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Abstract
Information theory (IT) addresses the analysis of communication systems and has been widely applied in molecular
biology. In particular, alignment-free sequence analysis and comparison greatly benefited from concepts derived
from IT, such as entropy and mutual information.
This review covers several aspects of ITapplications, ranging from genome global analysis and comparison, including
block-entropy estimation and resolution-free metrics based on iterative maps, to local analysis, comprising the clas-
sification of motifs, prediction of transcription factor binding sites and sequence characterization based on linguistic
complexity and entropic profiles. IT has also been applied to high-level correlations that combine DNA, RNA or
protein features with sequence-independent properties, such as gene mapping and phenotype analysis, and has also
provided models based on communication systems theory to describe information transmission channels at the
cell level and also during evolutionary processes.
While not exhaustive, this review attempts to categorize existing methods and to indicate their relation with
broader transversal topics such as genomic signatures, data compression and complexity, time series analysis and
phylogenetic classification, providing a resource for future developments in this promising area.

Keywords: information theory; alignment-free; Re¤ nyi entropy; sequence analysis; chaos game representation; genomic
signature

INTRODUCTION
Information theory (IT) addresses the analysis of

communication systems, which are usually defined

as connected blocks representing a source of mes-

sages, an encoder, a (noisy) channel, a decoder and

a receiver. IT, generally regarded as having been

founded by Claude Shannon (1948) [1, 2], attempts

to construct mathematical models for each of the

components of these systems.

IT has answered two essential questions about the

ultimate data compression, related with the entropy

of a source, and also the maximum possible transmis-

sion rate through a channel, associated with its cap-

acity, computed by its statistical noise characteristics.

The fundamental theorem of IT states that it is pos-

sible to transmit information through a noisy channel

(at any rate less than channel capacity) with an arbi-

trary small probability of error. This was a surprising

and counter-intuitive result. The key idea to achieve

such transmission is to wait for several blocks of

information and use code words, adding redundancy

to the transmitted information [3, 4].

Although IT was first developed to study trans-

mission of messages over channels for communica-

tion engineering applications, it was later applied to

many other fields of research. Nowadays, IT is not a

mere subset of communication theory and is playing

a key role in disciplines such as physics and thermo-

dynamics, computer science (through the connec-

tions with Kolmogorov complexity), probability

and statistics [5, 6] and also in the life sciences. In

fact, living organisms are able to process and transmit

information at many levels, from genetic to ecolo-

gical inheritance mechanisms [7], which frames IT as

a broad research ground that crosses many disciplines.

Over three decades ago, in a seminal book [8], Lila

Gatlin explored the relation between IT and biology

and the applicability of entropy concepts to DNA
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sequence analysis, following previous work in the

1960’s [9, 10]. This was one of the first attempts to

analyze DNA from an IT point of view, further

pursued during that decade. Interestingly, Claude

Shannon’s PhD thesis, ‘An Algebra for Theoretical

Genetics’ in 1940, precedes his IT founding articles.

Following Gatlins’ work, other authors have pro-

posed methods based on IT to address problems

related with data coming from molecular biology,

ranging form the analysis of mitochondrial sequences

[11] to the relation between information content

with evolutionary classification [12]. In 1996,

Román-Roldán and colleagues reviewed methods

for DNA sequence analysis through IT ([13] and

reference therein), highlighting the renewed interest

in the area, owing to the increase of data generated

from genome projects.

Recently, other reviews have provided a broader

view of the area, setting the ground for new devel-

opments. In particular, excellent surveys by Adami

[14], Hanus [15] and Battail [16] describe topics in

molecular biology where IT has provided valuable

solutions. More recently, an IEEE special issue was

fully dedicated to IT in molecular biology and

neurosciences [17], which illustrates the growing

interest in these cross-disciplinary efforts.

Sequence analysis has greatly benefited from

methods and concepts derived from IT. For exam-

ple, the notion of entropy, which was first used to

study the thermodynamics of gases, was later defined

as a measure of the uncertainty associated with a

probabilistic experiment and applied to estimating

sequence randomness. In [18], entropy and informa-

tion definitions across disciplines were explored,

comparing their meaning in thermodynamics

(Boltzmann’ principle) and statistics (Fisher informa-

tion matrix).

The notion of complexity is also transversal and

connected with the entropy of a source. The concept

of physical complexity of a sequence, as proposed in

[14, 19], refers to the amount of information that is

stored in that particular sequence about a given

environment, i.e. for genomes, this ‘niche’ is the

one in which the sequence replicates.

Compression is also related with Shannon’s

entropy definitions and was also applied to biological

sequences. There is a clear association between these

concepts: a sequence with low entropy (high redun-

dancy) will, in principle, be more compressible and

the length of the compressed sequence gives an esti-

mate of its complexity, and consequently, of its

entropy [20]. The drawback of this method is its

dependency on the compression procedures, which

might fail to recognize complex organization levels

in the sequences. Although data compression is clo-

sely related with IT applications, a complete review

of this topic is out of the scope of this work; see

other surveys on average mutual information

(AMI) applications [21], Kolmogorov complexity-

based features [22] and a comprehensive review by

Giancarlo et al. [23] for more details.

The relation with Linguistics and Semiotics is

also explored elsewhere [24, 25], and aspects related

with coevolution and phylogenetic analysis are

descried in [26].

Interestingly, a significant set of these methods

comprises an alignment-free feature. These meth-

odologies have grown in the past decades as power-

ful approaches to compare and analyze biological

sequences, constituting alternatives to alignment-

based techniques (see [27, 28] for general reviews).

