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Background. Despite increasing understanding of m6A-related lncRNAs in lung cancer, the role of m6A-related lncRNAs in the
prognosis and treatment of lung squamous cell carcinoma is poorly understood to date. +us, the current study aims to elucidate
its role and build a model to predict the prognosis of LUSC patients. Materials and Methods. +e data of the current study were
accessed from the TCGA database. Pearson correlation analysis was performed to identify lncRNAs correlated to m6A. Next, an
m6A-related lncRNAs risk model was built using a single factor, least absolute association, selection operator, and multivariate
Cox regression analysis. Results. +e relevance between 23 m6A genes and 14,056 lncRNAs is shown by Pearson correlation
analysis by Sankey diagram. Multivariate Cox regression analysis determined that 11 m6A-lncRNAs show predictive potential in
prognosis, which is confirmed by the consistency index, Kaplan–Meier analysis, principal component analysis, and ROC curve.
Additionally, the immune analysis showed that the enrichment of immune cells, major histocompatibility complexmolecules, and
immune checkpoints in the high and low-risk subgroups were markedly disparate, with the high-risk group showing a stronger
immune escape ability and a worse response to immunotherapy. Conclusion. In conclusion, the risk model based on m6A-related
lncRNAs showed great promise in predicting the prognosis and the efficacy of immunotherapy.

1. Introduction

Lung cancer has long been the most fatal and the second
most common malignancy globally [1]. LUSC accounts for
35% of nonsmall cell lung cancer (NSCLC) cases and shows
unique epidemiological, clinicopathological, and molecular
characteristics. For instance, it is closely related to smoking,
low EGFR mutation rate, and low ALK rearrangement rate,
leading to a poor targeted therapy outcome [2]. However, in
recent years, as tumor immunotherapy strategies continue to
improve, it has been reported that immunotherapy could be
effective in LUSC, regardless of the PD-L1 expression and
TMB levels [3–7]. At present, with the advent of more and
more antitumor drugs, methods to improve the effect of
antitumor drugs, especially immunotherapy, have also

gratifying results, such as using nanotechnology as a carrier
[8–12]. +erefore, identifying biomarkers that could accu-
rately predict patient prognosis and efficacy of immuno-
therapy is urgently needed.

In eukaryotic cells, N6-methyladenosine (m6A), which
participates in RNA biogenesis and function, is the most
abundant RNA modification. Importantly, it mediates the
modification of noncoding RNA (ncRNA) through various
biological components [13]. At the same time, noncoding
RNAs can reversely affect tumor progression and metastasis
by regulating the m6A modification of mRNAs [13]. For
example, FOXM1-ASlncRNA transcribed from the anti-
sense strand of the FOXM1 gene can promote the process of
tumorigenesis of GSCs by promoting ALKBH5 (an m6A
erasure element) to remove m6A [14]. In addition, lncRNA
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targeting the reduction of GATA3 expression by inducing
pre-mRNAKIAA1429-mediated m6A modification is
needed for liver cancer cell development [15]. LncRNA
Gas5-AS1 interacting with Gas5 promotes the ALKBH5-
mediated m6A demethylation process, resulting in the ex-
pression of the tumor suppressor GAS5 and thus impeding
the division and invasion of cervical cancer cells [16]. Taken
together, m6A and lncRNA are highly correlated and might
affect tumor growth and metastasis through their in-
teraction. Additionally, m6A modification is a kind of epi-
genetic behavior tightly related to lung cancer and the m6A
regulatory factor gene has a significant value in predicting
prognosis for LUSC [17, 18]. Specifically, lncRNA-ATB
might influence LUSC progression by controlling the
microRNA-590-5p/NF-90 axis [19]. Similarly, some
lncRNAs are underlying factors for predicting the prognosis
in LUSC [20]. Nevertheless, the role of m6A-lncRNA in
LUSC remains elusive.

