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SUMMARY

Estrogen receptor positive (ER+) breast cancer is responsive to a number of tar-
geted therapies used clinically. Unfortunately, the continuous application of tar-
geted therapy often results in resistance, driving the consideration of combina-
tion and alternating therapies. Toward this end, we developed a mathematical
model that can simulate various mono, combination, and alternating therapies
for ER + breast cancer cells at different doses over long time scales. The model
is used to look for optimal drug combinations and predicts a significant synergism
between Cdk4/6 inhibitors in combination with the anti-estrogen fulvestrant,
which may help explain the clinical success of adding Cdk4/6 inhibitors to anti-es-
trogen therapy. Furthermore, the model is used to optimize an alternating
treatment protocol so it works as well as monotherapy while using less total
drug dose.

INTRODUCTION

Metastatic breast cancer remains an incurable disease, and it is estimated that 43,250 women and men will

die from breast cancer this year.1 The most common type of breast cancer, estrogen receptor positive

(ER+), which is present in approximately 70% of all breast cancers,2 has targeted therapies that have

dramatically improved long-term survival rates.3–5 However, the continuous application of these drugs

can ultimately lead to drug resistance and recurrence.5–9 The resistancemechanisms are varied and include

epigenetic changes, gene mutation, amplification, and deletion.10–14 Although targeted therapies are

important methods for breast cancer treatment, eventually cancer cells become resistant and proliferate

again, which makes the advantage of targeted therapies only temporary for many patients.

Constant application of one drug regimen over time may not be optimal, but to move beyond this approach

requires addressing a number of critical questions such as (1) how long should a given therapy be applied,

(2) what should the next therapy be, and (3) in any given therapy interval, what is the best combination of drugs

to apply? These questions are difficult to answer experimentally, even in vitro, as long timescales are involved,

and there are a huge number of possible solutions to explore. Systematic application of an experimentally

calibrated mathematical model that integrates molecular cell biology and drug pharmacology can help us

investigate better treatment regimens in terms of drug choice, combinations, dosing, and scheduling.15–18

In this work, we take a step toward answering these questions in a common ER + breast cancer cell line,

MCF7, by using a combination of mathematical modeling and experimental investigations.

Previously, we developed a mechanistic mathematical model based on key interactions between ER

signaling and the cell cycle.19 This model was calibrated using protein and proliferation data from 7-day

time courses of MCF7 cells growing under basal conditions or responding to standard clinical drugs in

ER + breast cancer: (1) estrogen deprivation (–E2), a surrogate for an aromatase inhibitor that lowers the

estradiol (E2) level by inhibiting aromatase;13,20 (2) ICI 182 780 (ICI; Faslodex/fulvestrant), a proteasome-

dependent ER degrader;21 or (3) palbociclib, a Cdk4/6 inhibitor.5 To address questions regarding syn-

ergies, longer timescales, and alternating treatments, more experimental data is required to either validate

the initial model or show where extensions to the model are required.

In this study, we extend the model to handle a range of doses of ICI or palbociclib and to more accurately

predict proliferation over longer timescales and in cases where drugs are changed periodically. Key exten-

sions involve the accumulation of cyclinD1 and the long-term slowdown in growth rate in response to

continuous palbociclib treatment. We use the resulting model to explore synergistic drug combinations
iScience 26, 106714, May 19, 2023 ª 2023 The Author(s).
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Figure 1. Signaling diagram of the biological mechanism, model structure and model calibrations

(A) Detailed reactions of the biological mechanism related to estrogen signaling and Cdk4/6 inhibition. Reversible binding reactions are represented by dots

on the components and an arrow to the complex. Three dots represent degradation of a protein or the death of a cell. Arrows pointing from blank space to a

protein or MCF7 cell represent production of the protein or proliferation of the cell. Arrows pointing from one protein to another protein represent

phosphorylation or dephosphorylation of the protein. Lines pointing to other lines represent enhancement (arrow) or inhibition (blunt head) of the reactions.

Treatments are colored red. The numbered biological mechanism consisting of the following process: 1. –E2 decreases estrogen; 2. E2 binds to ER; 3. ICI

binds to ER; 3. E2:ER increases transcription of c-Myc; 5. E2:ER increases transcription of cyclinD1; 6. c-Myc inhibits transcription of p21; 7. CyclinD1 binds to

Cdk4/6; 8. CyclinE binds to Cdk2; 9. p21 binds to cyclinD1:Cdk4/6; 10. p21 binds to cyclinE:Cdk2; 11. Palbociclib binds to Cdk4/6; 12. Abemaciclib binds to

Cdk4/6; 13. Palbociclib binds to cyclinD1:Cdk4/6; 14. Abemaciclib binds to cyclinD1:Cdk4/6; 15. p21 binds to cyclinD1:Cdk4/6:palbociclib; 16. p21 binds to

cyclinD1:Cdk4/6:abemaciclib; 17. Palbociclib binds to cyclinD1:Cdk4/6:p21; 18. Abemaciclib binds to cyclinD1:Cdk4/6:p21; 19. CyclinD1:Cdk4/6
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Figure 1. Continued

phosphorylates RB1; 20. CyclinE:Cdk2 phosphorylates RB1-p; 21. RB1 binds to E2F; 22. RB1-p binds to E2F; 23. E2F up-regulates RB1; 24. E2F up-

regulates itself; 25. E2F up-regulates c-Myc; 26. E2F up-regulates cyclinE; 27. E2F drives the G1-S cell cycle transition and proliferation; 28. Cell death.

(STAR Methods).

(B) Structure of the mathematical model, a simplified version of the biological mechanism in (A).

(C) Model calibration to experimental data (meanG s.e., n = 3) in E2 control condition. The experimental data are shown in red and the calibration simulation

results are shown in yellow (solid line represents the lowest cost value simulation and the shaded regions contains the central 98% of the cohort simulations).

(D) Model calibration to experimental data (mean G s.e., n = 3) in –E2 condition.

(E) Model calibration to experimental data (mean G s.e., n = 3) in E2+ICI(100 nM) condition.

(F) Model calibration to experimental data (mean G s.e., n = 3) in E2+ICI(500 nM) condition.

(G) Model calibration to experimental data (mean G s.e., n = 3) in E2+palbo(250 nM) condition.

(H) Model calibration to experimental data (mean G s.e., n = 3) in E2+palbo(500 nM) condition.

(I) Model calibration to experimental data (mean G s.e., n = 3) in E2+palbo(1 mM) condition.

(J) Model calibration to experimental data (mean G s.e., n = 3) in –E2+ICI(100 nM) condition.

(K) Model calibration to experimental data (mean G s.e., n = 3) in E2+palbo(100 nM) condition.
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and find a combination that allows a significant reduction in overall drug dose compared to monotreat-

ment. The model is also used to optimize an alternating treatment intended to delay the development

of resistance and finds a protocol that has the same proliferation as monotherapy while using a significantly

lower total drug dose.

RESULTS

Mathematical models with many parameters and limited experimental calibration data, as is the case here,

havemany possible parameter sets that do a reasonable job of fitting the data. Therefore, in addition to the

best-fit parameter set, we created a cohort of 199 additional parameter sets that fit the data only slightly

less well than the optimal one (increased squared deviation of experiment and simulation less than about

25% of the optimal, see STARMethods). When plotting our results, we plot the best parameter set as a solid

line and use shading to indicate the range of results from simulating the entire cohort. If the simulations of

various parameter sets that reasonably fit the data yield results that do not have too great a spread, it pro-

vides confidence that we have not overfit the data. We also note that we only write that the model ‘‘pre-

dicts’’ something if the model simulation is being compared to experimental data on which it was not

trained. In all other cases the plots show the simulations recapitulating the training data (see Table S1).

While we explain numerous changes to the model in the following sections, all simulation results are for

the final version of the model that was trained on all the calibration data (Table S1).

Simulating proliferation under constant therapy

Based on the effect of estrogen signaling and Cdk4/6 inhibition on the G1-S transition of the cell cy-

cle,10,22,23 we built a mechanistic mathematical model using ordinary differential equations (ODEs). The

biological interactions we considered are based on known mechanisms from the literature and are shown

in Figure 1A. The details and references for each numbered interaction are provided in STAR Methods. To

create the ODE model, we modified and simplified the interactions shown in Figure 1A. In particular, we

used the RB1-pp (hyperphosphorylated form of retinoblastoma protein (RB1)) level to reflect the transcrip-

tional activity of E2F and associated the RB1-pp level with proliferation. The model structure is shown in

Figure 1B, and the explanations of the modifications and simplifications are provided in STAR Methods.

Figures 1C–1K compare the model simulation results of 21 or 28-day proliferation to experimental results

for numerous treatments. Figure 1C shows the cell proliferation in the E2 control condition (E2 control),

which is much faster than that in other mono and combination treatment conditions. The E2 control exper-

iment was stopped early, at day 11, due to confluence. In the E2 deprivation (–E2) condition, shown in Fig-

ure 1D, cells proliferate during the first 7 days and then essentially stop proliferating due to the very low E2

concentration in themedium after several medium changes. This effect is captured by themodel by adding

the dynamics of E2 concentration to the model, where the E2 concentration decreases with each medium

change, increasingly depriving the ER of its ligand (see STAR Methods and Figures S6A and S6B). The –E2

experiment illustrates how cell proliferation over longer timescales can be qualitatively different from that

over short timescales, so a mathematical model calibrated on short timescale experiments may not be use-

ful for simulations on a longer timescale, hence the necessity of long timescale experimental data.

Figures 1E and 1F show the decrease in proliferation, due to increased ER degradation, as the dose of

ICI treatment (E2+ICI) increases from 100 nM to 500 nM. Figures 1G–1I show the decreasing proliferation,
iScience 26, 106714, May 19, 2023 3
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due to increased Cdk4/6 inhibition, as the dose of palbociclib treatment (E2+palbo) increases from 250 nM,

to 500 nM, to 1 mM. After showing that the model is capable of simulating –E2, ICI and palbociclib mono-

treatments, Figures 1J and 1K show the model simulation results for two combination treatments, –E2

plus 100 nM palbociclib (–E2+palbo), and –E2 plus 100 nM ICI (–E2+ICI). Not surprisingly, the combination

treatments provide greater effect than either monotreatment by itself. The combination of –E2 and ICI

treatments reduces supply of both E2 and ER, causing a larger decrease in the normalized cell number.

The combination of –E2 and palbociclib inhibits Cdk4/6:cyclinD1 kinase activity by both reducing the

cyclinD1 level and inactivating Cdk4/6, which also causes a larger reduction of proliferation. In addition

to the cell number, the model can also capture the protein level changes under –E2 and E2+ICI

(500 nM) treatments, which were measured in our previous work (see Figures S1 and S2).19

Adding a new drug to the model

An advantage of a mechanistic mathematical model is that it is straightforward to incorporate a new drug

into the model without requiring extensive experimentation, providing the drug acts on a signaling

pathway already present in the model. As the original model already captured the mechanism driving

changes due to the Cdk4/6 inhibitor palbociclib, adding new Cdk4/6 inhibitors should require only fitting

a small number of new parameter values related to Cdk4/6 inhibition. We illustrate this by showing how we

incorporated the Cdk4/6 inhibitor, abemaciclib (LY2835219), into the current model. Abemaciclib is a

2-anilino-2, 4-pyrimidine-[5-benzimidazole] derivative.24 Unlike palbociclib, it has been reported to be

effective as a single-agent.25–27 It can inhibit cyclinD1:Cdk4 and cyclinD1:Cdk6 kinase activities at low nano-

molar concentration.28 While at higher micromolar concentrations abemaciclib has been shown to attack

other targets,29–31 we have focused on Cdk4/6 as the most relevant target at the concentrations we

consider.

Wemodeled the new binding and unbinding reactions usingmass-action kinetics with the unknown param-

eters determined by fitting measurements of cell number, c-Myc, and RB1-pp (two proteins in the model

critical to proliferation) in response to abemaciclib treatment. Figures 2A and 2B show that the model

can fit the experimental proliferation results for the 300 nM and 500 nM abemaciclib treatments (E2-

+abema), respectively. Figures 2C and 2D show the protein level changes for c-Myc and RB1-pp in

response to 500 nM abemaciclib. As expected, abemaciclib inhibits Cdk4/6 activity and decreases the

RB1-pp level, which in turn, leads to decreased transcription of c-Myc causing the c-Myc protein level to

decrease. The simulated RB1-pp decrease is quite precipitous but does not conflict with the measured

data at day 0 or day1. The simulated c-Myc decrease, however, does conflict with the data. This is because

the decrease is governed by the decay rate of c-Myc, and we chose to use a value for this parameter from

the literature, rather than choosing an unrealistic value to get a better fit. Ultimately, the poor fit is due to

our simplified model. Because the mathematical model already captured the mechanism of Cdk4/6 inhibi-

tion, it was possible to add another inhibitor of cyclinD1:Cdk4/6 kinase activity without needing to perturb

the other signaling pathways.

Simulating alternating treatment involving estrogen deprivation

The resistance that develops to continuously applied mono or combination drug therapy represents a sig-

nificant impediment to successful treatment, and we hypothesize that an alternating application of various

treatments in a repeating cycle may provide a means of delaying or preventing resistance. Researchers

have shown that cancer cell populations can display a transient, reversible, drug-tolerant state to protect

the cell from eradication.11,32 Therefore, alternating among various drugs may reverse a tolerant state to a

given drug back to a sensitive state during the application of a different drug and thereby delay or prevent

the development of resistance. Before testing whether alternating treatment can indeed delay the devel-

opment of resistance, and with an eye toward using themodel to design alternating therapies, we first show

the model’s capability to simulate proliferation changes in response to alternating therapies.