For example, several dissimilarity measures can be

derived from IT concepts (such as Kullback-Leibler

discrepancy (K-LD), mutual information and com-

plexity) leading to alignment-free methods for

genome classification.

In this context, this survey is focused on IT appli-

cations for biological sequences analysis concentrat-

ing on those that simultaneously encompass an

alignment-free feature. It also tries to establish

common points and highlight similar characteristics

so to bridge both methodologies and explore its

synergy.

The structure of this review reflects the intercon-

nectivity between the subjects and, to some extent,

corresponds to a personal view of the area. The con-

cepts of Rényi and Shannon’ entropy, Kolmogorov

complexity, time-delayed mutual information and

autocorrelation functions are clearly interconnected.

Another difficulty encountered was to categorize the

methods and their applications in a logical way,

giving the clear intersection and overlap between

methods and application. This is reflected in the

final structure of the review, which attempts to

take an application-driven goal-dependent approach.

Therefore, the sections are organized in global ana-

lysis and comparison (block-entropy estimation and

resolution-free metrics based on iterative maps), local

analysis (classification of motifs, prediction of tran-

scription factor binding sites and sequence character-

ization based on linguistic complexity and entropic

profiles), high-level associations merging DNA,
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RNA or proteins with sequence-independent prop-

erties. Finally, communication systems theory

models for the description of information channels

are also briefly mentioned.

METHODS
Biological sequences representation
A sequence X can be represented as a succession of

N symbols from a given alphabet A, of length r,
X¼ s1, . . .,sN, si 2 A, i¼ 1, . . . ,N. For DNA, the

alphabet A is composed by the nucleotide symbols

representing the 4 bases A¼ {A,C,G,T}, and for

proteins, each symbol of this alphabet represents

one of the amino acids. For natural language texts,

A is the set of all possible characters in each idiom.

A segment of L symbols, with L�N, is designated

an L-tuple (or L-word, L-plet, L-mer or L-gram).

The set WL ¼ wL,1, . . . ,wL,K
� �

consisting of all

possible L-tuples obtained from the alphabet A has

K¼ rL elements.

The identification of L-tuples in the sequence X
can then be object of counting occurrences with

overlapping cXL ¼ cXL,1, . . . ,cXL,K
� �

, which can be

further normalized by the total number of strings.

The obtained vector of L-tuple frequencies is thus

defined by f XL ¼ cXL,1= N � L þ 1ð Þ and will be per-

vasively used. For convenience, the frequency vector

f is sometimes indexed by the L-tuple it represents

f XL,i � f Xwi
.

Several other sequence representations exist [29],

mapping strings into vectorial spaces. See [30] for a

comprehensive review on sequence representation,

covering DNA, RNA and proteins.

It is also common to model sequences using time

series framework, in particular, borrowing concepts

from the field of stochastic processes, e.g. Markov

Chain models, and dynamic systems. This has been

a ubiquitous representation in the biophysicists’ lit-

erature, namely to study long- and short-range

correlations in DNA and unraveling periodic proper-

ties and correlation structure of biosequences.

Comprehensive reviews of the field include [31,

32], where a review of information-theoretical

aspects from Shannon and Rényi entropy to

Kolmogorov complexity are revisited, along with

DNA sequence periodicity evaluations, and [33],

which provides a general introduction to spectral

methods for genome analysis. DNA spectra based

on maximizing Shannon’s entropy are shown to be

effective in characterizing sequence periodicities [34],

illustrating the connection between these topics.

DNA representation through iterated function

systems, namely chaos game representation (CGR)

[35], was proposed as alternative mappings and later

extended to higher-order alphabets [36] or alterna-

tive geometries [37]. Formally, each symbol mapping

xi 2 R2 of an N-length DNA sequence X is given as

follows:

x0 ¼ 0:5,0:5ð Þ

xi ¼ xi�1 þ
1
2
yi � xi�1ð Þ,i ¼ 1, . . . ,N

�

where yi ¼

0,0ð Þ if si ¼ 0A0

0,1ð Þ if si ¼ 0C0

1,0ð Þ if si ¼ 0G0

1,1ð Þ if si ¼ 0T 0

8>>><
>>>:

ð1Þ

Besides its appealing graphical support and general-

izations, CGR was recently proven to be an efficient

representation for string algorithms [38] such as

longest common extension queries, solved in con-

stant time.

CGR properties and generalizations have been

extensively applied as a consequence to the natural

development of alignment-free techniques for

sequence comparison [27, 28] and will be reviewed

here only in the context of its IT-framework

application.

Entropy definitions and properties
Entropy is a measure of the uncertainty associated

with a probabilistic experiment. For a discrete

random variable X taking values in {x1, x2, . . ., xM}

with probabilities {p1, p2, . . . , pM}, represented as

P(X¼ xi)¼ pi, the Shannon’s entropy HSh of this

experiment is a functional of the distribution of X,

and is given as follows:

HSh Xð Þ ¼ H p1, . . . ,pMð Þ ¼ �
XM
i¼1

pi log pi ð2Þ

Shannon’s entropy formulation can be interpreted as

the minimum number of binary (yes/no) questions

necessary, on ‘average’, to determine the output

of one observation of X. This formulation can also

be interpreted in terms of expected values, i.e.