+erefore, our study aims to explore whether m6A-
lncRNAs could play an important predictive role in LUSC
and to find potential markers of immunotherapy through
immune-related analysis for screening large patient pop-
ulations. In addition, we have also identified candidate drugs
related to immunotherapy with significant differences in
IC50 under this model.

2. Materials and Methods

2.1. Transcriptome and Clinical Data Acquisition.
VarScan software was used to obtain the clinical information
(gender, age, TNM stage, survival status, and survival time)
and gene expression profile data of 505 patients with LUSC
from the TCGA database.

2.2. Screening of m6A-Related lncRNAs. +e expression
matrix of 23 m6A-related genes was screened from the
TCGA database [21]. Pearson pertinence analysis was ap-
plied to identify lncRNAs of interest, and a total of 2350
lncRNAs related to m6A were subsequently selected (|
Pearson R|> 0.4 and p< 0.001).

2.3. Establishment of the Risk Model. +e entire clinical
dataset extracted from TCGA was stochastically split into
two groups (training subgroup and testing subgroup). +e
baseline characteristics (gender, age, stage, and TNM stage)
of the two subgroups showed no significant differences
(p> 0.05). A risk model was then constructed using the
training subgroup and verified using the testing and entire
subgroups.

To classify the risk level, we used 11 m6A-related
lncRNAs that adequately made contact with OS to score
the risk of patients of the training set. Screening of m6A-
related lncRNAs involved univariate Cox regression analysis
as well as LASSO-penalized Cox analysis (using R language
package GLMNET) and multivariate Cox ratio hazard re-
gression analysis [22–24]. Risk score�Expr (lncRNA1)×

Coef (lncRNA1) + ...... + Expr (lncRNAn)× Coef
(lncRNAn) [23].

2.4. Accuracy Testing of 3is Model in Predicting Prognosis.
We test the accuracy of the model by drawing C-index and
receiver operating characteristic curve with the R package
“timeROC.” [22] 1, 3, and 5 years OS was predicted with the
scores acquired by scoring factors that affected prognosis
(age, gender, stage, TNM stage, and risk score). We used the
R language package “regplot” to draw the alignment dia-
gram [25].

2.5. IndependenceTestof theRiskModel. To examine whether
risk scores could be used as prognosis predictors like other
clinical characteristics, univariate Cox and multivariate Cox
analyses of the entire set of samples were performed [26].

2.6. PCA Analysis. PCA analysis was performed on the
entire gene expression profile, 23 m6A-related genes,
2350 m6A-related lncRNAs, and the risk model to identify
the sample difference and reduce high-dimensional data.
+e R language packages “scatterplot3d” and “limma” were
used, respectively [27].

2.7. Immune Function Analysis. First, the gene expression
discrepancy between the high-risk group and the low-risk
group in the entire dataset with the help of the R language
package “limma” was analyzed. Next, the clustering con-
dition of genes that expressed discrepantly was observed by
conducting GO analysis using the R package “clusterPro-
filer” to detect enrichment in different biological processes.
[21] +e critical value was 0.05. A p value less than the
threshold revealed which GO terms were markedly clustered
[26, 28].

2.8. Immunotherapy and Potential Drug Screening Analysis.
+e tumor immune dysfunction and rejection score (TIDE)
is a calculation framework designed by Peng Jianget al. to
integrate different tumor escape mechanisms. +e effective
samples and TIDE scores were obtained from https://tide.
dfci.harvard.edu/ [22]. To explore the potential of thera-
peutic drugs, the IC50 of the compound obtained from the
GDSC website in LUSC patients was predicted using the R
language package “pRophetic” [21].

3. Results

3.1. Extracting m6A-Related lncRNA from LUSC Patients.
We extracted 23 m6A genes and 14056 lncRNAs. LncRNAs
significantly related to one or more 23 m6A genes were
termedm6A-related lncRNAs. 2350 lncRNAs related to m6A
were obtained, and a Sankey diagram was drawn to observe
the potential association between m6A genes and lncRNAs
(Figure 1(a)).