Figures 3A and 3B show the model simulation results and experimental measurements of two alternating

treatments, palbociclib alternating with –E2 and palbociclib alternating with ICI. The duration of each treat-

ment is 7 days and the total treatment period is 28 days Figure 3A shows E2+palbo(250 nM) alternating

with –E2. We can see that the model simulation is consistent with the experiment result and the cells

proliferate about 90-fold in 4 weeks. This growth increase is larger than we initially expected based on

the monotreatment data from Figures 1G and 1D, where cells proliferated about 80-fold under E2-

+palbo(250 nM) monotreatment and proliferation essentially stopped under –E2 after 1 week. The reason
4 iScience 26, 106714, May 19, 2023
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Figure 2. Model calibration simulations compared to experimental data for abemaciclib treatments

(A) Model calibration of normalized cell number to experimental data (mean G s.e., n = 3) in E2+abema(300 nM)

condition. The experimental data are shown in red and the calibration simulation results are shown in yellow (solid line

represents the lowest cost value simulation and the shaded regions contains the central 98% of the cohort simulations).

(B) Model calibration of normalized cell number to experimental data (mean G s.e., n = 3) in E2+abema(500 nM)

condition.

(C) Model calibration of normalized c-Myc level to experimental data (meanG s.e., n = 3) in E2+abema(500 nM) condition.

(D) Model calibration of normalized RB1-pp level to experimental data (mean G s.e., n = 3) in E2+abema(500 nM)

condition.
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for the larger increase is the dynamics of the E2 concentration. The palbociclib treatment has E2 in the me-

dium, which is absorbed by the cells, so when the medium is changed to the –E2 condition the cellular E2

diffuses back into the medium and the resulting concentration is sufficient to drive proliferation (Fig-

ure S6A). This palbociclib and –E2 alternating experiment confirms the necessity of incorporating E2 dy-

namics in alternating treatments involving deprivation. Figure 3B shows palbociclib (500 nM) alternating

with ICI(500 nM). We can see that the model simulation is consistent with the experimental result and

the cells proliferate about 27-fold in 4 weeks. We conclude that when alternating palbociclib with an endo-

crine treatment in cell culture, ICI is a better choice than –E2 in terms of controlling the proliferation.

After showing that the model can simulate these two alternating treatments, we check whether the model

can predict the effects of other alternating treatments. Figures 3C and 3D show the model prediction and

experimental measurements of the normalized cell numbers under two alternating treatments. The first

alternating treatment shown in Figure 3C is palbociclib(750 nM) alternating with ICI(500 nM). The duration

of each treatment is 7 days and the total treatment period is 14 days. The second alternating treatment

shown in Figure 3D is palbociclib(750 nM) for 6 days, followed by palbociclib(750 nM) plus ICI(500 nM)

for 1 day, followed by ICI(500 nM) for 7 days. The difference between the first and second alternating treat-

ment is that the second treatment adds a 1 day overlap of palbociclib(750 nM) plus ICI(500 nM) treatments.

Therefore, as shown in Figure 3D, the total experimental proliferation of the second alternating treatment

is slightly smaller than the first alternating treatment due to this 1 day combination treatment that has a

stronger inhibition effect compared with monotreatment (mean values are 3.9 and 3.5, respectively). The

model prediction for the second alternating treatment is also smaller than the prediction for the first alter-

nating treatment as well (mean values are 5.2 and 4.6, respectively).
iScience 26, 106714, May 19, 2023 5
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Figure 3. Model calibration and prediction simulations of normalized cell number compared to experimental data

for alternating treatments

(A) Model calibration to experimental data (mean G s.e., n = 3) of E2+palbo(250 nM) alternating with –E2 treatment. The

experimental data is linked by dashed lines. The E2+palbo(250 nM) treatment is shown in purple and the –E2 condition in

blue. The calibration simulation results are shown in the same colors as the experimental data with the solid line

representing the lowest cost value simulation and the shaded regions containing the central 98% of the cohort

simulations.

(B) Model calibration to experimental data (mean G s.e., n = 3) of E2+palbo(500 nM) alternating with E2+ICI(500 nM)

treatment. E2+palbo(500 nM) treatment is shown in purple and E2+ICI(500 nM) in black.

(C) Model prediction of experimental data (mean G s.e., n = 3) for E2+palbo(750 nM) alternating with E2+ICI(500 nM).

E2+palbo(750 nM) treatment is shown in purple and E2+ICI(500 nM) in black. The treatment started with

E2+palbo(750 nM) with 7days then altered to E2+ICI(500 nM) with 7days.

(D) Model prediction of experimental data (mean G s.e., n = 3) for E2+palbo(750 nM) alternating with

E2+palbo(750 nM)+ICI(500 nM) and E2+ICI(500 nM) treatment. E2+palbo(750 nM) condition is shown in purple,

E2+palbo(750 nM)+ICI(500 nM) in brown and E2+ICI(500 nM) in black. The treatment started with E2+palbo(750 nM) for

6days, then changed to E2+palbo(750 nM)+ICI(500 nM) for 1day and then changed to E2+ICI(500 nM) for 7 days.
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Modeling palbociclib/ICI alternating therapy over longer time scales

One goal of this study is to test whether an alternating treatment can indeed impact the development of

resistance. In patients, resistance to Cdk4/6 inhibitors can occur within months,33,34 compared with endo-

crine resistance that may take years to fully develop.35–37 Based on this observation, we decided to test

whether an alternating treatment of ICI and palbociclib can affect the development of resistance to palbo-

ciclib. A 10-week experiment was conducted where palbociclib was alternated with ICI at weekly intervals.

Monotreatment with palbociclib or ICI were included as controls. Based on the results from Figures 1C–1K

and 3, we chose the palbociclib and ICI drug doses to be 750 nM as our model at that time indicated this

dose would cause relatively low proliferation for the controls as well as the alternating treatment and

enable the experiment to run without replating. Figure 4A shows the experimental and simulated cell pro-

liferation results for the 10-week protocol. Two major results from the experiment that required adjust-

ments to the initial model were: (1) cells undergoing palbociclib monotreatment grew more slowly as

time went on, and (2) cell proliferation wasmuch greater than expected in cells that received the alternating

drugs, forcing a replating at week 5 to avoid confluence.
6 iScience 26, 106714, May 19, 2023
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Figure 4. Model simulations of normalized cell number and protein level changes compared to experimental data for long time mono and

alternating treatments

(A) Model calibration to experimental data (mean G s.e., n = 3) for E2+palbo(750 nM), E2+ICI(750 nM), and E2+palbo(750 nM) alternating with

E2+ICI(750 nM) treatments. The experimental data are linked by dashed lines. In both themono and alternating treatments, the E2+palbo(750 nM) condition

is shown in purple and the E2+ICI(750 nM) condition in black. In the alternating treatment, each treatment period is 7days, starting with E2+palbo(750 nM).

MCF7 cells are re-plated at 35days in the E2+palbo(750 nM) mono and alternating treatments. The normalized cell number from 35 to 70 days is relative to

the number plated at 35days. The calibration simulation results are shown in same color as the experimental data with the solid line representing the lowest

cost value simulation and the shaded regions containing the central 98% of the cohort simulations.

(B) Model simulation of normalized total cyclinD1 level changes in the mono and alternating treatments shown in (A).

(C) Model simulation of normalized cyclinD1:Cdk4/6 level changes in the mono and alternating treatments shown in (A).

(D) Model simulation of normalized RB1-pp levels changes in the mono and alternating treatments shown in (A).

(E) Bar plot of model simulation for total cyclinD1 level compared to experimental data (mean G s.e., n = 3) in E2+palbo(750 nM) and E2+palbo(750 nM)

alternating with E2+ICI(750 nM) treatments shown in (A). Total cyclinD1 levels aremeasured at 35 days and 70 days. The simulation results shown in yellow are

the average results from all cohort simulations. Statistical testing was performed by one-way ANOVA (ns: non-significant; *: p < 0.05; **: p% 0.01; ***: p %

0.001; ****: p % 0.0001).

(F) Bar plot of model simulation and experimental results (mean G s.e., n = 3) for total Cdk4 level changes in E2+palbo(750 nM) and E2+palbo(750 nM)

alternating with E2+ICI(750 nM) treatments shown in (A).

(G) Bar plot of model simulation and experimental results (mean G s.e., n = 3) for total Cdk6 level changes in E2+palbo(750 nM) and E2+palbo(750 nM)

alternating with E2+ICI(750 nM) treatments shown in (A).

(H) Bar plot of model simulation and experimental results (mean G s.e., n = 3) for total cyclinE level changes in E2+palbo(750 nM) and E2+palbo(750 nM)

alternating with E2+ICI(750 nM) treatments shown in (A).

(I) Bar plot of experimental results (meanG s.e., n = 3) for total Cdk2 level changes in E2+palbo(750 nM) and E2+palbo(750 nM) altering with E2+ICI(750 nM)

treatments shown in (A).

(J) Bar plot of model calibration for total cyclinD1 level changes to experimental data (mean G s.e., n = 3) in E2+palbo(750 nM) treatment. Total cyclinD1

levels are measured at 7days and 14days. The statistical testing is the same as (B). The simulation results are average results from all the cohort simulations.
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The first 5 weeks of palbociclib monotreatment results in an 8.1-fold increase in cell number while the sec-

ond 5 weeks results in a 4.6-fold increase (Figure S4). In order to account for this effect, a phenomenological

equation (see Equations 10, 14, 15, and 16 in STAR Methods) was added to the model to gradually slow

down growth in response to long-term palbociclib treatment. This inhibition effect increases gradually

when palbociclib is being applied but decays in about a week when palbociclib is removed, so that the

growth during a palbociclib interval of the alternating treatment is similar to its growth during the first

week of palbociclib monotreatment (Figures S7A and S7B).

While the difference in proliferation betweenmono and alternating treatments was not dramatic during the

first two weeks, it became significant thereafter, with the alternating treatment cells approximately

doubling every week (average 33.8-fold increase at week 5, 5O33.8 z 2, average 52.3-fold increase during

the second 5 weeks, 5O52.9 z 2.2). Part of the reason for this is that the palbociclib intervals of the alter-

nating therapy do not experience the slowdown of the constant palbociclib cells to the same extent. But

the other reason is that the growth during the ICI intervals is much greater than that of ICI monotherapy.

To look for a mechanistic reason for the excessive proliferation, wemeasured the protein levels of cyclinD1,

Cdk4, Cdk6, cyclinE1, and Cdk2 on days 35 and 70 for each arm of the experiment. Palbociclib treatment in

both arms significantly increased the expression of cyclinD1 (Figure 4E). The increase of cyclinD1 during

palbociclib treatment may be due to different degradation rates between the cyclinD1:Cdk4/6: palbociclib

complex (number 14 in Table 1) and the cyclinD1:Cdk4/6 (number 12 in Table 1). When calibrating the

model, we allowed the degradation rate of cyclinD1:Cdk4/6:palbociclib to be smaller than the degradation

rate of cyclinD1:Cdk4/6 but greater than the degradation rate of cyclinD1:Cdk4/6:p21. This results in accu-

mulation of cyclinD1 during palbociclib treatment that can partly explain the increase of cyclinD1 in the

constant palbociclib cases at 35days and 70days, as well as the alternating case at 35days.

However, we also saw that cyclinD1 experimentally increases at 70 days in the alternating treatment, which is

just finishing an ICI interval. This increase cannot be explained by the decreased degradation rate of cy-

clinD1:Cdk4/6:palbociclib as this effect rapidly decays during the ICI interval (Figure S7E). In order to account

for this effect, we added a phenomenological variable, rescyclinD1palbo (number 7 in Table 1), to the model

that gradually increased cyclinD1 in response to long-term palbociclib treatment. The effect decreases slowly

once palbociclib is removed (Figures S7C and S7D), so that the cyclinD1 levels during the ICI intervals of the

alternating treatment are increased over the levels in the ICI monotreatment (Figures 4B and 4E).

The above changes to themodel enabled it to capture the proliferation under alternating therapy as shown

in Figure 4A. The cyclinD1 level is higher during the ICI intervals of the alternating treatment compared to
8 iScience 26, 106714, May 19, 2023



Table 1. Model variables and initial values

Variable name Description Initial value Half-life

(1) E2media E2 concentration in the media 10 nM –

(2) E2cell E2 concentration in the cell 10 nM –

(3) ER Estrogen receptor a 1.97 nM �4-5h38

(4) E2ER Estrogen bound estrogen receptor a 835.19 nM �3-4h38

(5) E2NSB Estrogen bound non-specific binding 6697.83 nM –

(6) ICIER ICI 182,780 bound estrogen receptor 0 nM <3-4h38

(7) rescyclinD1palbo Variable induced by palbociclib increasing

cyclinD1

0 nM –

(8) cyclinD1 Protein cyclinD1 0.62 3 10�6nM �0.4h39

(9) cdk46 Protein Cdk4/6 3365.58 �5h40

(10) cdk46palbo Palbociclib bound Cdk4/6 0 nM –

(11) cdk46abema Abemaciclib bound Cdk4/6 0 nM –

(12) cyclinD1cdk46 CyclinD1 bound Cdk4/6 33.83 nM –

(13) cyclinD1cdk46p21 p21 bound cyclinD1:Cdk4/6 21.84 nM –

(14) cyclinD1cdk46palbo Palbociclib bound cyclinD1:Cdk4/6 0 nM –

(15) cyclinD1cdk46abema Abemaciclib bound cyclinD1:Cdk4/6 0 nM –

(16) cyclinD1cdk46p21palbo Palbociclib bound cyclinD1:Cdk46:p21 0 nM –

(17) cyclinD1cdk46p21abema Abemaciclib bound cyclinD1:Cdk46:p21 0 nM –

(18) cMyc Protein c-Myc 9.75 nM �0.3h41

(19) p21 Protein p21 0.0027 nM �0.3-1h42

(20) cyclinE Protein cyclinE 0.16 nM �0.5h43

(21) cyclinEp21 p21 bound cyclinE 0.036 nM –

(22) Rb Retinoblastoma protein 53.01 nM �2-3h44

(23) pRb Hypophosphorylated RB1 (RB1-p) 16.64 nM �2-3h44

(24) ppRb Hyperphosphorylated RB1 (RB1-pp) 0.49 nM >4h44

(25) respropalbo Variable induced by palbociclib inhibiting

proliferation

0 nM –

(26) Nalive Alive cell number 0.93a –

(27) Ndead Dead cell number 0.07a –

Variable names are italicized.
aThe values of Nalive and Ndead are assigned according to the alive and apoptotic percentage in Figure S5.
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ICI monotreatment (Figure 4B), which results in higher cyclinD1:Cdk4/6 and RB1-pp levels (Figures 4C and

4D). This effect causes the growth after the cells are transitioned from palbociclib to ICI to be greater than

would otherwise be expected. The rapidly decaying peaks of cyclinD1:Cdk4/6 and RB1-pp seen at the pal-

bociclib to ICI transition are due to the sudden release of palbociclib free Cdk4/6 and its complexes after

palbociclib withdrawal.