HShðXÞ ¼ Ep � log2 pðXÞ
� �

. The Shannon’s entropy

is a nonnegative quantity and its definition can be

axiomatically derived [3]. It can be shown that

HSh p1, . . . ,pMð Þ � log2 M with equality if and only

if all pi¼ 1/M, which means that the situation with

the most uncertainty or with the highest entropy
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occurs when all possibilities are equally likely, thus

ascertaining a maximum value for HSh(X).

Other important notions related to the entropy

definition include joint, conditional and relative

entropy of two discrete random variables X and Y,

with joint probability function p(xi,yj)¼P(X¼ xi,
Y¼ yj)¼ pij, i¼ 1, . . . ,M and j¼ 1, . . . ,L. These

measures further deepen the former definition and

extended it to the multivariate case, thus permitting

the application of new techniques to distribution

function comparison.

The relative entropy or K-LD of the probability

mass function p(X) with respect to the mass function

q(X) is defined as follows:

DðpjjqÞ ¼
XM
i¼1

pi ln
pi
qi

ð3Þ

The Mutual Information between two random

variables X and Y—or the information conveyed

about X by Y—is defined as follows:

IðX,YÞ ¼
XX

pðxi,yjÞ ln
pðxi,yjÞ
pðxiÞpðyjÞ

¼ HðXÞ þHðYÞ �HðX,YÞ

ð4Þ

Mutual information is a special case of the

relative entropy because IðX,YÞ ¼ D p X,YÞjjðð

pðXÞ � pðYÞÞÞ. Following the properties of D(pjjq),
the mutual information is 0 if and only if

p(X,Y)¼p(X)�p(Y), which is the definition of inde-

pendence between variables X and Y. Therefore,

I(X,Y) is measuring the ‘dissimilarity’ between

those variables as assessed by their ‘dependence’.

Additional results relating these measures are

proven elsewhere [3, 4].

The Rényi formulation appeared as a generaliza-

tion of the Shannon’s measures [39, 40]. The Rényi

entropy of order a � 0, a 6¼ 1, Ha is defined

both for discrete p and continuous f(x) probability

functions:

Ha ¼
1

1� a
ln
X
i

pai

Ha ¼
1

1� a
ln

Z
f ðxÞadx

ð5Þ

Shannon’s entropy is a special case of Rényi’s

when a ¼ 1. When a is 0, Renyi entropy corres-

ponds to logarithm of the size of the support of

set and converges to the min-entropy H1 when

a!1. Properties of Rényi-derived functionals

for different probability distributions are further

described [41].

The notions of complexity and entropy are exten-

sively presented elsewhere [4, 42] and only briefly

exemplified in the reviewed applications.

APPLICATIONSANDRESULTS
Global analysis and comparison
The first approach to measuring sequence entropy

was through calculating the entropy of L-tuple

distributions across the target sequences. This corres-

ponds to estimating the probabilities of each L-tuple

using all the frequencies f XL,i and applying directly

Shannon’s equation [Equation (2)]. These ‘block

entropies’ (or L-gram entropies) can be interpreted

as the degree of variability of L-tuples across the

whole sequence, thus representing a global overall

measure of randomness.

This section will briefly describe some methods

that use L-tuple distributions to estimate a global

entropic measure for the sequence, which is related

with its randomness, complexity and compressibility.

There is a strong rational for using these features

because the introduction of the ‘genomic signature’

concept in the 90s [43], following previous analysis

on oligonucleotide over- and underrepresentation

[44]. The key finding was that dinucleotide vectors

constituted a signature of an organism, i.e. there are

significant differences between intra- and interspecies

odds ratio based on normalized 2-tuple frequencies.

The odds ratios rsisj ¼ fsisj=fsi � fsj represent the

dinucleotide bias of 2-tuples. Interestingly, this is

closely related with probabilistic independence and

mutual information between the distributions.

Extensions to these odds ratios may serve for better

understanding of different properties of genomes

through evolution [45].

Block entropy and divergence
Gatlin’s pioneer work [8] proposed to use L-tuple

frequencies to estimate a sequence feature named

divergence. The first divergence D1 is defined as

D1 ¼ Hmax �H1, corresponding to the difference

between the maximum nucleotide (1-tuple) entropy

Hmax¼ 2 bits and the observed 1-tuple or nucleotide

entropy. This was used in several assessments on

GenBank data [13, 46].

Another evaluation aimed at estimating block

entropies HL, which measure the average amount

of uncertainty of words of length L, or their normal-

ized values HL/L. The conditional entropies

hL ¼ HLþ1 �HL were also proposed as a genomic

characteristic that gives the uncertainty of the Lþ 1
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symbol given the preceding L symbols. One result

that was obtained through these definitions was that

proteins are fairly close to random sequences, with

entropy reductions in the order of just 1% [47, 48].

Similar results were obtained for bacterial DNA,

which may be associated with the subtle balance

between error and fidelity because higher entropy

translates into more information holding capacity.

To evaluate the distribution of this divergence

as to assess hypothesis concerning randomness,

surrogate sequences were simulated and their corres-

ponding values calculated. These artificial DNA

sequences were obtained through random shuffles

of the original L-tuple frequencies and allowed

their comparison, showing that up to triple shuffling

the values of hL were statistically different [49].

High-order divergences based on block entropies

can be estimated directly from L-spectra [50, 51].

These spectra correspond to histograms of L-mer

occurrences, for which statistical approximations for

random sequences can be derived, along with the

evaluation of relative spectral widths and reduced

Shannon information. The application of these meas-

ures to Pyrobaculum aerophilum and Escherichia
coli (which have entropies closed to the maximum

value) were able to distinguish them from random

surrogates.