First, univariate Cox regression analysis was exerted to
screen m6A-related lncRNAs that have a significant corre-
lation with overall survival (Figure S1). Lasso-Cox regression
analysis was then applied to accurately and effectively
identify predictive markers based on the LASSO-penalized
regression model to identify lncRNAs related to overall
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survival according to the smallest lambda value. +e selected
m6A-related lncRNAs (n� 16) were incorporated into
multivariate regression analysis (Figures 1(b) and 1(c)).

Finally, 11 m6A-lncRNAs independently related to OS
were used to construct the risk models (Table 1). Figure 2(a)
illustrates the correlation between the m6A genes and
lncRNAs used for model construction.

To assess the potential prognostic value of these m6A-
related lncRNAs, 495 patients obtained from the TCGA
database were stochastically separated into training and
testing groups (Table 2). +e training group was used to
establish the model and predict its accuracy, while the

validation group and the whole dataset were used to verify
the model. Based on the median value of the risk score of
each group, the LUSC samples were split into high and low-
risk subgroups, and K-M survival curves were drawn
(Figures 2(b)–2(d)). Next, we analyzed the distribution of
risk levels in each group and displayed the status of patients
in each subgroup via a dot chart. Finally, a heatmap was
generated to visualize the expression patterns of the 11
lncRNAs in two subgroups (Figures 3(a)–3(i)).

+e results of the training set analysis suggested that
patients in the high-risk group had lower overall survival
rates than the low-risk group (p< 0.01). Similar results were
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Figure 1: Construction of the riskmodel based onm6A-related lncRNAs for LUSC patients. (a) Sankey diagrams of 23m6A genes andm6A-
related lncRNAs. (b)-(c) Least absolute shrinkage and selection operator (LASSO) analysis of 16 m6A-related lncRNAs that affected
prognostic. Establishment of the m6A-related lncRNAs risk model.
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Table 1: 11 m6A-related lncRNAs that established the risk model.

Id Coefficient Hazard ratio
AC008734.1 1.651695304 3.126981553
AL157838.1 0.428749482 1.358522989
AP001189.3 0.288440222 1.492333973
GRHL3-AS1 −0.443479624 0.524775133
AC010422.4 −1.063521258 0.287925081
AP001347.1 0.427439556 1.606430239
AL731577.2 0.500702103 1.734871772
AC254562.3 −0.392242562 0.695193798
L3MBTL2-AS1 −0.126364666 0.843723126
DSCR9 0.133435626 1.138092172
LINC02332 −0.695292467 0.387123601
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Figure 2: Correlational heatmap and Kaplan–Meier survival analysis. (a) Heatmap for the correlations between 23 m6A genes and the 11
prognostic m6A-related lncRNAs. (b) KM survival curve of the model in the training set, (c) testing set, and (d) entire set.
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obtained when the validation and whole datasets were an-
alyzed. Accordingly, our model has good potential for
prognosis prediction.

3.2. Test the Accuracy of the Risk Model in Predicting the
Prognosis and Classification. +e results from the whole
dataset further underwent univariate and multivariate Cox
regression analyses, revealing that the risk score is an in-
dependent prognostic factor (Figures 4(a) and 4(b)). To
accurately illustrate the universality and importance of the
risk model in forecasting prognosis, the concordance index
(C-index) of risk scores and AUC were evaluated. It was
found that the AUC of the risk score was higher compared to
clinical characteristics such as age, gender, and tumor stage,
with the C-index further indicating good consistency be-
tween predicted and actual observations (Figures 4(c) and
4(d)). Nomograms and calibration curves based on age,
gender, TNM, and risk score were also drawn to predict the
OS of patients at 1, 3, and 5 years, which validated the high
accuracy and authenticity of our model (Figures 4(e) and
4(f)).