Protein changes at 10 weeks

Increased levels of the five proteins we measured, Figures 4E–4I are all associated with palbociclib

resistance in the literature.14,31,45–47 In our experiment, Cdk6, cyclinE, and Cdk2 levels show no statistically

significant difference among the different treatment conditions. Although Cdk4 does show a statistically

significant increase compared to untreated cells, the up-regulation is small (mean value of 1.4 at alternating

treatment 35 days and 1.3 at palbociclib monotreatment at 70 days). Only cyclinD1 shows a large increase

compared to untreated cells. There is no significant difference in cyclinD1 level between palbociclib mono-

treatment and the alternating treatment during palbociclib intervals in Figure 4E. Moreover, in order to test

whether the cyclinD1 gradually increases in response to long-term palbociclib treatment, as would be ex-

pected of a long-term resistance mechanism, we measured cyclinD1 changes at 7 days and 14 days after

750 nM palbociclib treatment. Figure 4J shows that the cyclinD1 level is already upregulated at 7 days
iScience 26, 106714, May 19, 2023 9
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Figure 5. Palbociclib dose response and gene expression profiles for cells after long time mono and alternating treatments

(A) Palbociclib dose response normalized to vehicle on cells after 10 weeks palbociclib (750 nM) monotreatment and alternating treatment compared to

parental MCF7 cells and MCF7 cells in 10 weeks E2 control condition. The alternating treatment is the same as Figure 4A, which is E2+palbo(750 nM)

alternating with E2+ICI(750 nM). Each treatment period is 7days and starts with E2+palbo(750 nM). The cells in all conditions are re-plated at 35days and the

dose responses are tested at 70 days.

(B) Palbociclib dose response normalized to t = 0, otherwise same as (A).

(C) The GR value of palbociclib dose response, otherwise same as (A).

(D) Palbociclib dose response normalized to vehicle for cells after 12 months palbociclib (750 nM) monotreatment and alternating treatment compared to

parental MCF7 cells. Treatments are the same as (A) except the alternation period is 1 month, the duration is extended to 12months, and the dose responses

are tested at 12 months.

(E) Palbociclib dose response normalized to t = 0, otherwise same as (D).

(F) The GR value of palbociclib dose response, otherwise same as (D).

(G) Heatmap of gene expression profiles for cells after 10 weeks palbociclib monotreatment, cells after 10 weeks alternating treatment, parental MCF7 cells

and cells cultured over 24 weeks in palbociclib (500 nM). The cells from palbociclib monotreatment and alternating treatment are the same as (A).

(H) Principal component analysis of gene expression profiles on the same cells as (G). (PC1 vs. PC2).

(I) Principal component analysis of gene expression profile on the same cells as (G). (PC1 vs. PC3).

(J) Principal component analysis of gene expression profile on the same cells as (G). (PC2 vs. PC3).
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Figure 5. Continued

(K) Principal component analysis of gene expression profile on the same cells as (G). (PC1 vs. PC2 vs. PC3).

(L) Gene Set Enrichment Analysis (GSEA) was performed on the same cells as (G). The C3 regulatory target gene sets in the Molecular Signatures Database

(MSigDB) were used.
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and there are no significant differences in cyclinD1 levels among palbociclib monotreatment at 7 days,

14 days, 35 days, or 70 days. The observed increases in cyclinD1 can be explained by a rapid response

to palbociclib treatment and do not represent a long-term change leading to resistance. Therefore, the

five quantified proteins do not indicate any difference in moving toward resistance to palbociclib between

the mono and alternating treatments.
Palbociclib dose-response changes at 10 Weeks versus 12 months

At the end of 10 weeks, a 7-day palbociclib dose-response assay was used to compare the proliferation

of MCF7 cells after undergoing no treatment, monotreatment, or alternating treatment. Figures 5A–5C

show the results for three different normalizations: growth in vehicle, number of initial cells at t = 0, and

the growth-rate inhibition metric, GR.48 Figure 5A normalizes the proliferation of each case to its prolif-

eration in vehicle, which is the usual method of normalization in biological experiments. As expected, the

treatment-naı̈ve (parental and E2 control) cells are the most sensitive to palbociclib. This plot also shows

that the alternating treatment cells are much more sensitive to palbociclib, compared with the mono-

treatment cells, at all doses of palbociclib. This would lead one to think that the alternating treatment

is producing less resistant cells compared to monotreatment. However, when the dose-response results

are normalized to t = 0, as shown in Figure 5B, we see that the proliferation of the palbociclib monotreat-

ment cells is much less than that of the vehicle treated (E2 control). Because the proliferation is already

low and palbociclib does not significantly upregulate apoptosis,24 the proliferation cannot decrease

much further. Thus, relatively speaking, the decrease in proliferation from the drug is smaller than in

the other cases, making the cells appear less sensitive to palbociclib when normalized to vehicle as in

Figure 5A. In contrast, the cells from alternating treatment have a relatively higher proliferation in vehicle

and palbociclib can inhibit the proliferation more, which makes the cells appear sensitive to palbociclib.

It should be noted, however, that for all doses, the alternating treatment cells proliferate faster than the

monotreatment cells, which makes it impossible to claim an advantage for alternating treatment at

10 weeks, even if by standard measures the alternation results in cells that are more sensitive to

palbociclib.

This problem of interpretation has been noticed previously and drove the development of a new

metric, growth-rate inhibition (GR, see STAR Methods). GR is robust to variations in cell growth rate

and quantifies the efficacy of a drug on a per-division basis, which can ensure that fast- and slow-dividing

cells responding equally to a drug are scored equivalently.48 Figure 5C shows the GR values for the

palbociclib dose response and there is no significant difference between the mono and alternating

treatments at 10 weeks. Therefore, although the dose response normalized to vehicle, Figure 5A, shows

a difference between mono and alternating treatment, this effect comes from the different basal cell di-

vision rates of the mono and alternating treatment and obscures the true nature of the palbociclib dose

response.

To explore what happens when resistance to monotherapy has more fully developed, a 12 months alternating

experiment using the same drugs and doses was performed. The alternation took place at the end of each

month when the cells were also re-plated. At the end of 12 months a dose response was performed and

the results are shown in Figures 5D–5F. At this time, the palbociclib monotreatment cells were outgrowing

the alternating cells in vehicle (Figure 5E), but the growth of each arm was more similar than at 10 weeks.

The result is that all three normalizations show similar behavior: the alternating cells are significantly more sen-

sitive to palbociclib than the palbociclib monotreatment cells, indicating a delay in acquiring resistance. The

alternating cells are beginning to acquire resistance, however, as can be seen by comparison to the parental

cells in Figure 5F. So, alternating therapies do show promise for delaying resistance, but better protocols are

needed to hold down the excessive growth seen in the 10-week experiment. Also, accurate predictions at very

long time scales will require adding resistance mechanisms to the model.

It can be argued that the reason the alternating cells were more sensitive to palbociclib was not due to the

alternation, but rather that they experienced less total drug than the monotreatment cells and that cells
iScience 26, 106714, May 19, 2023 11



ll
OPEN ACCESS

iScience
Article
exposed to a constant dose of 375 nM of palbociclib would show the same increased sensitivity. Even if

true, the proliferation for the 375 nM case would be too excessive to be a viable therapy (see Figures 1G

and 1H), as was also true for the alternating therapy in Figure 4A. Hence, the necessity of finding an alter-

nating therapy that better holds down proliferation.
Gene expression changes at 10 weeks

Lastly, we analyzed gene expression profiles to look for differences between the palbociclib mono and

alternating treatment cells at 10 weeks. Figure 5G shows the heatmap of differentially expressed genes

for four cases of MCF7 cells: parental cells (control), 10 weeks of palbociclib monotreatment, 10 weeks

of alternating treatment, and cells cultured for >6 months (palbo mono 24weeks+) in palbociclib

(500 nM). Although the alternating treatment cells clustered with the palbo mono 24weeks+ cells,

the heatmap revealed distinct expression patterns for the four different treatments. The reason that

alternating cells are in the same cluster with the palbo mono 24weeks+ cells is likely because they

both have positive values of the first principal component (PC1), as shown by principal component anal-

ysis (PCA) in Figures 5H–5K. The 2D and 3D PCA plots clearly show that cells under the four different

treatments are separated into different groups. Gene Set Enrichment Analysis (GSEA) of the C3 regu-

latory target gene sets in the molecular signatures database (MSigDB) is shown in Figure 5L. The first 10

most significantly different regulatory target gene sets are plotted. Under the alternating treatment,

the most changed gene sets are microRNA regulated, which might be caused by prolonged ICI treat-

ment.49–51 Under the palbociclib monotreatment, the E2F regulated gene sets are the most changed.

The E2F transcription factor is the central player in regulating the expression of genes involved in the

G1 to S phase transition and the target genes in the listed sets include cyclinD1, cyclinE, Cdk2, Cdc25A,

cyclinA, etc.52,53 In the palbo mono 24weeks+ cells, different gene sets are altered compared to the

10 weeks mono and alternating treatment cells, which might be related to the ongoing development

of resistance such as BARHL1 target genes.54
Using model-generated isobolograms to determine synergies

Cancer cells depend on a variety of molecular mechanisms for proliferation or survival, and therefore,

drug combinations are often used to simultaneously target key molecular mechanisms to more effec-

tively reduce proliferation, or help delay or overcome resistance.55 A key question for drug combinations

is whether there is a synergism between the drugs. A synergistic interaction between drugs may allow

significantly lower doses of the individual drugs when used in combination as opposed to individually.

It may benefit patients by reducing toxicity and adverse effects. There are numerous ways to define

drug synergy, but we make use of the isobologram as we think it gives the clearest picture of the inter-

action of two drugs. An isobologram is a graph of lines of constant effect, called isoboles, proposed by

Loewe in 1953.56

The upper plot of Figure 6A illustrates an ideal sampling scheme, where each axis represents the dose

for a specified drug. Each blue hexagon is a measurement of the effect either solely from drug 1, or

solely from drug 2, or of the combination effect from the doses of drug 1 and drug 2 that make up

its coordinates. The drug effect of interest in this paper is proliferation. After measuring the effect at

each dosage point of the isobologram, we draw the isoboles, which are lines joining the points of equal

measured effect. The lower plot of Figure 6A shows example isoboles, where the different drug doses

at each point on the isoboles give the same effect. The various isoboles illustrate the various possibil-

ities of independence of effect (1), antagonism (2), additivity (3), super-additivity (4), and sub-addi-

tivity (5).57

In this paper, we define a drug combination to be synergistic if it is super-additive. To obtain accurate iso-

boles, a large number of measurements are needed, as shown in Figure 6A. This makes the experimental

determination of isoboles a challenging project. With a mathematical model, however, the generation of

isoboles is essentially trivial, as a large number of simulations can easily be run and the results provided to a

contour plotting program to get the isoboles. Figures 6B–6I show the isoboles computed by our model for

cases ICI v. E2, palbociclib v. E2 (high), palbociclib v. E2 (low), abemaciclib v. E2 (high), abemaciclib v. E2

(low), abemaciclib v. palbociclib, ICI v. palbociclib, and ICI v. abemaciclib, respectively. The drug effect

considered in these isoboles is the fold-change in cell number over 17 days of treatment and the results

illustrate a range of different interaction types.
12 iScience 26, 106714, May 19, 2023
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Figure 6. Model simulation of isobolograms among various treatment methods and experimental verifications

(A) Illustration of the isobologram. Each blue hexagon represents a measurement point for mono or combination drug treatment effects. The lines joining

the (interpolated) points of equal measured effect are isoboles, such as lines in the lower plot, which represent different interaction types: (1) Independence

of effect; (2) Antagonism; (3) Additive; (4) Super-additive; (5) Sub-additive.

(B) Model simulation of isobologram between ICI and E2 for the normalized cell number at 17days. Different colors of the isobole represents the different

levels of normalized cell number. The solid line represents the lowest cost value simulation and the shaded regions contain the central 98% of the cohort

simulations.

(C) Model simulation of isobologram between palbociclib and E2 (high concentration) for the normalized cell number at 17days.

(D) Model simulation of isobologram between palbociclib and E2 (low concentration) for the normalized cell number at 17days.

(E) Model simulation of isobologram between abemaciclib and E2 (high concentration) for the normalized cell number at 17days.

(F) Model simulation of isobologram between abemaciclib and E2 (low concentration) for the normalized cell number at 17days.

(G) Model simulation of isobologram between palbociclib and abemaciclib for the normalized cell number at 17days.

(H) Model simulation of isobologram between palbociclib and ICI for the normalized cell number at 17days.

(I) Model simulation of isobologram between abemaciclib and ICI for the normalized cell number at 17days.

(J) Boxplot of the model predictions and experimental verifications of normalized cell number showing the synergism between palbociclib and ICI. The

doses of drug combinations used in the experiment are marked by the blue hexagons in (H). The prediction results shown in purple are from all cohort

simulation results. Statistical testing was performed by two-way ANOVA (ns: non-significant; *: p < 0.05; **: p% 0.01; ***: p% 0.001; ****: p% 0.0001). Center

line on each box is the median. The bottom and top lines on each box are the 25th and 75th percentiles, respectively. The whiskers are maximum and

minimum values without considering outliers. Data points are considered outliers if they are more than 1.53 IQR (interquartile range) below the 25th

percentile or above the 75th percentile.