Extensions to Shannon’ entropy were also tested,

namely using Rényi and Tsallis definitions [52], and

applied to >400 chromosomes of 24 species, leading

to reasonable clusters.

Block entropies can also be used for comparisons

of different features such as coding versus noncoding

regions, represented as a sequence of binary values (0

and 1) for each distinct region of the genome [53].

The authors used nonoverlapped or lumped L-grams

and compared artificially generated sequences with

human chromosomes and several organisms. The

results obtained are compatible with previously

proposed evolutionary mechanisms.

Estimation problems
In practice, one of the major problems faced when

calculating high-order block entropies is the finite

size sample effect [54], due to estimation bias [55],

which causes a systematic underestimation for

increasing L. For example, if L¼ 16, the total

number of possible 16-mers is 416& 4.2�109,

exceeding the size of the human genome and ham-

pering the accurate estimation of this quantity.

Several correction and estimation methodologies

were proposed to address this problem, [56–61],

although it is expected that the main sample effect

always persists for some higher word length. The

theoretical limits of this measure and impact on this

measure of existing repeated structures were also

analyzed [62].

The evaluation of these quantities on genomes for

several organisms such as E. coli and Saccharomyces
cerevisiae was addressed [63]. Multispecies gene

block entropies can also be estimated using Self-

Organizing Maps [64], based on feature selection.

Many compression techniques have also been

developed to estimate sequence entropy and com-

plexity [60, 65]. Some applications include [66–68].

More theoretical approaches based on compres-

sion were also proposed, to cope with undersampled

regimes when the alphabet and sample sizes are

comparable ([69] and references therein).

Alternative methods based on thorough descriptions

of the statistical and convergence properties of

different estimators [70] might also support future

applications in DNA and proteins.

CGR-based entropies
Departing from the key idea of using L-tuple fre-

quencies, several analyses were also conducted using

directly CGR. In fact, these maps, besides providing

a visually appealing description of the sequences,

generalize all L-tuple characteristics and are therefore

adequate to be applied to whole genomes.

The close relation between CGR and genomic

signatures previously presented was strongly high-

lighted by Deschavanne and colleagues [71]. The

pictures representing whole genomes were qualita-

tively the same as those obtained for short segments,

which supports the idea of genomic signatures as

pervasive, species-specific features and qualify CGR

maps as a powerful tool to unveil it.

One option was to use histograms of the frequen-

cies [72, 73] where, instead of using the frequencies

directly, the authors proposed to estimate histograms

of the number of CGR sub-quadrants m that have a

given density. Therefore, what it is being assessed is a

measure of the distribution homogeneity. The com-

parison of human beta globin genes with random

sequences presented significant differences independ-

ent of the number of sub-quadrants used. The

authors defined entropic profiles in this article as

the function of the entropy versus m.

Using CGR sub-quadrant frequencies, although

appealing, translates in practice into calculating

block entropies depending on a fixed resolution L.
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To overcome this fact and aiming at defining a

resolution-free estimate of the entropy, Parzen’s

window method with Gaussian kernels was applied

to CGR [74]. In this work, the genome entropy is

defined as the Rényi quadratic entropy (a¼ 2) of

the probability density estimation of the CGR

map. The results have shown that this measure is

in accordance with expected values, for example,

sequence ATCG . . . ATCG (repetition of the motif

ATCG) has the same entropy of a random sequence

of length 4. Other results on Markov Chain derived

sequences of different orders and random surrogates

are also consistent.

Sequence comparison
Measures based on information-theoretical concepts

have been applied widely to compare sequences in

an alignment-free context [27, 28]. Often, these ap-

plications seek to define dissimilarities to classify and/

or cluster genomic strings, a fundamental aspect

in phylogenetic reconstruction studies. In this

regard, mutual information and compression-based

approaches have provided solid results that match

most of the known molecular evolutionary events.

The measures include dissimilarity estimations via

compression ratios [75] Kolmogorov [76] and

Lempel-Ziv–based complexities [77], compared

in [78].

Entropy concepts such as mutual information are a

key feature to comparison tasks. In particular K-LD

is a popular choice as an alignment-free technique

[79]. Extensions to K-LD were also applied to clas-

sify DNA from E. coli and Shigella flexneri threonine

operons and search sequence databases [80]. A sym-

metrized K-LD version (SK-LD) proposed in [81]

was tested for the classification of shuffled open read-

ing frames sequences, demonstrating its higher per-

formance in the presence of genome rearrangements

when compared with BLAST.

A mixed approach combining L-mer ranks and

entropy concepts was proposed by [82]. The key

idea of the information-based similarity index is to

compare L-mer ranks of two sequences weighted by

the relative Shannon entropy, which corresponds to

a weighted city-block dissimilarity on the rank-

order. Zipf and redundancy analysis using rank dis-

tributions had already discriminated between coding

and noncoding regions [83]. Zipf’s approach is based

on calculating the histograms of word occurrences in

linguistic texts and ranking them from most to less

frequent. One remarkable feature in natural

languages is the Zipf’s law, where a linear relation

of this function in double logarithmic scale is found.

The results obtained by Mantegna and colleagues

[83] show that, by applying Zipf’s regression, non-

coding regions are closer to natural languages in

terms of regression parameters and exhibit more

redundancy than coding regions, as measured by

block entropies. The application to SARS corona-

virus illustrates the potential of combining IT and

rank-order statistics for genomic analysis.