To assess whether our model is appropriate for patients
with different clinicopathological characteristics, the differ-
ence between high and low-risk subgroups of OS was ana-
lyzed by stratifying according to different clinicopathological
characteristics. +e results that applying K-M analysis to
analyze the entire group of samples based on three clinico-
pathological characteristics of age, gender, and stage dem-
onstrated that OS in high-risk group was lower, compared to
the low-risk subgroup (Figures 5(a)–5(f)). Moreover, similar

results were observed after stratifying by TNM staging and
tumor mutation burden (Figures S2A and 5(h)).

PCA analysis was carried out on the whole gene ex-
pression profile, 23 m6A-related genes, 2350 m6A-related
lncRNAs, and 11 m6A-related lncRNAs to verify that our
model was superior to other models and to assess its ability
to distinguish patients with different risk levels. It was found
that the degree of distinction between the two subgroups was
higher in our model compared with the other three models,
which enabled better differentiation between high and low-
risk subgroups (Figures 6(a)–6(d)).

98 differential genes were screened by comparing the
differences of genes between the high and low-risk subgroups
in the whole dataset to identify the potential molecular
mechanism of them6A-basedmodel. GO enrichment analysis
indicated the biological processes were enriched in immunity
(Figure 7(a)). Next, the immune enrichment results of im-
mune cells, immune pathways, major histocompatibility
complex molecules, chemokine receptors, and immune
checkpoints indicated that the immune system of the high-
risk subgroup was more active (Figure 7(b)). 20 driver genes
with the most frequent alteration between the two subgroups
were identified (Figures 7(c) and 7(d)). Furthermore, the
TMB scores calculated from the TGCA dataset showed no
significant differences (p � 0.069) (Figure 7(e)).

+e TIDE scores of all cases are based on the expression
levels of immunotherapy biomarkers such as IFNG, MSI,
Merck18, CD274, CD8, CTL, MDSC, CAF, and TAM-M20,
suggesting that immune escape function in the high-risk
group is stronger and a worse response to immunotherapy.
+is finding suggests that our model can classify patients by
predicting their response to immunotherapy (Figure 7(f )).

Table 2: Characteristics of LUSC patients in training, testing, and entire sets from TCGA database.

Characteristics Type Total Test Train P value

Age
≤65 189 (38.18%) 63 (42.86%) 126 (36.21%)

0.1632>65 300 (60.61%) 81 (55.1%) 219 (62.93%)
Unknown 6 (1.21%) 3 (2.04%) 3 (0.86%)

Gender Female 129 (26.06%) 40 (27.21%) 89 (25.57%) 0.7896Male 366 (73.94%) 107 (72.79%) 259 (74.43%)

Stage

Stage I 242 (48.89%) 68 (46.26%) 174 (50%)

0.5604
Stage II 159 (32.12%) 53 (36.05%) 106 (30.46%)
Stage III 83 (16.77%) 21 (14.29%) 62 (17.82%)
Stage IV 7 (1.41%) 2 (1.36%) 5 (1.44%)
Unknown 4 (0.81%) 3 (2.04%) 1 (0.29%)

T

T1 114 (23.03%) 30 (20.41%) 84 (24.14%)

0.718T2 288 (58.18%) 91 (61.9%) 197 (56.61%)
T3 70 (14.14%) 19 (12.93%) 51 (14.66%)
T4 23 (4.65%) 7 (4.76%) 16 (4.6%)

M
M0 407 (82.22%) 117 (79.59%) 290 (83.33%)

1M1 7 (1.41%) 2 (1.36%) 5 (1.44%)
Unknown 81 (16.36%) 28 (19.05%) 53 (15.23%)

N

N0 316 (63.84%) 98 (66.67%) 218 (62.64%)

0.4745
N1 128 (25.86%) 31 (21.09%) 97 (27.87%)
N2 40 (8.08%) 13 (8.84%) 27 (7.76%)
N3 5 (1.01%) 2 (1.36%) 3 (0.86%)

Unknown 6 (1.21%) 3 (2.04%) 3 (0.86%)