(K) Boxplot of the model predictions and experimental verifications of normalized cell number showing the synergism between abemaciclib and ICI. The

doses of drug combinations used in the experiment are marked by the blue hexagons in (I). The prediction results shown in purple are from all cohort

simulation results. The statistical testing used and explanation of the boxplot are the same as (J).
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Figure 6B shows that the interaction between ICI and –E2 is additive. This is reasonable because both ICI

and –E2 target the estrogen signaling pathway and decrease the E2:ER transcription factor level without

directly influencing any other targets in the model. ICI and –E2 influence ER only through binding and
iScience 26, 106714, May 19, 2023 13
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unbinding reactions, so the level of E2:ER will linearly decrease after increasing ICI or decreasing E2. There-

fore, the effects of ICI and –E2 as mono and combination treatments are the same, to linearly decrease

E2:ER level.

Figures 6C and 6D show the interaction between palbociclib and –E2 and indicates that the effect of

palbociclib is largely independent of the concentration of E2 until the E2 concentration gets into the

picomolar range. Figure 6D provides a zoomed in plot of the isoboles for low concentrations of E2 and

shows that the interaction between palbociclib and deprivation is additive or slightly super-additive in

this region.

Figures 6E and 6F show the interaction between abemaciclib and –E2. As expected, the interaction be-

tween abemaciclib and –E2 is same as palbociclib with –E2, which is independent of the concentration

of E2 until the E2 concentration gets into the picomolar range, where the interaction becomes additive

or slightly super-additive. Figure 6G shows the interaction between abemaciclib and palbociclib is primar-

ily additive. This is reasonable because abemaciclib and palbociclib both target the Cdk4/6 activity with a

binding-unbinding reaction.

Figure 6H shows the interaction between ICI and palbociclib and indicates a significant synergism be-

tween ICI and palbociclib. To test the dramatic reduction in proliferation predicted by the model

when adding small amounts of a second drug, an experiment was performed where the ICI dose was

held constant at 200 nM and various doses of palbociclib were added (0 nM, 50 nM, 100 nM, and

300 nM, blue hexagon in Figure 6H). The dramatic decrease in population growth is borne out in the

experimental results shown in Figure 6J. It should be emphasized that the model parameters were cali-

brated using only data from ICI and palbociclib monotreatments, not data from combination treatments.

We believe the reason the model gives an experimentally consistent prediction of this significant syner-

gism is because the structure of the model is based on the dominant signaling pathways of the system. In

our mechanistic model, we include ICI’s effects on E2:ER, E2:ER’s effects on cyclinD1, and palbociclib’s

effects on Cdk4/6. Therefore, the activity of the cyclinD1:Cdk4/6 kinase is attacked from both the cy-

clinD1 and Cdk4/6 directions to create the synergism. This may be the reason that palbociclib in com-

bination with endocrine therapies achieved substantial improvement in survival outcomes in clinical trials

and quickly became the first-line choice of treatment for ER + breast cancer.5 This synergy is in contrast

to the combination of ICI and –E2, whose mechanisms both target E2:ER, and produce an additive but

not synergistic response.

Figure 6I shows the interaction between ICI and abemaciclib, which also indicates a significant synergism.

Likewise, experiments were performed to test the major reduction in proliferation predicted by the model,

where the ICI dose was held constant at 200 nM and various doses of abemaciclib were added (0 nM, 50 nM,

100 nM, blue hexagons in Figure 6I). As expected, the dramatic decrease predicted in Figure 6I is borne out

in the experimental results shown in Figure 6K. The explanation for the synergism between abemaciclib

and ICI is same as for palbociclib and ICI.

The ability to easily produce isoboles for various metrics, such as proliferation over a specified time frame,

allows us to propose optimal combination therapies. For example, considering a combination treatment of

ICI and palbociclib, we can minimize the total dose of drugs, [ICI]+[palbociclib], that achieves our specified

objective. Other possibilities include minimizing the total normalized dose of the drugs or some other

weighted dose, [ICI]+l[palbociclib], that reflects preferences based on toxicity or other concerns. Since

palbociclib is typically used in the clinic in an intermittent fashion, three weeks on and one week off, due

to neutropenia concerns, we could limit the above optimizations to lower doses of palbociclib that allow

constant application so that excessive proliferation during the week off is avoided.
Alternating treatment predictions

Ultimately, as mentioned above, we would like to show that the mathematical model allows us to pro-

pose optimal combination therapies. The experimental proliferation results in Figure 4A show that

alternating palbociclib with ICI produces dramatically greater proliferation than the monotreatment.

So, even if this alternation results in cells that are less resistant, it would not be a viable therapeutic

approach. On the other hand, continuously applied monotreatment almost always leads to resistance
14 iScience 26, 106714, May 19, 2023
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Figure 7. Optimal treatment design using the model

(A) Proposed Alternating treatment to reduce total drug dosage. E2+palbo(770 nM) monotreatment is shown in purple

with a solid line. E2+ICI(700 nM) monotreatment is shown in black with a solid line. For the alternating treatment, each

treatment period is 7days. In a 28 days cycle, the alternation starts with E2+palbo(280 nM) shown in purple with a dashed

line, then changes to a combination treatment of E2+palbo(190 nM)+ICI(365 nM) shown in a brown dashed line, then

changes to E2+ICI(515 nM) shown in a black dashed line, then changes to the combination treatment again. The cycle is

repeated 3 times for a total of 84 days. The solid and dashed lines represent the lowest cost value simulation and the

shaded regions contain the central 98% of the cohort simulations.

(B) Model simulation of normalized total cyclinD1 level changes in the proposed alternating treatments shown in (A). The

lines and shaded regions have the same meaning as (A).

(C) Model simulation of normalized cyclinD1:Cdk4/6 level changes in the proposed alternating treatment shown in (A).

(D) Model simulation of normalized RB1-pp level changes in the proposed alternating treatment shown in (A).
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and recurrence. So we used the model to look for better options to the simplistic alternating treat-

ment we used above.

Simply trying to minimize proliferation will lead to the unhelpful answer of massive drug doses that would

never be tolerable in any real application. Therefore, we decided to minimize the total drug dose over a

12-week time period, subject to the constraint that the overall fold-change be no greater than that of pal-

bociclib monotreatment. Since this would likely lead to simply applying the best combination of palboci-

clib and ICI continuously, leading ultimately to resistance, we specified the repeating cycle to consist of

1 week of palbociclib, 1 week of a combination, 1 week of ICI, and 1 week of the same combination again.

An optimization routine choses the drug doses in each week so as to minimize the total drug concentration

applied over the 12-week period. The results are shown in Figure 7A. By design, the alternating treatment

has the same fold-change as the monotreatment, but the optimized alternating treatment uses about

1200 nM less total drug dose per cycle compared to the palbociclib monotreatment, 1905 nM compared

to 3080 nM, and about 900 nM less total drug dose per cycle than the ICI monotreatment, 1905 nM

compared to 2800 nM. The combination treatment intervals not only find the synergistic sweet spot, noted

above, to virtually stop growth and allow basal apoptosis to reduce the population, but they reduce the

proliferation during the monotreatment intervals compared to switching directly from one monotreatment

to another (Figures 7B–7D). This result shows that more sophisticated alternating treatments may provide
iScience 26, 106714, May 19, 2023 15
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benefits in terms of reduced drug dose while not continuously applying the same regimen, possibly delay-

ing the onset of resistance.

DISCUSSION

In this work, we built a mechanistic ODE model to capture the response of MCF7 cells to clinically used

anticancer therapies for ER + breast cancer. We used the model to recapitulate and predict drug treatment

effects on these cells and optimize drug combinations. As the model has a mechanistic basis and the rele-

vant targets were already included when creating the model for palbociclib, we showed that the model can

be easily extended to test the effect of one of the other Cdk4/6 inhibitors, abemaciclib. We also illustrated

the usefulness of the model to efficiently investigate synergism among the different treatments included in

the model.

While much of the work in cell lines to explore the impact of therapies takes place over short time frames of

less than a week, most clinical therapy occurs over much longer time frames of months and years.58,59 The

work reported here looks for insights from cell lines over these longer time periods. Because of the limited

number of such experiments that can be run, trial and error approaches are not viable. We used a mathe-

matical model of the system, calibrated on limited data, to guide our explorations and search for better

therapy options. Predicting drug responses over long time periods is not simply a matter of taking a model

calibrated on data from a week long experiment and running it for a longer period, as there are significant

factors affecting the model that are only clearly seen over longer time periods. This necessitates long-term

experiments to calibrate the model. One example of this is that cell proliferation under –E2 treatment over

a long timescale behaved qualitatively different than proliferation over a short timescale. Another example

of this is the excessive growth observed when ICI treatment was applied after initially treating with palbo-

ciclib. This observation and additional experiments led us to the fact that treatment with palbociclib in-

creases cyclinD1, something we had missed earlier. The revised mathematical model allowed us to pro-

pose a protocol to counter this effect.

Since our ultimate goal is to delay or prevent the onset of drug resistance, adding resistancemechanisms to

the model is a critical requirement for future work.60–64 The cyclinD1 change mentioned above is a minor

step in that direction, but the development of resistance is a complex, multi-faceted process and there are

many different pathways that lead to a drug resistant state.65,66 To see whether a therapeutic protocol de-

lays the emergence of resistance compared to monotreatment will require experiments over time periods

of many months, necessitating the use of mathematical models to propose the most promising protocols

to explore.58,67,68

The use of alternating therapies to delay resistance is predicated on the assumption that the initial stages

of acquiring resistance are reversible, which appears likely in many cases.11,69–75 A critical mutation, how-

ever, can render most targeted therapies useless and thus upend any alternating protocol.76–82 To limit the

probability of mutation, a much greater reduction in proliferation than is achieved in our current experi-

ments is necessary. Periodically adding a more cytotoxic drug into the protocol is probably required.83,84

In addition, although alternating treatment does not continuously apply a single drug to attack the cancer

cells, our current approach using standard of care treatments for ER + breast cancer is to continuously ar-

rest cells in the G1/S phase of the cell cycle with anti-estrogens and Cdk4/6 inhibitors.85 Resistant cells can

bypass the G1/S blockade and alter G2/M cell cycle proteins to survive.76,81,86,87 Therefore, targeting of

multiple cell cycle phases may be needed to avoid development of resistance to current therapies in

ER + breast cancer.63,88–90

The current model includes some phenomenological equations to deal with the long-term effects of drugs,

the mechanisms of which are not clear. To determine whether this limits the predictive power of the model

will need to be assessed with future long-term experiments. Finally, we recognize that work in cell lines may

not directly translate to animals and humans, but hope that it may provide insights that can benefit work

closer to the clinic.

Limitations of the study

Our model structure not only relies heavily on prior biological knowledge but also ignores many known and

likely unknown processes in order to create a reasonably sized model. The large number of parameters in

themodel makes overfitting our noisy data a concern. We attempted to alleviate this concern by producing
16 iScience 26, 106714, May 19, 2023
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a large cohort of parameter sets that approximately fit the data and using this cohort to make predictions

with the model.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-b-Actin Santa Cruz Biotechnology Cat#sc-47778; RRID:AB_626632

anti-b-Tubulin I Sigma-Aldrich Cat#T7816; RRID:AB_261770

anti-Cdk2 Cell Signaling Technology Cat#2546; RRID:AB_2276129

anti-Cdk4 Cell Signaling Technology Cat#12790; RRID:AB_2631166

anti-Cdk6 Cell Signaling Technology Cat#3136; RRID:AB_2229289

anti-CyclinD1 Cell Signaling Technology Cat#2978; RRID:AB_2259616

anti-CyclinE (HE12) Santa Cruz Biotechnology Cat#sc-247; RRID:AB_627357

anti-c-Myc Cell Signaling Technology Cat#5605; RRID:AB_1903938

anti-ERa ThermoFisher Scientific Cat#MA5-14104; RRID:AB_10975403

anti-RB1 Cell Signaling Technology Cat#9309; RRID:AB_823629

anti-RB1-pp(S612) Aviva Systems Biology Cat#OAAB16108

Chemicals, peptides, and recombinant proteins

phenol red-free improved minimal essential

medium

ThermoFisher Scientific Cat#A10488-01

Faslodex/Fulvestrant; ICI182,780 Selleck Chemicals, Houston, TX Cat#S1191; CAS#129453-61-8

palbociclib Selleck Chemicals, Houston, TX Cat#S1116; CAS#827022-32-2

abemaciclib Cayman Chemical Cat#17740; CAS#1231930-82-7

Bovine Calf Serum Charcoal Stripped (CCS) GeminiBio Cat#100-213

17b-estradiol (E2) Sigma-Aldrich, St. Louis, MO Cat#E8875; CAS#50-28-2

cOmplete Mini Protease Inhibitor Cocktail

Tablets

Roche Applied Science Cat#11836153001

Apotracker BioLegend, San Diego, CA Cat#427402

propidium iodide Thermofisher Scientific Waltham, MA Cat#P1304MP

Critical commercial assays

Bicinchoninic Acid (BCA) Protein Assay Kit ThermoFisher Scientific Cat#23227

SurePrint G3 Human Gene Expression v3

8x60K Microarray Kit

Agilent, Santa Clara, CA Cat# G4851C; Design ID #072363

Direct-zol RNA Miniprep Kit Zymo Research, Irvine, CA Cat#R2052

Deposited data

Microarray data shown in Figure 5 This paper GEO accession numbers: GSE229002

Experimental models: Cell lines

MCF7 https://doi.org/10.3389/fonc.2021.681530 N/A

Software and algorithms

Code for modeling This paper https://doi.org/10.5281/zenodo.7792216

MATLAB 2021 MathWorks, Inc RRID:SCR_001622; https://www.mathworks.

com/products/matlab.html

R R Core Team, 2013 https://www.r-project.org/

limma (R package) Ritchie et al., 201591 RRID:SCR_010943; https://bioconductor.org/

packages/release/bioc/html/limma.html
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clusterProfiler (R package) Yu et al., 201292 and Wu et al., 202193 RRID:SCR_016884; https://bioconductor.org/

packages/release/bioc/html/clusterProfiler.