Local analysis, time series and entropic
profiles
In this section, the aspects related with local features

of sequences will be reviewed, i.e. related with the

information and properties of specific positions,

motifs and regions (e.g. splicing, transcription factors

binding sites (TFBSs), coding versus noncoding,

respectively). Overall properties such as time series

correlations and sequence profiles (linguistic and

entropic) will also be reviewed.

TFBS and motifs
The analysis and comparison of TFBS is probably

the most successful application of IT in molecular

biology [84, 85]. A TFBS motif is usually represented

as a matrix such as Position Frequency Matrix

(PFM), which can represent a probabilistic model

for the binding site. These sites can be thus inter-

preted as sources of symbols (nucleotides) whose

emission probabilities are usually estimated through

alignment.

In the pioneer work by Schneider [86], the rela-

tive entropy and information content of the binding

site were derived, as a conservation measurement of

the TFBS. If a nucleotide is highly conserved across

several promoters, its relative entropy will be higher.

Likewise, for nonconserved sites, this value will

be close to zero. This can be visualized through

sequence logos [87]. In practice, these inputs can

be multiple sequence alignments of promoter se-

quences [88], from which per site redundancies are

calculated as to characterize and analyze the TFBS.

The literature on TFBS identification and charac-

terization through IT methodologies is now vast

[89, 90] and will not be fully covered here—see

[84] for a recent comprehensive review on this

topic. A brief overview is warranted, covering align-

ment-free methods.

Several methods based on IT have been applied to

model TFBS, such as using the proposed minimum
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transferred information between the site and the

transcription factor during the binding process [91],

incorporating position interdependencies. Also the

motif characterization going beyond Information

Content and Maximum a posteriori estimations

were explored [92] to infer regulatory motifs in

promoter sequences. IT models allowed extracting

E. coli Fur binding sequences [93]. By also including

in the mutual information estimation structural

properties of DNA and amino acids, the prediction

of their interaction can be improved [94].

Rényi entropy was also applied in this context, to

create models accounting for nucleotide binding sites

transition in E. coli, T7 and l-organism [95, 96], to

compare Rényi- and Shannon-based redundancies

in LexA Lambda Cro/CrI, T7, ribosome, HincII

and T7 binding sites [97] and evaluate TFBS through

its differential counterpart [98].

Several alignment-free methods for TFBS can be

found in the literature. For example, conservation-

based motif discovery algorithms were shown to be

competitive in speed and accuracy [99]. Other meth-

ods for TFBS prediction that neither require pre-

aligned sequences nor the construction of a position

weight matrices (PWMs) exist, for example the

SiTaR tool [100]. Alignment-free methods for com-

paring TFBS motifs were also proposed recently

[101], where Kullback-Leibler dissimilarities based

on L-mer frequency vectors allowed to retrieve sig-

nificant motifs and compare TFBS and PFM, illus-

trating the advantages of using hybrid techniques.

Potential recognition sites for replication initiation

in 30UTRs and 50UTRs of classical swine fever

virus strains were obtained through iteratively max-

imizing the information content of unaligned se-

quences [102].

Other relevant applications of IT for motifs/regions

characterization beyond the TFBS scope exist. For

example, ab initio exon recognition can be performed

through the minimization of Shannon entropy over a

set of unaligned human sequences containing a struc-

tured motif [103]. Splicing recognition and the effect

of mutations can also be predicted through the

sequence information content [104].

The analysis of motifs for genome characterization

and fragment classification also benefits from IT

methodologies. The mutual information between

an L-tuple distribution and a set of genomes can

be used as a feature selection method for support

vector machine classification [105]. By maximizing

the conditional entropy it is possible to find the best

L-tuples in terms of discriminative power in frag-

ment classification for taxonomy in metagenomics

studies. The authors show that this criterion performs

well on the phyla level for a significant set of bac-

terial genomes.

The entropy of genomes is also closely related to

word statistics and coverage [106], which can be used

for the detection of nonhuman DNA samples. In

fact, specific, substrings or motifs and their distribu-

tion strongly characterize a genome, which has clear

connections with IT concepts, as illustrated.

Time series and correlation properties
Time series analysis methodologies have a long trad-

ition of applications to the study of biological

sequences. This allowed to estimate long- and

short-range correlations in sequences, to analyze

internucleotide distances and to evaluate the correl-

ations when specific gaps of length k are considered.

The key idea is to estimate high-level periodicities,

which may have relevant biological significance.

Internucleotide distances di are vectors that collect

the gap lengths between two consecutive occurrences

of nucleotide i [107]. Their distributions univocally

characterize a given DNA sequence and are shown to

be species-specific, thus constituting a genomic signa-

ture. Extension to L-tuple internucleotide distances,

coupled with Shannon’s entropy, can provide dissimi-

larity measures for gene clustering [108].

Other type of k-gap correlation was proposed,

based on discrete autoregressive processes of order

p, DAR(p) [109]. The profiles of the estimated

parameters, representing autocorrelations, are

shown to be species-specific, thus also conveying a

genomic signature concept, that can be further used

for classification purposes [110]. In fact, the clustering

tree obtained for 125 chromosomes of eight eukary-

otic species reveals good agreement with phylogen-

etic relationships.

Profiting from gap-based distributions, new defin-

itions have been proposed. The mutual information

function I(k) quantifies the amount of information

that can be obtained from one nucleotide s about

another nucleotide t that is located k nucleotides

downstream from s [111]. To filter for period-3

oscillations in coding regions, AMI values can be

computed. AMI distributions are shown to be dif-

ferent in coding and noncoding DNA without prior

training on species-specific genomes.