Journal of Oncology 5



Ri
sk

 S
co

re

10
8
6
4
2
0

0 50 100 150 200 250 300 350
Patients (increasing risk score)

High Risk
Low Risk

(a)

Ri
sk

 S
co

re

4

3

2

1

0
0 50 100 150

Patients (increasing risk score)

High Risk
Low Risk

(b)

Ri
sk

 S
co

re

10
8
6
4
2
0

0 100 200 300 400 500
Patients (increasing risk score)

High Risk
Low Risk

(c)

Su
rv

iv
al

 ti
m

e (
ye

ar
s) 12

10

4
6
8

2
0

0 50 100 150
Patients (increasing risk score)

Dead
Alive

(d)

Su
rv

iv
al

 ti
m

e (
ye

ar
s) 15

10

5

0
0 50 100 150 250200 300 350

Patients (increasing risk score)

Dead
Alive

(e)

Su
rv

iv
al

 ti
m

e (
ye

ar
s) 15

10

5

0
0 100 200 300 400 500

Patients (increasing risk score)

Dead
Alive

(f )

AC008734.1
Risk Risk

AC010422.4

AC254562.3

AL157838.1

AL731577.2

AP001189.3

AP001347.1

DSCR9

GRHL3-AS1

L3MBTL2-AS1

LINC02332

15 low
high10

5
0
−5
−10
−15

(g)

AC008734.1
Risk Risk

AC010422.4

AC254562.3

AL157838.1

AL731577.2

AP001189.3

AP001347.1

DSCR9

GRHL3-AS1

L3MBTL2-AS1

LINC02332

low
high5

0

−5

(h)

AC008734.1
Risk Risk

AC010422.4

AC254562.3

AL157838.1

AL731577.2

AP001189.3

AP001347.1

DSCR9

GRHL3-AS1

L3MBTL2-AS1

LINC02332

20
low
high10

0

−10

−20

(i)

Figure 3: +e relationship between the m6A-related lncRNAs risk model and prognosis is verified in the training set, testing set, and entire
set. (a) Distribution of risk scores in the training set, (b) testing set, and (c) entire set. (d) Distribution of survival status in the training set, (e)
testing set, and (f) entire set. (g) Heatmap of 11 m6A-lncRNAs in the testing set, (h) training set, and (i) entire set.
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Finally, 10 out of 78 compounds, with the most sig-
nificant difference in drug half-maximal inhibitory con-
centration between high and low-risk groups, were screened
to identify possible therapeutic drugs with our model
(Figures S3A and 7(j)), which provides the basis for follow-
up studies on therapeutic drugs for LUSC [29].

4. Discussion

Poor understanding of driver genes in LUSC accounts for
the limited number of treatment strategies for this patient
population [30, 31]. Hence, accurate prediction of the

prognosis of the patients with LUSC is necessary, empha-
sizing the need to identify biomarkers for guiding treatment.
It has been shown that m6A modifications and
lncRNAs influence the occurrence and development of
LUSC [32, 33].

In the present study, a risk model that works on pre-
dicting the prognosis in LUSC was established, and the
relationship between our model and immune response was
explored. An increasing body of evidence suggests that m6A-
related lncRNAs are tightly related to antitumor immunity
and immune infiltration [34, 35].
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Figure 5: Survival analysis based on gender, age, stage, and other multiple clinicopathological characteristics between the high-risk and low-
risk groups in the entire set. Evaluation of immunotherapy effects and drug screening based on models.
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11 out of 2350m6A-related lncRNAs that correlated with
OS were screened. Among these, AP001189.3 has been re-
ported to be related to MAPK and other signaling pathways
and could reportedly predict the prognosis of colon cancer
[36]. L3MBTL2 promotes the recruitment of the ubiquitin
ligase RNF168 to DNA lesions and promotes the repair
process. Meanwhile, L3MBTL2 can also serve as a key target
of the ubiquitin ligase RNF8 after DNA damage [37].
However, L3MBTL2 has rarely been reported as a prognostic
factor. Our research can provide a new direction for future
generations to further study the function of this gene.
Furthermore, GRHL3-AS1 was reported to have a prog-
nostic function in primary head and neck squamous cell
carcinoma [38]. Nonetheless, to the best of our knowledge,
the predictive effect and biological function of the remaining
8 lncRNAs (AC008734.1, AL157838.1, AC010422.4,
AP001347.1, AL731577.2, AC254562.3, DSCR9, and
LINC02332) have not been reported in the literature.