html

msigdbr (R package) Dolgalev, I. 202194 RRID:SCR_022870; https://cran.r-project.org/

package=msigdbr

stats (R package) R Core Team, 2013 https://www.r-project.org/

tidyverse (R package) Wickham et al., 201995 RRID:SCR_019186; https://cran.r-project.org/

web/packages/tidyverse/index.html

gplots (R package) Warnes, 201196 https://cran.r-project.org/package=gplots

ggplot2 (R package) Wickham, 201697 RRID:SCR_014601; https://cran.r-project.org/

web/packages/ggplot2/index.html

plotly (R package) Sievert, 202098 RRID:SCR_013991; https://cran.r-project.org/

web/packages/plotly/index.html
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RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, William T. Baumann (baumann@vt.edu).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this study has been deposited at Zenodo with the original code. Microarray data has

been deposited and is publicly available as of the date of publication. Accession number is listed in the

key resources table in the Deposited Data section.

d Original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs

are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from

the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and reagents

MCF7 cells were obtained from Tissue Culture Shared Resources at Lombardi Comprehensive Cancer Cen-

ter, Georgetown University, Washington, DC. MCF7 cells were grown in phenol red-free improved minimal

essential medium (Life Technologies, Grand Island, NY; A10488-01) with 10% charcoal-stripped calf serum

(CCS) and supplemented with 10nM 17b-estradiol (E2). ICI (Faslodex/Fulvestrant; ICI182,780) and

palbociclib were obtained from Tocris Bioscience (Ellisville, MO). MCF7 cells were authenticated by

DNA fingerprinting and tested regularly for Mycoplasma infection. All other chemicals were purchased

from Sigma-Aldrich (St. Louis, MO).
METHOD DETAILS

Cell proliferation assay

Cells were seeded at a density of 4–5 3 104 cells/well in 60 mm plates and treated with indicated drugs at

24 h post plating. E2 deprivation was obtained by washing cells 24 h post-plating (t = 0) with phosphate-

buffered saline (PBS) and adding complete medium without E2 for the indicated times. To measure cell

number at specific time-points, cells were trypsinized, resuspended in PBS and counted using a Z1 Single

Coulter Counter (Beckman Coulter, Miami, FL).
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Western blot analysis

For Western blot analysis, cells were lysed for 30 min on ice with lysis buffer (50 mM Tris-HCl, pH 7.5, con-

taining 150 mM NaCl, 1 mM EDTA, 0.5% sodium deoxycholate, 1% IGEPAL CA-630, 0.1% sodium dodecyl

sulfate (SDS), 1mMNa3VO4, 44 mgml�1 phenylmethylsulfonyl fluoride) supplementedwith CompleteMini

protease inhibitor mixture tablets (Roche Applied Science). Total protein was quantified using the bicin-

choninic acid assay (Pierce). Whole-cell lysate (20 mg) was resolved by SDS–polyacrylaminde gel

electrophoresis.
Apoptosis assay

2-5 x 105 cells were plated in 6-well plates, were treated for 72 h, and stained with Apotracker green and

propidium iodide, respectively (Thermofisher Scientific Waltham, MA) according to the manufacturer’s

protocol and fluorescence was measures by the Flow Cytometry Shared Resources at Georgetown Univer-

sity Medical Center. Each experiment was repeated at least three times.
Microarray

Microarray analysis was performed using four biological replicates using Agilent Human Gene Expression

V3 8x60k Microarray Kit, G4858A-Amadid:072363 G3 GEx Human V3 (Agilent, Santa Clara, CA, USA), at our

Genomics and Epigenomics Shared Resources. Briefly, total RNA was extracted using the RNeasy kit (Qia-

gen, Valencia, CA, USA). RNA labeling and hybridization were performed according to the Agilent protocol

for one-color target labeling. For each experiment, fragmented cDNA was hybridized in triplicates to the

human gene expression arrays.
Dynamics of E2 deprivation

Removing E2 completely from cultured cells that have been growing in medium containing E2 cannot be

accomplished by simply changing to amedium containing no E2. The E2 deprivation procedure is conduct-

ed by exchanging the E2 medium with 5% charcoal stripped calf serum (CCS) and phenol-red free media.99

The E2 level in CCS is routinely measured to be less than 4 pM,99 equating to 0.2 pM in 5% CCS media. But

the E2 in the cell is at a significantly higher concentration than that in the medium and it can diffuse back

into themedium and cause an increase in the E2 concentration.While the concentration of E2might be low,

its effect might not be negligible because a direct mitogenic effect of exogenous E2 on MCF7 can be initi-

ated as low as 3 pM and maximized at 0.2 to 10nM.100 Furthermore, other than estrogen receptors, there

exist nonspecific bindings between estrogen and other elements inside the cell.101 Therefore, MCF7 cells

growing in an E2 condition have a much higher internal concentration of E2 than that of medium due to

non-specific binding of E2 in the cytoplasm as well as specific binding of E2 to various estrogen receptors

in the cell. When we deprive the medium of estrogen, E2 from the cells leaches into the new medium and a

new balance between the estrogen levels inside and outside the cell is achieved. The newly established E2

level that can be significant for maintaining proliferation. From the –E2 proliferation result shown in Fig-

ure 1D, the initial growth period is short and the cells nearly stop growing later on. As the medium is re-

placed as the experiment proceeds, the E2 level continues to drop and the cells stop proliferation.

In a one-week proliferation experiment (Figure S3), we changed the medium at time zero and at day 3 to –

E2 medium and counted the cells on day 7. In a parallel experiment, an extra medium change was inserted

at 3 hours. The experiment was conducted with two different plating densities. We can see that the extra

media change, which further decreases the residual E2 level, significantly reduces the overall MCF7 prolif-

eration at 1 week. Not only do the changes in E2 concentration with each successive medium change

impact proliferation for long time continuous –E2 treatment, but these changes are also critically important

when we consider alternating treatments. For example, if we alternate E2+palbo with –E2 treatment, after

the transition from E2 to –E2 medium excess E2 will leach into the medium causing undesired growth. This

issue drove us to model the E2 concentration dynamically. Thus, modeling the E2 dynamics is needed to

capture the effect of alternating treatment.
Dynamic modeling of E2 deprivation

After a medium change, the total number (#) of E2 molecules should be constant, so the amount of E2 leav-

ing the cell should be equal to the amount of E2 entering the medium and vice versa. The rate of change in

the number of E2 molecules in the cell caused by diffusion is:
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dE2#cell

dt
= � kdiff 3

�½E2�cell � ½E2�media

�
3N3 S1cell (Equation 1)

Where E2#cell is the total number (#) of E2 molecules in the cells, kdiff is the diffusion rate across the cell

membrane and � kdiff3ð½E2�cell � ½E2�mediaÞ has units of #=ðm2 3 tÞ, ½E2�cell is the E2 concentration in the

cell, ½E2�media is the E2 concentration in the medium, N is the total cell number and S1cell is the surface

area of a single cell.

Because E2#cell = ½E2�cell 3 Volcells, where Volcells is the total volume of cells, which changes with time,

Equation 1 becomes:

d
�½E2�cell 3Volcells

�
dt

= � kdiff 3
�½E2�cell � ½E2�media

�
3N3S1cell (Equation 2)
d½E2�cell
dt

3Volcells +
dVolcells

dt
3 ½E2�cell = � kdiff 3

�½E2�cell � ½E2�media

�
3N3 S1cell (Equation 3)
d½E2�cell
dt

=
� kdiff 3 S1cell 3

�½E2�cell � ½E2�media

�
Vol1cell

� dVolcells
dt

3 ½E2�cell 3
1

Volcells
(Equation 4)

setting k0diff = kdiff3S1cell
Vol1cell

, Equation 4 becomes

d½E2�cell
dt

= � k 0
diff 3

�½E2�cell � ½E2�media

� � dVolcells
dt

3 ½E2�cell 3
1

Volcells
(Equation 5)

Where the first term on the right is the rate of change related to diffusion and the second term is the rate of

change related to variations in total cell volume. To simplify the second term, note that:

dVolcells
dt

3
1

Volcells
=

�
dN

dt

�
3Vol1cell 3

1

Volcells
(Equation 6)

So Equation 5 becomes

d½E2�cell
dt

= � k 0
diff 3

�½E2�cell � ½E2�media

� �

�
dN

dt

�
N

3 ½E2�cell
(Equation 7)

If we suppose the volume of the culture media doesn’t change, since it is massive compared to the total cell

volume, then the rate of E2 concentration changes in the media becomes

d½E2�media

dt
=
dE2#media

dt

1

Volmedia
=
k 0
diff 3Vol1cell 3N

Volmedia
3
�½E2�cell � ½E2�media

�
(Equation 8)

since the total number of molecules diffusing into the medium is equal to the total number of molecules

diffusing out of the cells.

Then Equations 7 and 8 are used to model the E2 dynamics during and after the deprivation. In Table 1,

½E2�cell is denoted as E2cell and ½E2�media as E2media. Each time the medium is changed to –E2, the value

½E2�media is set to the value of E2dep in table. Each time the medium is changed to control condition, the

value ½E2�media is set to the value of E2 in table.
Model parameter descriptions, values and declaration of fixed or calibrated

Parameter name Description Value Fixed/Calibrated

(1) kdiff Diffusion rate of E2 440.58/h Calibrated

(2) kbNSB Binding rate between non-specific binding and

E2

670.08/(h 3 nM) Calibrated

(3) kubNSB Unbinding rate between non-specific binding

and E2

1.0/h Fixed

(4) Vol1cell Volume of MCF7 cell 8 3 10�5mL Fixed

(5) Volmedia Volume of media 10 mL Fixed

(Continued on next page)
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Parameter name Description Value Fixed/Calibrated

(6) kER Translation rate of ER 250.75 nM/h Calibrated

(7) kdER Degradation rate of ER 0.10/h Fixed

(8) kdE2ER Degradation rate of E2ER 0.30/h Fixed

(9) kbE2ER Binding rate between E2cell and ER 55.13/(h 3 nM) Calibrated

(10) kubE2ER Unbinding rate between E2cell and ER 1.0/h Fixed

(11) kbICIER Binding rate between ICI and ER 0.29/(h 3 nM) Calibrated

(12) kubICIER Unbinding rate between ICI and ER 1.0/h Fixed

(13) kdICIER Degradation rate of ICIER 1.65/h Calibrated

(14) kcyclinD1 Translation rate of cyclinD1 7.89 nM/h Calibrated

(15) kdcyclinD1 Degradation rate of cyclinD1 1.39/h Fixed

(16) kcyclinD1E2ER Increased cyclinD1 translation by E2ER 11.54 Calibrated

(17) pcyclinD1E2ER1
Parameter 1 of cyclinD1 increased translation

by E2ER

1122.99 nM Calibrated

(18) pcyclinD1E2ER2
Parameter 2 of cyclinD1 increased translation

by E2ER

4.85 Calibrated

(19) kbcyclinD1cdk46 Binding rate between cyclinD1 and cdk46 28546.18 Calibrated

(20) kubcyclinD1cdk46 Unbinding rate between cyclinD1 and cdk46 1.0/h Fixed

(21) krescyclinD1palbo Generation rate of rescyclinD1palbo 0.033 nM/h Calibrated

(22) prescyclinD1palbo1
Parameter 1 of rescyclinD1palbo increased by

palbo

505.73 nM Calibrated

(23) prescyclinD1palbo2
Parameter 2 of rescyclinD1palbo increased by

palbo

3 Calibrated

(24) kdrescyclinD1palbo Degradation rate of rescyclinD1palbo 0.0032/h Calibrated

(25) kcyclinD1palbo Increase rate of cyclinD1 by rescyclinD1palbo 26.62 nM/h Calibrated

(26) pcyclinD1palbo1
Parameter 1 of cyclinD1 increased by

rescyclinD1palbo

7.09 nM Calibrated

(27) pcyclinD1palbo2
Parameter 2 of cyclinD1 increased by

rescyclinD1palbo

0.91 Calibrated

(28) kcdk46 Translation rate of cdk46 414.10 nM/h Calibrated

(29) kdcdk46 Degradation rate of cdk46 0.1155/h Fixed

(30) kbcdk46palbo Binding rate between cdk46 and palbo 69.07/(h 3 nM) Calibrated

(31) kubcdk46palbo Unbinding rate between cdk46 and palbo 1.0/h Fixed

(32) kbcdk46abema Binding rate between cdk46 and abema 0.13/(h 3 nM) Calibrated

(33) kubcdk46abema Unbinding rate between cdk46 and abema 1.0/h Fixed

(34) kdcyclinD1cdk46 Degradation rate of cyclinD1cdk46 0.71/h Calibrated

(35) kbcyclinD1cdk46palbo Binding rate between cyclinD1cdk46 and

palbo

0.01/(h 3 nM) Calibrated

(36) kubcyclinD1cdk46palbo Unbinding rate between cyclinD1cdk46 and

palbo

1.0/h Fixed

(37) kbcyclinD1cdk46abema Binding rate between cyclinD1cdk46 and

abema

0.018/(h 3 nM) Calibrated

(38) kubcyclinD1cdk46abema Unbinding rate between cyclinD1cdk46 and

abema

1.0/h Fixed

(39) kbcyclinD1cdk46p21 Binding rate between cyclinD1cdk46 and p21 256.7/(h 3 nM) Calibrated

(40) kubcyclinD1cdk46p21 Unbinding rate between cyclinD1cdk46 and

p21

1.0/h Fixed

(41) kdcyclinD1cdk46p21 Degradation rate of cyclinD1cdk46p21 0.063/h Calibrated

(Continued on next page)
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Continued