AMI was later applied to bacteriophage-l genome

in [112], where the authors compare linear and
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nonlinear model approximations for the prediction

of nucleotide position tþ t based on previous lagged

symbols. AMI was also successfully used to classify

Oryza sativa coding sequence (CDS), complementing

hidden Markov models and Neural Networks meth-

ods [113].

Interestingly, AMI is shown to be a species-

specific feature and also is pervasive for short seg-

ments [114], which is in close connection with the

genomic signature concept previously defined [115].

In fact, the estimation of AMI profiles (obtained for

different gap values k) of genomic sequences of

eukaryotic and prokaryotic chromosomes, as well

as viruses subtypes, allowed to extract and classify

DNA fragments and also cluster genomes in a con-

sistent way, which supports AMI as a key feature for

species characterization [114].

Linguistic complexity and entropic profiles
Another type of analysis related with entropy and

complexity concepts for local analysis was developed.

In these studies, the characterization of the ‘linguistic

complexity’ of genomes is related with the notion of

self-repetitiveness [48, 116–118]. Linguistic complex-

ity is estimated by using a sliding window and assessing

the ratio of the number of all present L-tuples over the

total number of possible words. In highly repetitive

regions, the fraction will be low because a small per-

centage of all possible substrings form the dictionary is

used. Likewise, regions with more distinct L-tuples

have high variability and, therefore, higher entropy.

This alignment-free methodology was shown to

be useful to determine new biological features in

S. cerevisiae yeast chromosomes and to filter regular

regions [116]. In [117], linguistic complexity was

calculated for Haemophilus influenzae complete

genome in linear time using suffix trees, illustrating

its efficient implementation.

Linguistic complexity was later compared with

Pearson’s chi-square tests, complexity estimation by

Wootton–Federhen and symbol Shannon entropy

[119] giving rise to different profiles for genes and

pseudogenes and showing that the regions around

the start codon have the most significant discriminant

power.

The analysis of vocabulary use can support the

comparison between genome regions. The notion

of topological entropy Htop [120] is based on analyz-

ing, for a given sequence with length N, what is the

proportion of L-tuples that appear, with a maximum

of N�Lþ 1. If all the possible sub-words are

present, Htop¼ 1; Htop is approximate zero if the

sequence is highly repetitive, i.e. contains few sub-

words. The authors apply this measure to human

exon–intron comparison, namely for chromosomes

X and Y, obtaining larger topological entropies for

introns than for exons, which contradicts previous

studies [83]. The discrepancies observed might be

related with the distinct definitions used: topological

entropies are based on truncated words set space to

avoid finite sample effects and, therefore, the results

may not be directly comparable and should be fur-

ther elucidated.

The number of shared L-tuples between two gen-

omes (relative to the smaller L-gram set) and spectral

rearrangements of the corresponding matrixes can be

used to define clusters of positions [121]. These

measures also define profiles of conserved regions

in whole genomes in an alignment-free way.

Another option to analyze the homogeneity of the

frequency vectors along the genome is to partition

the sequence in blocks of length B, calculate the

entropy of each block and then estimate the entropy

of all these entropies, what the authors called ‘super-

information’ [122]. By spanning different non-

overlapping window lengths B, the authors where

able to distinguish between coding and noncoding

regions in human chromosomes, namely TTC34

gene (chr1).

Another measure of sequence homogeneity across

CDS of the yeast genome was also assessed [123],

based on partitioning the sequence into blocks and

estimating all their codon probabilities, which were

further used to calculate its Shannon’s entropy.

Codons that are distributed uniformly will have

entropies close to one. The analysis of 16 S. cereviseae
chromosomes was able to cluster amino acids in

terms of structural properties.

The presented measures have subjacent a reso-

lution or parameter indicating the specific block/

window length. By using CGR maps and previous

work on Rényi entropies, local estimation of the

probability density function were used as a proxy

for the local complexity of the sequence. In fact,

highly populated CGR quadrants correspond to

overexpression of a given suffix. Previous work on

CGR (local) genomic signature characteristics

allowed to correctly detect horizontal transfer in bac-

terial genomes [124].

To overcome domain problems when using

Gaussian kernels in CGR maps (which extend

beyond the unit square), new functions based on
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cuboids were proposed [125], which later allowed

the estimation of ‘Entropic Profiles’ (EP) [126].

These EP are defined for each position in the se-

quence and, although conveying local information,

take into account, by definition, global features. This

property can be explored for data mining procedures

and motif finding. By spanning the parameter space,

one can also estimate the local scale of each position,

i.e. the suffix length for which that position is most

statistically significant. New efficient implementa-

tions are now available [127, 128], allowing the

study of whole genomes.

High-level correlations
Biological sequences can be interpreted in a broader

sense by defining possible transformations of the ori-

ginal DNA, RNA or protein sequences. This section

will describe some work on these high-level map-

pings, where new recoding and alphabets are used or

partial information, such as single nucleotide poly-

morphisms (SNPs), are the basis for the analysis and

comparison. This section will also address topics

where sequence features are connected with non-

string characteristics, such as phenotypes and pro-

tein–protein interaction (PPI) network connectivity.

The relation between the decrease of structural

entropy associated to component compartmentaliza-

tion in eukaryotic cells was analyzed recently [129].

In this work, thermodynamical entropy of molecules

is normalized by the Shannon’s entropy loss asso-

ciated to the presence of a specific DNA sequence

with length n, �SDNA¼�2n bits, thus trying to

bridge the two concepts.

