codon in ndhD, suggesting
that the mutation in this species corrected the start codon of
ndhD at the genomic level after the interspecific differentiation
in Cynanchum, as implied by previous studies on Liliaceae and
Aloaceae (López-Serrano et al., 2001).

Codon Usage Analyses
As an important evolutionary feature, the codon usage pattern
has been widely investigated in plant chloroplast genomes (Gao
et al., 2018; Somaratne et al., 2019; Yang et al., 2019a). To
explore the codon usage pattern in the chloroplast genomes
of the Vincetoxicum and Cynanchum species, we calculated the
number of codons and RSCU of protein-coding genes in the four
chloroplast genomes using Mega X (Supplementary Table 4).
The 88 shared protein-coding genes were encoded by 26729,
26671, 26716, and 26586 codons in the chloroplast genomes of
V. versicolor, V. shaanxiense, C. wilfordii, and C. auriculatum,
respectively. AAA encoding lysine was the most commonly
used codon in the chloroplast genome of V. versicolor, whereas
AUU encoding isoleucine was the most abundant codon in
the chloroplast genomes of V. shaanxiense, C. wilfordii, and
C. auriculatum. In the four chloroplast genomes, the A/U content
in the third codon position was 68.70–69.11%, showing the
preference for A/U-ending codons. Codon bias contributes to
the efficiency of gene expression and, therefore, is generated and
maintained by selection pressure (Hershberg and Petrov, 2008).
The bias toward A/U in the third codon position is commonly
observed in the angiosperm chloroplast genomes (Cui et al., 2019;
Mehmood et al., 2020). This reflects the strong selection pressure
that affects the codon usage of the chloroplast genome, thus
regulating the chloroplast gene expressions. Additionally, except
for UUG, all preferred synonymous codons (RSCU > 1) ended
with A/U. The usage of the initial codon AUG and tryptophan
UGG had no bias (RSCU = 1), as observed in other angiosperms
(Li et al., 2019).

The plot of the ENc values against the GC3 values is a
useful indicator to explore the factors that affect the codon
usage. The predicted values are in the expected curve when
the codon usage of a gene is constrained only by the G + C
mutation bias. Moreover, the predicted values are much lower
than the expected curve when natural selection played a
major role in optimizing codon usage bias (Wright, 1990).
The four chloroplast genomes shared the analogous codon
bias pattern (Figure 5). A small number of protein-coding
genes followed the standard curve, suggesting that the codon
bias of these genes was caused mainly by the nucleotide
composition bias in the third codon position. In particular,

more than half of the genes were below the curve, indicating
that natural selection predominantly influenced these genes. The
photosynthesis-related genes represent most of them, revealing
their importance so that strong selection pressure is necessary
to keep these genes conserved. However, not all photosynthesis-
related genes were below the curve. These photosynthesis-related
genes exhibited discrete distribution, which implies that other
factors such as gene expression level can also affect codon bias
(Hershberg and Petrov, 2008).

Phylogenetic Analysis
Complete chloroplast genomes can provide abundant genetic
information for understanding the phylogenetic relationships
at various taxonomic levels (Huang et al., 2019; Yang et al.,
2019b). To explore the phylogenetic relationship between the
genera Vincetoxicum and Cynanchum in the Apocynaceae
family, the phylogenetic analysis was conducted based on
protein-coding genes of chloroplast genomes of 19 Apocynaceae
species (Figure 6). ML and BI trees had a highly similar
typology at most branches, except that the position of
Vincetoxicum hainanense between ML and BI trees was
inconsistent. In the ML and BI trees, four Vincetoxicum
species (V. versicolor, V. shaanxiense, V. hainanense, and
V. rossicum) were clustered into a monophyletic branch
(bootstrap proportions = 100, posterior probabilities = 1),
whereas two Cynanchum species formed another monophyletic
branch (bootstrap proportions = 100, posterior probabilities = 1).
Phylogeny between Vincetoxicum and Cynanchum was described
as {Cynanchum + [Vincetoxicum + (Asclepias + Calotropis)]},
which strongly supports the previous view (Liede-Schumann,
2000; Yamashiro et al., 2004; Alessandro et al., 2007) that
there was no close phylogenetic relationship between the genera
Vincetoxicum and Cynanchum.

CONCLUSION

This study was the first effort to characterize the transcriptome
and chloroplast genome of V. versicolor. A total of 49,801
transcripts were generated, and 20,943 unigenes were obtained
from V. versicolor. The GO classification showed that “Cellular
process,” “Cell,” “Cell part,” and “Binding” were the most
abundant terms in the corresponding categories. KO pathway
prediction indicated that the “Translation” cluster represented
the largest group. A total of 1,032 unigenes from V. versicolor
were classified into 73 functional transcription factor families.
The bHLH and AP2/ERF transcription factors were significantly
abundant, suggesting that they should be carefully evaluated in
the V. versicolor ecological adaptation studies. The comparative
analysis showed that the Vincetoxicum and Cynanchum
chloroplast genomes were highly conserved in terms of gene
order, gene content, and AT content. They shared an analogous
codon bias pattern in which their protein-coding genes exhibited
a preference for A/U-ending codons. More than half of the
chloroplast genes were predominantly influenced by natural
selection pressure, and photosynthesis-related genes accounted
for most of them. The RNA-Seq data revealed 35 editing sites
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in the chloroplast genome of V. versicolor, and one of which
restored the ndhD start codon in V. versicolor. Phylogenetic
analysis based on ML and BI trees strongly supported the view
that Vincetoxicum and Cynanchum were two distinct genera.
Thus, Vincetoxicum should be regarded as an independent genus
in the Apocynaceae family. Overall, this study provided valuable
insights into the evolution and phylogeny of V. versicolor.
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