Parameter name Description Value Fixed/Calibrated

(42) kbcyclinD1cdk46p21palbo Binding rate between cyclinD1cdk46p21 and

palbo

0.063/(h 3 nM) Calibrated

(43) kubcyclinD1cdk46p21palbo Unbinding rate between cyclinD1cdk46p21

and palbo

1.0/h Fixed

(44) kbcyclinD1cdk46p21abema Binding rate between cyclinD1cdk46p21 and

abema

0.06/(h 3 nM) Calibrated

(45) kubcyclinD1cdk46p21abema Unbinding rate between cyclinD1cdk46p21

and abema

1.0/h Fixed

(46) kbcyclinD1cdk46palbop21 Binding rate between cyclinD1cdk46palbo and

p21

0.0028/(h 3 nM) Calibrated

(47) kubcyclinD1cdk46palbop21 Unbinding rate between cyclinD1cdk46palbo

and p21

1.0/h Fixed

(48) kbcyclinD1cdk46abemap21 Binding rate between cyclinD1cdk46abema

and p21

0.0081/(h 3 nM) Calibrated

(49) kubcyclinD1cdk46abemap21 Unbinding rate between cyclinD1cdk46abema

and p21

1.0/h Fixed

(50) kdcyclinD1cdk46palboabema Degradation rate of cyclinD1cdk46palbo and

cyclinD1cdk46abema

0.2/h Calibrated

(51) kcMyc Translation rate of cMyc 3.1 nM/h Calibrated

(52) kdcMyc Degradation rate of cMyc 2.31/h Fixed

(53) kcMycE2ER Increased translation of cMyc by E2ER 5.88 Calibrated

(54) pcMycE2ER1
Parameter 1 of cMyc increased translation by

E2ER

1066.31 nM Calibrated

(55) pcMycE2ER2
Parameter 2 of cMyc increased translation by

E2ER

2.13 Calibrated

(56) kcMycppRb Increased translation of cMyc by ppRb 4224.72 Calibrated

(57) pcMycppRb1
Parameter 1 of cMyc increased translation by

ppRb

1.46 nM Calibrated

(58) pcMycppRb2
Parameter 2 of cMyc increased translation by

ppRb

6.39 Calibrated

(59) kp21 Translation rate of p21 0.25 nM/h Calibrated

(60) kdp21 Degradation rate of p21 1.39/h Fixed

(61) kp21cMyc Rate of p21 translation inhibited by cMyc 2.64 Calibrated

(62) pp21cMyc1 Parameter 1 of p21 inhibited translation by

cMyc

8.6 nM Calibrated

(63) pp21cMyc2 Parameter 2 of p21 inhibited translation by

cMyc

1.78 Calibrated

(64) kcyclinE Translation rate of cyclinE 0.25 nM/h Calibrated

(65) kdcyclinE Degradation rate of cyclinE 1.39/h Fixed

(66) kcyclinEE2ER Increased translation of cyclinE by E2ER 5.31 Calibrated

(67) pcyclinEE2ER1
Parameter 1 of cyclinE increased translation by

E2ER

1206.68 nM Calibrated

(68) pcyclinEE2ER2
Parameter 2 of cyclinE increased translation by

E2ER

12.3 Calibrated

(69) kbcyclinEp21 Binding rate between cyclinE and p21 205.85/(h 3 nM) Calibrated

(70) kubcyclinEp21 Unbinding rate between cyclinE and p21 1.0/h Fixed

(71) kRb Translation rate of Rb 2.46 nM/h Calibrated

(72) kdRb Degradation rate of Rb 0.35/h Fixed

(Continued on next page)
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Parameter name Description Value Fixed/Calibrated

(73) kRbppRb Increased Rb translation by ppRb 6184.66 nM/h Calibrated

(74) pRbppRb1
Parameter 1 of Rb increased translation by

ppRb

1.85 nM Calibrated

(75) pRbppRb2
Parameter 2 of Rb increased translation by

ppRb

4.27 Calibrated

(76) kRbcyclinD1cdk46 Phosphorylation rate of Rb by cyclinD1cdk46 25.25/h Calibrated

(77) kpRbdepho Dephosphorylation rate of pRb 38.38 nM/h Calibrated

(78) kdpRb Degradation rate of pRb 0.35/h Fixed

(79) kpRbcyclinE Phosphorylation rate of pRb by cyclinE 16.69/h Calibrated

(80) kppRbdepho Dephosphorylation rate of ppRb 251.99 nM/h Calibrated

(81) kdppRb Degradation rate of ppRb 0.05/h Fixed

(82) pcyclinD1cdk461
Parameter 1 of cyclinD1cdk46 kinase activity 1.24 nM Calibrated

(83) pcyclinD1cdk462
Parameter 2 of cyclinD1cdk46 kinase activity 0.079 Calibrated

(84) pcyclinD1cdk46Rb1
Parameter 1 of Rb phosphorylation by

cyclinD1cdk46

0.41 nM Calibrated

(85) pcyclinD1cdk46Rb2
Parameter 2 of Rb phosphorylation by

cyclinD1cdk46

0.091 Calibrated

(86) ppRb1
Parameter 1 of pRb dephosphorylation 44.22 nM Calibrated

(87) ppRb2
Parameter 2 of pRb dephosphorylation 2.59 Calibrated

(88) pcyclinEpRb1
Parameter 1 of pRb phosphorylation by cyclinE 7.44 nM Calibrated

(89) pcyclinEpRb2
Parameter 2 of pRb phosphorylation by cyclinE 6.15 Calibrated

(90) pppRb1
Parameter 1 of ppRb dephosphorylation 10.28 nM Calibrated

(91) pppRb2
Parameter 2 of ppRb dephosphorylation 1.51 Calibrated

(92) kpro Basal proliferation rate 0.0011 Calibrated

(93) kproppRb Proliferation rate increased by ppRb 2682.18 Calibrated

(94) pproppRb1
Parameter 1 of proliferation rate increased by

ppRb

1.64 nM Calibrated

(95) pproppRb2
Parameter 2 of proliferation rate increased by

ppRb

3.95 Calibrated

(96) krespropalbo Generation rate of respropalbo 0.0029 nM/h Calibrated

(97) prespropalbo1
Parameter 1 of respropalbo increased by palbo 292.22 nM Calibrated

(98) prespropalbo2
Parameter 2 of respropalbo increased by palbo 2.02 Calibrated

(99) prespropalbokd
Parameter of degradation rate of respropalbo 6.83 Calibrated

(100) kdrespropalbo Degradation rate of respropalbo 0.015/h Calibrated

(101) kpropalbo Rate of proliferation inhibited by respropalbo 6.45 Calibrated

(102) ppropalbo1
Parameter 1 of proliferation inhibited by

respropalbo

2.37 nM Calibrated

(103) ppropalbo2
Parameter 2 of proliferation inhibited by

respropalbo

0.87 Calibrated

(104) kcarrying Carrying capacity 133.89 Calibrated

(105) kdeath Basal death rate 0.0021/h Calibrated

(106) klysis Lysis rate of dead cell 0.0026 Calibrated

(107) E2dep E2media in –E2 condition 1 3 10�6nM Fixed

(108) percentagedeadt0 Percentage of dead cell at t = 0 0.07 Fixed

(109) E2 E2media in control condition 10 nM Fixed

(110) ICI Concentration of ICI 182,780 Varies depending on treatment condition Fixed

(Continued on next page)
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Parameter name Description Value Fixed/Calibrated

(111) palbo Concentration of palbociclib Varies depending on treatment condition Fixed

(112) abema Concentration of abemaciclib Varies depending on treatment condition Fixed

h: hour.

Parameter names and model variable names are italicized.
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Mathematical model

The model depends heavily on the principal interactions of the G1-S transition. This is a necessity, since

fitting experimental observations with a relatively small model requires that the basic model structure cap-

tures the essential reality. But ignoring the potentially thousands of other interactions that affect this tran-

sition means that exactly fitting the data will not be possible. The cohort of parameter sets, discussed in the

paper, are used to avoid potential overfitting by showing that different parameter sets that provide reason-

able fits to the data also provide similar model predictions.
Biological signaling diagram

The structure of our ODEmodel is based on the signaling pathways of the G1-S transition since the drugs of

interest, anti-estrogens and Cdk4/6 inhibitors, primarily affect progression through the G1 phase of the cell

cycle.10 The justification of the numbered interactions of the signaling pathway and drugs, shown in Fig-

ure 1A is as follows:

1. –E2 decreases the level of estrogen99; 2. E2 binds to ER and forms the transcription factor E2:ER102; 3. ICI

binds to ER and forms ICI:ER, which increases the degradation of ER and blocks its transcriptional activity5;

4. E2:ER increases transcription of c-Myc103; 5. E2:ER increases transcription of cyclinD1103; 6. E2:ER in-

creases transcription of cyclinE10; 7. c-Myc inhibits transcription of p21104; 8. CyclinD1 binds to Cdk4/6

and forms the cyclinD1:Cdk4/6 kinase105; 9. CyclinE binds to Cdk2 and forms the cyclinE:Cdk2 kinase103;

10. p21 binds to cyclinD1:Cdk4/6 and forms the cyclinD1:Cdk4/6:p21 complex, which inhibits its kinase ac-

tivity106; 11. p21 binds to cyclinE:Cdk2 and forms the cyclinE:Cdk2:p21 complex which inhibits its kinase

activity107; 12. Palbociclib binds to Cdk4/6 and inactivates its activity108; 13. Abemaciclib binds to Cdk4/

6 and inactivates its activity108; 14. Palbociclib binds to cyclinD1:Cdk4/6 and forms the cyclinD1:Cdk4/6:pal-

bociclib complex, which inactivates its kinase activity108; 15. Abemaciclib binds to cyclinD1:Cdk4/6 and

forms the cyclinD1:Cdk4/6:abemaciclib complex, which inactivates its kinase activity108; 16. p21 binds to

cyclinD1:Cdk4/6:palbociclib and forms the cyclinD1:Cdk4/6:p21:palbociclib complex109; 17. p21 binds to

cyclinD1:Cdk4/6:abemaciclib and forms the cyclinD1:Cdk4/6:p21:abemaciclib complex109; 18. Palbociclib

binds to cyclinD1:Cdk4/6:p21 and forms the cyclinD1:Cdk4/6:p21:palbociclib complex109; 19. Abemaciclib

binds to cyclinD1:Cdk4/6:p21 and forms the cyclinD1:Cdk4/6:p21:abemaciclib complex109; 20. Cy-

clinD1:Cdk4/6 phosphorylates RB1 to RB1-p (hypophosphorylated RB1)103; 21. CyclinE:Cdk2 phosphory-

lates RB1-p to RB1-pp (hyperphosphorylated RB1)103; 22. RB1 binds to E2F and inhibits its transcriptional

activity104; 23. RB1-p binds to E2F and inhibits it transcriptional activity104; 24. E2F up-regulates RB1 expres-

sion110; 25. E2F up-regulates c-Myc expression111; 26. E2F up-regulates cyclinE expression112; 27. E2F

drives the G1-S cell cycle transition and proliferation53; 28. Cell death.

Treatment with Cdk4/6 inhibitors will affect the stability of Cdk4/6 complexes bound to Cdk Interacting

Protein/Kinase Inhibitory Protein (CIP/KIP) protein inhibitors (p21). The Cdk4/6 inhibitors can dissociate

p21 selectively from Cdk4 but not Cdk6.109 Because we didn’t differentiate between Cdk4 and Cdk6,

we didn’t exclude the possibility of forming the tetramers cyclinD1:Cdk4/6:p21:palbociclib and

cyclinD1:Cdk4/6:p21:abemaciclib. And the degradation rate of cyclinD1:Cdk4/6:p21:palbociclib and cy-

clinD1:Cdk4/6:p21:abemaciclib are assumed to be the same as the degradation rate of cyclinD1:Cdk4/

6:p21 trimer. The binding interactions between cyclinD1, Cdk4/6, p21, palbociclib and abemaciclib can

form different dimers, trimers and tetramers, depending on the subtypes of the Cdks and CIPs/

KIPs.109,113 Because both Cdk4/6:palbociclib (Cdk4/6:abemaciclib) and cyclinD1:Cdk4/6:palbociclib (cy-

clinD1:Cdk4/6:abemaciclib) lose their kinase activity, we didn’t include the binding reaction between

Cdk4/6:palbociclib (Cdk4/6:abemaciclib) and cyclinD1. We only use the binding reactions between palbo-

ciclib (abemaciclib) and cyclinD1:Cdk4/6 to form the cyclinD1:Cdk4/6:palbociclib (cyclinD1:Cdk4/6:abe-

maciclib) complex. And we didn’t include the inhibition potency of abemaciclib on Cdk2 and cyclinE:Cdk2
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since they are not needed to capture the abemaciclib treatment effects.108 For conciseness, lines with ar-

rowheads representing the unbinding reactions corresponding to each binding reaction included in the

model are not shown in Figures 1A and 1B.