The analysis of molecular structures and binding

can also be recoded as strings, where each atom is

translated onto a symbol related to its structure in the

molecule. From this representation, molecular de-

scriptors based on Shannon’s [130] and Rényi

Entropy can be derived [131], useful for virtual

chemical screening and drug discovery.

The goal of gene mapping is to identify DNA

regions that are responsible for particular observed

traits or phenotypes. The application of IT to

estimate these relationships is typically based on iden-

tifying sets of SNPs or markers, coded as strings, and

a set of phenotypes (e.g. case versus control individ-

uals) and then calculate the mutual information

between both distributions, in a given sample or

population. If the two are independent, the mutual

information is zero and no information is conveyed

by a given SNP for that condition. The method

allowed estimation of positions (locus) with the

highest mutual information for parkinsonism and

schizophrenia [132], and also identification of regions

associated with Graves autoimmune disease [133] by

correcting finite sample problems and estimating stat-

istical significance through Gamma distribution ap-

proximations. Further applications include the

detection of gene–gene and gene–environmental

interactions in complex diseases, a method with pro-

mising results in evaluating bladder cancer data [134].

Linguistic complexity based on maximum

vocabulary of amino acid sequences and protein

entropy was used as a key feature to compare

nodes in PPI networks in yeast [135]. Interestingly,

statistically significant differences were found

between hub and nonhub proteins, but also between

bottleneck nodes for some PPI data sets. Overall,

complexities of hubs and/or bottleneck proteins

were shown to have lower complexity, which

seems to have relevant evolutionary explanations.

This fact also illustrates the cross analysis between

the global entropic properties of biological sequences

and their correlation with their node function in the

PPI network.

Communication systems and error-
correcting codes
The relation between Communication Engineering

and Molecular Biology has been highlighted in a

number of reports [15, 136]. In fact, several models

for information transmission have appeared in the

literature. Briefly, these are constituted by a source,

an encoder, a message that goes through a (noisy)

channel, a decoder and a receiver. Gatlin proposed

a simple model where a given source transmits DNA

sequences, the channel corresponds to transcription

and translation and the received message is the amino

acid protein sequence [8]. Since then, several other

models have been proposed by Yockey [137],

Roman-Roldan [13] and May, who reviewed this

area [138, 139]. Other proposed channels including

mutations (substitutions, insertions and deletions)

were also analyzed in terms of their capacities [140].

The analysis of the protein communication chan-

nel, which considers an organism’s proteome as the

message transmitted in the evolution process, was

conducted for archaea, bacteria and eukaryotes

[141]. The authors take into account mutation and

crossovers and estimate, for each domain of life, the

capacities and rate distortion functions.
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Coding theory [142], the evolution of the genetic

code [143] and models for DNA to protein informa-

tion transfer [144, 145] were also object of several

studies.

Error-correcting codes, in particular, convolution

code models, were also applied do DNA with the

goal of extracting features for sequence comparison

and analysis [146]. By coding the first exon of

beta-globin genes of different species, a possible

method for similarity definitions based on coding

was proposed.

DISCUSSIONAND CONCLUSIONS
In a recent article [16], Battail addressed the urgent

need of IT in biology, as an essential step to understand

the living world. He argues that, despite the tremen-

dous progress of communication engineering in the

past decades, communication theory remains com-

pletely neglected by biosemiotics and biology. One

of the possible reasons might be the focus on semantic

aspects and meaning of the former, while IT scope is on

literal communication, leading to the irony that both

areas ‘have not been able to communicate with each

other’. It is expected that the role of IT in molecular

biology and sequence analysis, will indeed increase.

DNA assembly problems [147] and metagenomic ana-

lysis [148] are just recent examples of this trend.

The present review addresses IT applications for

sequence analysis, focusing on alignment-free meth-

ods. One of its main contributions is to categorize

the applications according to its ultimate goal,

reflected in the overall structure of this work,

while offering a vast reference list to complement

topics outside the scope of this survey.

Key Points

� Information Theory, widely applied in molecular biology, has
provided successful methods for alignment-free sequence
analysis and comparison.

� Current applications include global and local characterization of
DNA, RNA and proteins, from estimating genome entropy to
motif and region classification.

� Promising results are expected in gene mapping and next-
generation sequencing projects, metagenomics- and communi-
cation theory-based models of information transmission in
organisms.

Acknowledgements
The author thanks Jonas S. Almeida for enjoyable long-term dis-

cussions on these themes. She also acknowledges the reviewers’

comments and suggestions that greatly improved this review.

FUNDING
This work was partially supported by national funds

through Fundação para a Ciência e a Tecnologia

(FCT, Portugal) under contracts PEst-OE/EEI/

LA0021/2013 and PEst-OE/EME/LA0022/2011

(under the Unit IDMEC - Pole IST, Research

Group IDMEC/LAETA/CSI), as well as projects

InteleGen (PTDC/DTP-FTO/1747/2012) and

BacHBerry (FP7). SV acknowledges support by

Program Investigador FCT (IF/00653/2012) from

FCT, co-funded by the European Social Fund

(ESF) through the Operational Program Human

Potential (POPH).

References
1. Shannon CE. A mathematical theory of communication.

Bell SystTechJ 1948;27(3):379–423.