Indeed, the present study results provide the basis for future
studies on the molecular biological function of these m6A-
related lncRNAs in the occurrence and progression of LUSC.

+e 495 cases extracted from TCGA were split into two
groups based on the median risk score. Importantly, we
found that the OS was lower in the high-risk group than in
the low-risk one. Additionally, when stratified by gender,
stage, TNM stage, and TMB, the OS in the high-risk group
was still poorer, compared to the low-risk group. +erefore,
our risk model consisting of 11 m6A-related lncRNAs
correlated with OS yielded accurate results and provided the
basis for subsequent research on potential biomarkers for
LUSC treatment. Moreover, the analysis of GO enrichment
indicated that the immune system in the high-risk group was
more active, suggesting the potential relationship between
our model and immune response. Moreover, this finding
substantiated the association between the poor clinical
outcome of the high-risk subgroup and the induction of
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Figure 6: PCA analysis in a high-risk group and low-risk group grounded on (a) the whole gene expression profile. (b) 23 m6A-related
genes. (c) 2350 m6A-related lncRNAs. (d) 11 m6A-related lncRNAs.
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Figure 7: Exploring molecular mechanism and prediction of immunotherapy response in the entire set. (a) Enrichment level of immune
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highly expressed immune molecules. +e TIDE score sug-
gested that the high-risk subgroup reacted worse to im-
munotherapy because of a stronger immune escape
function, compared to the low-risk subgroup, which could
be attributed to a stronger immune escape ability. It is
noteworthy that the expression of immune-related mole-
cules in the low-risk subgroup was relatively lower. +e
above results indicate that immunotherapy can be effective,
even in patients that express fewer immune checkpoint
molecules such as PD-L1, compared with those with high
expression of PD-L1, consistent with the literature
[11, 31, 39]. Our results can also explain the phenomenon
whereby some PD-L1< 1% patients exhibit a better response
to immunotherapy in contrast to PD-L1> 1% patients [12].
+e present study results are expected to offer novel insights
into the biological function of m6A-related lncRNAs in
LUSC. It has been shown that titin (TTN) is expressed in
both groups, except TP53. Previous studies have shown that
TTN can be alone considered a factor predicting the
prognosis of LUSC and the efficacy of the treatment with
immune checkpoint inhibitors.

Herein, univariate, LASSO, and multivariate Cox
regression analyses were initially made use of selecting
m6A-related lncRNAs with predictive function. More-
over, C-index, AUC, and KM analysis confirmed the
powerful prediction ability of the risk model to predict
prognosis.

However, this study also has certain limitations. Indeed,
our model was established after multiple screenings, and the
sample size was limited; more external experimental veri-
fication is needed to substantiate that m6A-related lncRNAs
are efficient predictive biomarkers. What is more, the in-
teraction between these prognostic lncRNAs and m6A
regulatory factors in LUSC was not explored, and it remains
unclear how m6A-lncRNAs can affect tumor immune re-
sponse, warranting the need for further studies.

In conclusion, we established a model playing a prog-
nostic role, made of 11 m6A-related lncRNAs from TCGA
related to the tumor immune response, providing new di-
rections for the prediction of patient prognosis in LUSC.
Importantly, our model may help screen patients with good
responses to immunotherapy and even clarify the biological
processes of m6A-related lncRNAs in LUSC.
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