Model structure

Protein level changes in response to estrogen signaling and drug treatments are affected by thousands of

interactions among proteins. Even though the interactions in Figure 1A are limited to the G1 phase of the

cell cycle, the reactions shown are incomplete and many interactions at the G1-S phase transition are

excluded. For example, in addition to RB1 and RB1-p, other pocket protein members p107 and p130

also bind to E2F and inhibit its transcriptional activity.110 And CyclinD1:Cdk4/6 can phosphorylate p107

and p130 and increase their degradation.114,115 Also, E2F up-regulates the expression of itself110 and

Cdc25A,53 which is a protein phosphatase that removes the inhibitory phosphorylation on Cdk4/6 and

Cdk2, positively regulating their kinase activities.116 It is impractical to include all possible reactions related

to treatments in the biological mechanism. Because our goal is to build a model that can predict treatment

responses over long time scales, we simplified the interactions shown in Figure 1A to those necessary to

capture the effects of different treatments. The model structure we used is shown in Figure 1B and is modi-

fied from Figure 1A. First, we ignored interaction 26, E2F up-regulates cyclinE expression, in Figure 1A as

this simplification doesn’t affect the model simulation results. Second, we didn’t include Cdk2 explicitly in

the model but assumed that cyclinE not bound to p21 is bound to Cdk2 and active. This is because of the

long-held presumption that Cdks are in excess of the cyclins in the cell and Cdk2 has been shown to be in

excess of its cyclin partners.117Last, we didn’t include E2F in the model but assume that the level of RB1-pp

reflects the transcriptional activity of E2F. While E2F, as the last driver of G1-S transition, may be the best

protein to govern the proliferation rate,53 the situation is complicated. Considering there are six E2F family

members, having divergent roles as transcriptional activators or inhibitors, and the complexity of all

possible combinations of E2Fs with their partners,118 it is difficult to use one measured protein level to

denote E2F transcriptional activity. In order to govern the proliferation rate by one protein level and mea-

sure its level to calibrate the model, we decide to use hyperphosphorylated RB1 (RB1-pp) to represent E2F

transcriptional activity and govern the proliferation rate. The is because E2Fs as transcriptional activators

are regulated principally through binding to RB1119 and are only released to transactivate the genes

required for the G1-S transition when RB1 is fully inactivated after phosphorylation by cyclinD1:Cdk4/6

and cyclinE:Cdk2.104 These facts make it possible to drive the proliferation rate by one protein with a single

specific phosphorylation site representing RB1-pp. It has been demonstrated that RB1 exists mainly in

unphosphorylated, monophosphorylated and hyperphosphorylated form and measuring a specific phos-

phorylation site on RB1 can be used to infer the hyperphosphorylated state of RB1.120 Over fifteen phos-

phorylation sites are found on RB1 and we found that RB1 phosphorylated on S612 reflects the decreased

RB1-pp level changes after treatments based on our experiment results and the literature.119 Therefore, the

binding reactions 22 and 23 in Figure 1A are ignored and the arrows of interactions 24, 25 and 27 start from

RB1-pp in Figure 1B instead of E2F in Figure 1A. The other numbered interactions shown in Figure 1B are

the same as in Figure 1A.

Long term palbociclib treatment effect on proliferation and cyclinD1

Figure S4 re-plots the 10-week palbociclib monotreatment data from Figure 4. MCF7 cells are treated with

750nM palbociclib for 10 weeks and the cells are re-plated at 5 weeks. The blue line is the cell number from

0 to 5 weeks normalized to the initial cell number at t=0. The red line is the re-plated cell number from 5 to

10 weeks normalized to the initial re-plated cell number at 5 weeks. The plot shows that the MCF7 prolif-

eration rate significantly decreased from 5 weeks to 10 weeks compared to 0 to 5 weeks. In order to make

the model match these proliferation changes, we introduced another variable in the model to control pro-

liferation under palbociclib treatment (respropalbo in Table 1), which will increase under palbociclib treat-

ment and decrease after removal of palbociclib. The proliferation rate is divided by a Hill function of this

variable and will decrease as palbociclib treatment time increases. Without this variable, the model’s simu-

lation of proliferation rate over the entire 10 week period will be nearly constant, which would be a poor fit

to the experiment results. So, adding the variable is necessary to make the model match the proliferation

difference shown in the experiment.

Figure 4E shows that the cyclinD1 level increased after mono or alternating palbociclib treatment, which is

consistent with the literature.69,86 In order to allow the model to simulate the increase of cyclinD1, we intro-

duce another variable in the model (rescyclinD1palbo in Table 1) which will increase under the palbociclib
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treatment and decrease after removal of palbociclib. The generation rate of cyclinD1 is added to a hill func-

tion of this variable and will increase with palbociclib treatment time. Adding the variable is necessary to

make the model match the cyclinD1 increase shown in the experiment. Although the cyclinD1 level

increased after mono or alternating palbociclib treatment, the proliferation rate of the MCF7 cells re-

mained suppressed under treatment. In our model, the increase of cyclinD1 can not counterbalance the

palbociclib treatment effect of decreasing the cyclinD1:Cdk4/6 level. Although the increase of cyclinD1

causes the cyclinD1:Cdk4/6 level to rebound after the initial sharp decrease following the start palbociclib

treatment, its level is still lower than the level before palbociclib treatment and the phosphorylation of RB1

by cyclinD1:Cdk4/6 is decreased. We model the phosphorylation rate of RB1 by cyclinD1:Cdk4/6 as a hill

function of cyclinD1:Cdk4/6 multiplying a hill function of RB1, instead of cyclinD1:Cdk4/6 multiplying a hill

function of RB1. This modification allows us to better control the phosphorylation rate of RB1 by cy-

clinD1:Cdk4/6 in the model to match the decreased proliferation and increased cyclinD1 level under the

palbociclib treatments.
Model equations

N = Nalive +Ndead (Equation 9)

(9) Total number of cells equals number of alive cells plus number of dead cells.

dNalive

dt
=

kpro 3

 
1+ kproppRb 3

ppRbpproppRb2

pproppRb1

pproppRb2 +ppRbpproppRb2

!
3Nalive 3

�
1 � N

kcarrying

�

1+ kpropalbo 3
respropalboppropalbo2

ppropalbo1
ppropalbo2 + respropalboppropalbo2

(Equation 10)
� kdeath 3Nalive (Equation 11)

(10) Basal proliferation, increased proliferation by ppRb and inhibited proliferation by respropalbo.

(11) Basal death.

dNdead

dt
= kdeath 3Nalive (Equation 12)
� klysis 3Ndead (Equation 13)

(12) Basal death.

(13) Lysis of dead cells.

hillfunrespropalbo =
palboprespropalbo2

prespropalbo1
prespropalbo2 +palboprespropalbo2

(Equation 14)
drespropalbo

dt
= krespropalbo 3 hillfunrespropalbo (Equation 15)
� kdrespropalbo 3 respropalbo

1+prespropalbokd 3 hillfunrespropalbo
(Equation 16)

(14) Hill function for respropalbo.

(15) Generation of respropalbo by palbo.

(16) Degradation of respropalbo (fast if no palbociclib, but slow if there is palbociclib to allow slow buildup

of respropalbo).

dE2media

dt
=
kdiff 3N3Vol1cell

Volmedia
3 ðE2cell � E2mediaÞ (Equation 17)
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(17) E2 concentration changes in media.

dE2cell

dt
= � kdiff 3 ðE2cell � E2mediaÞ �

�
dNalive

dt
+
dNdead

dt

�
N

3E2cell (Equation 18)
� kbE2ER 3E2cell 3ER + kubE2ER 3E2ER (Equation 19)
� kbNSB 3E2cell + kubNSB 3E2NSB (Equation 20)
+ kdE2ER 3E2ER (Equation 21)

(18) E2 concentration changes in cell.

(19) Binding and unbinding between ER and E2cell .

(20) Binding and unbinding between non-specific binding and E2cell in the cell.

(21) Degradation of E2ER.

dER

dt
= kER � kdER 3ER (Equation 22)
� kbE2ER 3E2cell 3ER + kubE2ER 3E2ER (Equation 23)
� kbICIER 3 ICI3ER + kubICIER 3 ICIER (Equation 24)

(22) Translation and degradation of ER.

(23) Binding and unbinding between ER and E2cell .

(24) Binding and unbinding between ER and ICI.

dE2ER

dt
= � kdE2ER 3E2ER (Equation 25)
+ kbE2ER 3E2cell 3ER � kubE2ER 3E2ER (Equation 26)

(25) Degradation of E2ER.

(26) Binding and unbinding between ER and E2cell .

dE2NSB

dt
= kbNSB 3E2cell � kubNSB 3E2NSB (Equation 27)

(27) Binding and unbinding between non-specific binding and E2cell.

dICIER

dt
= kbICIER 3 ICI3ER � kubICIER 3 ICIER (Equation 28)
� kdICIER 3 ICIER (Equation 29)

(28) Binding and unbinding between ICI and ER.

(29) Degradation of ICIER.

drescyclinD1palbo

dt
= krescyclinD1palbo 3

palboprescyclinD1palbo2

prescyclinD1palbo1
prescyclinD1palbo2 +palboprescyclinD1palbo2

(Equation 30)
� kdrescyclinD1palbo 3 rescyclinD1palbo (Equation 31)

(30) Generation of rescyclinD1palbo by palbo.

(31) Degradation of rescyclinD1palbo.
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dcyclinD1

dt
= � kdcyclinD1 3 cyclinD1 (Equation 32)
+ kcyclinD1 3

 
1 + kcyclinD1E2ER 3

E2ERpcyclinD1E2ER2

pcyclinD1E2ER1
pcyclinD1E2ER2 +E2ERpcyclinD1E2ER2

!
(Equation 33)
� kbcyclinD1cdk46 3 cyclinD13 cdk46+ kubcyclinD1cdk46 3 cyclinD1cdk46 (Equation 34)
+ kcyclinD1palbo 3
rescyclinD1palbopcyclinD1palbo2

pcyclinD1palbo1
pcyclinD1palbo2 + rescyclinD1palbopcyclinD1palbo2

(Equation 35)

(32) Degradation of cyclinD1.

(33) Basal translation of cyclinD1 and the increased translation by E2ER.

(34) Binding and unbinding between cyclinD1 and cdk46.

(35) Increased translation of cyclinD1 by rescyclinD1palbo.

dcdk46

dt
= kcdk46 � kdcdk46 3 cdk46 (Equation 36)
� kbcyclinD1cdk46 3 cyclinD13 cdk46+ kubcyclinD1cdk46 3 cyclinD1cdk46 (Equation 37)
� kbcdk46palbo 3 cdk463palbo+ kubcdk46palbo 3 cdk46palbo (Equation 38)
� kbcdk46abema 3 cdk463 abema+ kubcdk46palbo 3 cdk46abema (Equation 39)

(36) Translation and degradation of cdk46.

(37) Binding and unbinding between cyclinD1 and cdk46.

(38) Binding and unbinding between palbo and cdk46.

(39) Binding and unbinding between abema and cdk46.

dcdk46palbo

dt
= � kdcdk46 3 cdk46palbo (Equation 40)
+ kbcdk46palbo 3 cdk463palbo � kubcdk46palbo 3 cdk46palbo (Equation 41)

(40) Degradation of cdk46palbo.

(41) Binding and unbinding between palbo and cdk46.

dcdk46abema

dt
= � kdcdk46 3 cdk46abema (Equation 42)
+ kbcdk46abema 3 cdk463 abema � kubcdk46palbo 3 cdk46abema (Equation 43)

(42) Degradation of cdk46abema.

(43) Binding and unbinding between abema and cdk46.

dcyclinD1cdk46

dt
= � kdcyclinD1cdk46 3 cyclinD1cdk46 (Equation 44)
+ kbcyclinD1cdk46 3 cyclinD13 cdk46 � kubcyclinD1cdk46 3 cyclinD1cdk46 (Equation 45)
� kbcyclinD1cdk46p21 3 cyclinD1cdk463p21+ kubcyclinD1cdk46p21 3 cyclinD1cdk46p21 (Equation 46)
34 iScience 26, 106714, May 19, 2023



ll
OPEN ACCESS

iScience
Article
� kbcyclinD1cdk46palbo 3 cyclinD1cdk463palbo+ kubcyclinD1cdk46palbo 3 cyclinD1cdk46palbo

(Equation 47)
� kbcyclinD1cdk46abema 3 cyclinD1cdk463 abema+ kubcyclinD1cdk46abemacyclinD1cdk46abema

(Equation 48)

(44) Degradation of cyclinD1cdk46.

(45) Binding and unbinding between cyclinD1 and cdk46.

(46) Binding and unbinding between p21 and cyclinD1cdk46.

(47) Binding between palbo and cyclinD1cdk46.

(48) Binding between abema and cyclinD1cdk46.

dcyclinD1cdk46p21

dt
= � kdcyclinD1cdk46p21 3 cyclinD1cdk46p21 (Equation 49)
+ kbcyclinD1cdk46p21 3 cyclinD1cdk463p21 � kubcyclinD1cdk46p21 3 cyclinD1cdk46p21 (Equation 50)
� kbcyclinD1cdk46p21palbo 3 cyclinD1cdk46p213palbo+ kubcyclinD1cdk46p21palbo 3 cyclinD1cdk46p21palbo

(Equation 51)
� kbcyclinD1cdk46p21abema 3 cyclinD1cdk46p213 abema+ kubcyclinD1cdk46p21abema

3 cyclinD1cdk46p21abema
(Equation 52)

(49) Degradation of cyclinD1cdk46p21.

(50) Binding and unbinding between p21 and cyclinD1cdk46.

(51) Binding and unbinding between palbo and cyclinD1cdk46p21.

(52) Binding and unbinding between abema and cyclinD1cdk46p21.

dcyclinD1cdk46palbo

dt
= � kdcyclinD1cdk46palboabema 3 cyclinD1cdk46palbo (Equation 53)
+ kbcyclinD1cdk46palbo 3 cyclinD1cdk463palbo � kubcyclinD1cdk46palbo 3 cyclinD1cdk46palbo

(Equation 54)
� kbcyclinD1cdk46palbop21 3 cyclinD1cdk46palbo3p21+ kubcyclinD1cdk46palbop21 3 cyclinD1cdk46p21palbo

(Equation 55)

(53) Degradation of cyclinD1cdk46palbo.

(54) Binding and unbinding between palbo and cyclinD1cdk46.

(55) Binding and unbinding between p21 and cyclinD1cdk46palbo.

dcyclinD1cdk46abema

dt
= � kdcyclinD1cdk46palboabema 3 cyclinD1cdk46abema (Equation 56)
+ kbcyclinD1cdk46abema 3 cyclinD1cdk463 abema � kubcyclinD1cdk46abema 3 cyclinD1cdk46abema

(Equation 57)
� kbcyclinD1cdk46abemap21 3 cyclinD1cdk46abema3p21+ kubcyclinD1cdk46abemap21

3 cyclinD1cdk46p21abema
(Equation 58)
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(56) Degradation of cyclinD1cdk46abema.

(57) Binding and unbinding between abema and cyclinD1cdk46.