2. Shannon CE. A mathematical theory of communication.
Bell SystTechJ 1948;27(4):623–56.

3. Ash RB. InformationTheory. New York: Dover Publications,
1990. xi, 339.

4. Cover TM, Thomas JA. Elements of Information Theory.
2nd edn. Hoboken, NJ: Wiley-Interscience, 2006.

5. Khinchin AIA. Mathematical Foundations of InformationTheory.
New Dover edn. New York: Dover Publications, 1957.

6. Kullback S. Information Theory and Statistics. New York:
Dover Publications, 1968.

7. Danchin E, Charmantier A, Champagne FA, et al. Beyond
DNA: integrating inclusive inheritance into an extended
theory of evolution. Nat Rev Genet 2011;12(7):475–86.

8. Gatlin LL. Information Theory and the Living System.
New York: Columbia University Press, 1972.

9. Gatlin LL. Information content of DNA. JTheor Biol 1966;
10(2):281–300.

10. Gatlin LL. Information content of DNA. II. J Theor Biol
1968;18(2):181–94.

11. Granero-Porati MI, Porati A. Informational parameters and
randomness of mitochondrial-DNA. JMol Evol 1988;27(2):
109–13.

12. Rao GS, Hamid Z, Rao J.S. Information-content of DNA
and evolution. JTheor Biol 1979;81(4):803–7.

13. Roman-Roldan R, Bernaola-Galvan P, Oliver JL.
Application of information theory to DNA sequence
analysis: a review. Pattern Recognit 1996;29(7):1187–94.

14. Adami C. Information theory in molecular biology. Phys
Life Rev 2004;1(1):3–22.

15. Hanus P, Goebel B, Dingel J, et al. Information and com-
munication theory in molecular biology. Electr Eng 2007;
90(2):161–73.

16. Battail G. Biology needs information theory. Biosemiotics
2013;6(1):77–103.

17. Milenkovic O, Alterovitz G, Battail G, etal. Introduction to
the special issue on information theory in molecular biology
and neuroscience. IEEETrans InfTheory 2010;56(2):649–52.

Information theory for biosequence analysis 385

paper 
information theory
l
information theory


18. Mutihac R, Cicuttin A, Mutihac RC. Entropic approach
to information coding in DNA molecules. Mater Sci Eng
C-Biomimetic Supramol Sys 2001;18(1–2):51–60.

19. Adami C. What is complexity? BioEssays 2002;24(12):
1085–94.

20. Farach M, Noordewier M, Savari S, etal. On the entropy of
DNA-Algorithms and measurements based on memory and
rapid convergence. Proceedings of the Sixth Annual ACM-
SIAMSymposium on DiscreteAlgorithms. Philadelphia: SIAM,
1995;48–57.

21. Nalbantoglu OU, Russell DJ, Sayood K. Data compression
concepts and algorithms and their applications to bioinfor-
matics. Entropy 2010;12(1):34–52.

22. Galas DJ, Nykter M, Carter GW, et al. Biological informa-
tion as set-based complexity. IEEETrans InformTheory 2010;
56(2):667–77.

23. Giancarlo R, Scaturro D, Utro F. Textual data compression
in computational biology: a synopsis. Bioinformatics 2009;
25(13):1575–86.

24. Ji SC. Isomorphism between cell and human languages:
molecular biological, bioinformatic and linguistic implica-
tions. Biosystems 1997;44(1):17–39.

25. Searls DB. The linguistics of DNA. Am Sci 1992;80(6):
579–91.

26. Carbone A, Dib L. Co-evolution and information signals
in biological sequences. Theor Comput Sci 2011;412(23):
2486–95.

27. Vinga S. Biological sequence analysis by vector-valued
functions: revisiting alignment-free methodologies for
DNA and protein classification. In: Pham TD, Yan H,
Crane D (eds). Advanced Computational Methods for
Biocomputing and Bioimaging. New York: Nova Science
Publishers, 2007. ix, 215.

28. Vinga S, Almeida J. Alignment-free sequence comparison-a
review. Bioinformatics 2003;19(4):513–23.

29. Roy A, Raychaudhury C, Nandy A. Novel techniques of
graphical representation and analysis of DNA sequences-a
review. J Biosci 1998;23(1):55–71.

30. Randic M, Zupan J, Balaban AT, et al. Graphical
Representation of Proteins. Chem Rev, 2011;111(2):
790–862.

31. Li WT. The study of correlation structures of DNA se-
quences: a critical review. ComputChem 1997;21(4):257–71.

32. Damasevicius R. Complexity estimation of genetic se-
quences using information-theoretic and frequency analysis
methods. Informatica 2010;21(1):13–30.

33. Lobzin VV, Chechetkin VR. Order and correlations in
genomic DNA sequences. The spectral approach. Uspekhi
Fizicheskikh Nauk 2000;170(1):57–81.

34. Galleani L, Garello R. The minimum entropy mapping
spectrum of a DNA sequence. IEEE Trans Inform Theory
2010;56(2):771–83.

35. Jeffrey HJ. Chaos game representation of gene structure.
Nucleic Acids Res 1990;18(8):2163–70.

36. Almeida JS, Vinga S. Universal sequence map (USM) of
arbitrary discrete sequences. BMCBioinformatics 2002;3:6.

37. Almeida JS, Vinga S. Biological sequences as pictures—a
generic two dimensional solution for iterated maps. BMC
Bioinformatics 2009;10:100.

38. Vinga S, Carvalho AM, Francisco AP, et al. Pattern match-
ing through Chaos Game Representation: bridging

numerical and discrete data structures for biological
sequence analysis. AlgorithmsMol Biol 2012;7:10.

39. Renyi A. On the foundations of information theory. Revi
Int Stat Inst 1965;33(1):1–14.
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