(58) Binding and unbinding between p21 and cyclinD1cdk46abema.

dcyclinD1cdk46p21palbo

dt
= � kdcyclinD1cdk46p21 3 cyclinD1cdk46p21palbo (Equation 59)
+ kbcyclinD1cdk46p21palbo 3 cyclinD1cdk46p213palbo � kubcyclinD1cdk46p21palbo 3 cyclinD1cdk46p21palbo

(Equation 60)
+ kbcyclinD1cdk46palbop21 3 cyclinD1cdk46palbo3p21 � kubcyclinD1cdk46palbop21 3 cyclinD1cdk46p21palbo

(Equation 61)

(59) Degradation of cyclinD1cdk46p21palbo.

(60) Binding and unbinding between palbo and cyclinD1cdk46p21.

(61) Binding and unbinding between p21 and cyclinD1cdk46palbo.

dcyclinD1cdk46p21abema

dt
= � kdcyclinD1cdk46p21 3 cyclinD1cdk46p21abema (Equation 62)
+ kbcyclinD1cdk46p21abema 3 cyclinD1cdk46p213 abema

� kubcyclinD1cdk46p21abema 3 cyclinD1cdk46p21abema (Equation 63)
+ kbcyclinD1cdk46abemap21 3 cyclinD1cdk46abema3p21

� kubcyclinD1cdk46abemap21 3 cyclinD1cdk46p21abema (Equation 64)

(62) Degradation of cyclinD1cdk46p21abema.

(63) Binding and unbinding between abema and cyclinD1cdk46p21.

(64) Binding and unbinding between p21 and cyclinD1cdk46abema.

dcMyc

dt
= � kdcMyc 3 cMyc (Equation 65)
+ kcMyc 3

 
1 + kcMycE2ER 3

E2ERpcMycE2ER2

pcMycE2ER1
pcMycE2ER2 +E2ERpcMycE2ER2

(Equation 66)
+ kcMycppRb 3
ppRbpcMycppRb2

pcMycppRb1

pcMycppRb2 +ppRbpcMycppRb2

!
(Equation 67)

(65) Degradation of cMyc.

(66) Basal translation of cMyc and the increased translation by E2ER.

(67) Increased translation of cMyc by ppRb.

dp21

dt
= kp21 � kdp21 3p21 (Equation 68)
+ kp21cMyc 3
pp21cMyc1

pp21cMyc2

pp21cMyc1
pp21cMyc2 + cMycpp21cMyc2

(Equation 69)
36 iScience 26, 106714, May 19, 2023



ll
OPEN ACCESS

iScience
Article
� kbcyclinD1cdk46p21 3 cyclinD1cdk463p21+ kubcyclinD1cdk46p21 3 cyclinD1cdk46p21 (Equation 70)
� kbcyclinD1cdk46palbop21 3 cyclinD1cdk46palbo3p21+ kubcyclinD1cdk46palbop21 3 cyclinD1cdk46p21palbo

(Equation 71)
� kbcyclinD1cdk46abemap21 3 cyclinD1cdk46abema3p21

+ kubcyclinD1cdk46abemap21 3 cyclinD1cdk46p21abema
(Equation 72)
� kbcyclinEp21 3 cyclinE3p21+ kubcyclinEp21 3 cyclinEp21 (Equation 73)

(68) Translation and degradation of p21.

(69) Inhibition of translation by cMyc.

(70) Binding and unbinding between p21 and cyclinD1cdk46.

(71) Binding and unbinding between p21 and cyclinD1cdk46palbo.

(72) Binding and unbinding between p21 and cyclinD1cdk46abema.

(73) Binding and unbinding between p21 and cyclinE.

dcyclinE

dt
= � kdcyclinE 3 cyclinE (Equation 74)
+ kcyclinE 3

 
1 + kcyclinEE2ER

E2ERpcyclinEE2ER2

pcyclinEE2ER1
pcyclinEE2ER2 +E2ERpcyclinEE2ER2

!
(Equation 75)
� kbcyclinEp21 3 cyclinE3p21+ kubcyclinEp21 3 cyclinEp21 (Equation 76)

(74) Degradation of cyclinE.

(75) Basal translation of cyclinE and the increased translation by E2ER.

(76) Binding and unbinding between p21 and cyclinE.

dcyclinEp21

dt
= � kdcyclinE 3 cyclinEp21 (Equation 77)
+ kbcyclinEp21 3 cyclinE3p21 � kubcyclinEp21 3 cyclinEp21 (Equation 78)

(77) Degradation of cyclinEp21.

(78) Binding and unbinding between p21 and cyclinE.

dRb

dt
= kRb � kdRb 3Rb (Equation 79)
+ kRbppRb 3
ppRbpRbppRb2

pRbppRb1

pRbppRb2 +ppRbpRbppRb2
(Equation 80)
� kRbcyclinD1cdk46 3
cyclinD1cdk46pcyclinD1cdk462

pcyclinD1cdk461
pcyclinD1cdk462 + cyclinD1cdk46pcyclinD1cdk462

3
RbpcyclinD1cdk46Rb2

pcyclinD1cdk46Rb1

pcyclinD1cdk46Rb2 +RbpcyclinD1cdk46Rb2

(Equation 81)
+ kpRbdepho 3
pRbppRb2

ppRb1

ppRb2 +pRbppRb2
(Equation 82)
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(79) Degradation and basal translation of Rb.

(80) Increased translation of Rb by ppRb.

(81) Phosphorylation of Rb by cyclinD1cdk46.

(82) Dephosphorylation of pRb.

dpRb

dt
= � kdpRb 3pRb (Equation 83)
+ kRbcyclinD1cdk46 3
cyclinD1cdk46pcyclinD1cdk462

pcyclinD1cdk461
pcyclinD1cdk462 + cyclinD1cdk46pcyclinD1cdk462

3
RbpcyclinD1cdk46Rb2

pcyclinD1cdk46Rb1

pcyclinD1cdk46Rb2 +RbpcyclinD1cdk46Rb2

(Equation 84)
� kpRbdepho 3
pRbppRb2

ppRb1

ppRb2 +pRbppRb2
(Equation 85)
� kpRbcyclinE 3 cyclinE3
pRbpcyclinEpRb2

pcyclinEpRb1

pcyclinEpRb2 +pRbpcyclinEpRb2
(Equation 86)
+ kppRbdepho 3
ppRbpppRb2

pppRb1

pppRb2 +ppRbpppRb2
(Equation 87)

(83) Degradation of pRb.

(84) Phosphorylation of Rb by cyclinD1cdk46.

(85) Dephosphorylation of pRb.

(86) Phosphorylation of pRb by cyclinE.

(87) Dephosphorylation of ppRb.

dppRb

dt
= � kdppRb 3ppRb (Equation 88)
+ kpRbcyclinE 3 cyclinE3
pRbpcyclinEpRb2

pcyclinEpRb1

pcyclinEpRb2 +pRbpcyclinEpRb2
(Equation 89)
� kppRbdepho 3
ppRbpppRb2

pppRb1

pppRb2 +ppRbpppRb2
(Equation 90)

(88) Degradation of ppRb.

(89) Phosphorylation of pRb by cyclinE.

(90) Dephosphorylation of ppRb.
Model parameter calibration and model summary

Parameters of degradation rates (kd) for proteins were assigned according to half-lives found in literature

(denoted as Fixed in Table 2), where kd = -log(1/2)/thalf-life. Considering that the limited data we collected

does not warrant the increase of parameter number, which would be unidentifiable, we facilitated the opti-

mization and decreased the number of parameters to be calibrated by fixing the unbinding parameters to 1

(denoted as Fixed in Table 2). The other parameters were calibrated using the patternsearch function in
38 iScience 26, 106714, May 19, 2023



ll
OPEN ACCESS

iScience
Article
MATLAB (R2021b), to reduce the discrepancy between the model simulation and the experimental results.

The least-squares cost function was calculated as:

cost
�
p
�
=
Xn
i = 1

Xm
j = 1

�
yE
ij

�
tj
� � yij

�
tj;p

��2
s2
ij

where i indexes the model variables of proteins or alive cell number under a specific treatment, j

indexes the experimental measured times. yEij ðtjÞ is the experimental measurement of the specie i

at time j. yijðtj;pÞ is the simulation result of the variable i at time j using parameter vector p. sij is

the standard deviation of the experimentally measured specie i at time j. The data, time points and

the model variables used in fitting the experimental data are listed in Table S1. The parameters

were tuned manually at the beginning to get the gross treatment response roughly consistent with

the experimental results. Then the default patternsearch in MATLAB was used for calibration of the

parameters.

The culture media, including any drugs in the different treatments, was changed at t = 0 and every 3 or

4 days during the treatment period, so the longest period without resupply of any drug is 4 days. There

is no data we are aware of for the half-life of the three drugs we used (ICI 182,780, palbociclib and abema-

ciclib) in in-vitro conditions. Most data are for the plasma or terminal half-life in-vivo determined by pro-

cessing in the liver or excretion through the kidneys, which are not applicable to our model. There is

data for the in-vitro stability of these drugs in human plasma, which is akin to our case. ICI 182,780 shows

no degradation in human plasma at room temperature over 7 hours.121 Palbociclib and abemaciclib show

less than 5% degradation in human plasma at room temperature over 3 days122 Based on this data, we

believe the drug half-life is sufficiently long so as to be ignored in our in-vitro experiments.

The drug concentrations are assumed to be constant throughout the treatment as a reasonable

approximation.

The mathematical model contains 27 ordinary differential equations (ODEs) and 112 parameters (80 cali-

brated and 32 fixed), which is implemented in MATLAB. The generation, degradation, phosphorylation,

dephosphorylation, binding and unbinding reactions are modeled by mass action laws and hill functions.

Drug treatment effects are modeled by competitive binding to their targets. The ODEs are solved numer-

ically by the ode23tb function in MATLAB.
Parameter cohort

To address the fact that the parameters in model may not be practically identifiable by our limited

measured data, another 199 parameter sets that fit the data reasonably well (cost < 500) were identified

to form a parameter cohort. All 200 parameter sets in the cohort were used for simulation and

prediction. The resulting spread in the predictions show the degree to which the data used to

calibrate the model parameters constrains the prediction results. The parameter cohort was generated

by the default genetic algorithm function, ga, in the MATLAB optimization toolbox. We saved

parameter sets found during the running of the ga function whose cost function value was smaller

than 500.

The coefficients of variation of the parameters and the cost function values for the parameter sets in

the cohort are plotted in Figures S8A and S8B. The coefficient of variation plot reflects the spread of

the parameter values in the cohort and the large values represent parameters to which the model

has low sensitivity. A local sensitivity analysis for each parameter in the cohort with respect to prolifer-

ation is shown in Figure S8D. The most significant sensitivity for cell proliferation involves parameters

#6 and #90, which are related to the basal translation of the estrogen receptor and the dephosphory-

lation of RB1-pp, respectively. These results are not surprising as the estrogen receptor level impacts

the response to –E2 and ICI endocrine treatments and dephosphorylation of RB1-pp directly regulates

the RB1-pp level. Figure S8C plots a histogram of the fitting costs that were generated by all the per-

turbed parameter sets used in the sensitivity analysis used to create Figure S8D. The figure shows that

across all the perturbations of parameter sets in the cohort there was not a major increase in the

fitting cost.
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Local sensitivity analysis

We used local sensitivity analysis to check how sensitive themodel output was to the parameter values. The

sensitivity value for a model output and a specific parameter is the change in the model output relative to

the change in parameter value. It can be expressed as123,124:

sijk =
vlog

�
Xij

�
vlog

�
pk

� =
vXij

vPk

pk

Xij

where sijk is the local sensitivity value, which is the derivative of model output Xij with respect to parameter

pk multiplied by the ratio pk=Xij. It gives the percent change in the model output produced by a 1% change

in a parameter. In the equation, i indexes the alive cell number under a specific treatment, j indexes the

timepoints and k indexes the parameters. sijk can be approximated by the second order central finite dif-

ference. Therefore, each parameter is individually varied by 1% of its value:

sijk z
Xij

�
pk + 1%3pk

� � Xij

�
pk � 1%3pk

�
2%3pk

pk

Xij

�
pk

� =
Xij

�
pk + 1%3pk

� � Xij

�
pk � 1%3pk

�
2%3Xij

�
pk

�
The sensitivity analysis was performed on all 64 data-calibrated parameters in a parameter set, except the

hill function powers, and all parameter sets in the cohort. The fixed parameters were excluded. Because we

want to check whether the model output is very sensitive to certain parameters, the maximum values of sijk
across all i and j, which is sk = max

i;j

��sijk ��, is used to represent the sensitivity value.

Growth rate inhibition (GR) metric

The GR metric is different from traditional drug response metrics, which are highly sensitive to the number

of cell divisions during the experiment. It compares the growth rates in the presence and absence of drug

and is largely independent of cell division rate and assay duration.48 The GR metric is calculated according

to the formula:

GRðcÞ = 2
log2 ðxðcÞ=x0Þ
log2ðxctrl=x0Þ � 1

The cell count under the drug treatment is normalized to the vehicle control cell count. xðcÞ is the cell count

in the presence of drug at concentration c. xctrl is the cell count for the vehicle control. x0 is the cell count at

t = 0 prior to drug treatment. Themaximum value of GR is 1 (unless the drug increases proliferation) and the

lowest value of GR is -1. GR = 0 means the drug treatment has a cytostatic response and a negative value

means the drug treatment has a cytotoxic effect.48
Microarray data analysis

The microarray data analysis was performed by the limma R package, which provides data normalization

and differential gene expression analysis for gene expression experiments.91 The agilent microarray

data files were read by the read.maimages function. The backgrounds were corrected using the back-

groundCorrect function and the data were normalized using the normalizedBetweenArrays function. Dif-

ferential expression analysis was performed by lmfit and eBayes functions. Heatmaps of the significantly

differentially expressed genes (adjusted p-value <= 0.05) were plotted using the heatmap.2 function in

the gplots R package. Hierarchical clustering of columns in the heatmap is based on the default setting

in the heatmap.2 function, which used the dist and hclust functions in the stats R package. Principal compo-

nent analysis was performed using the prcomp function in the stats R package. The Gene Set Enrichment

Analysis (GSEA) was performed using the clusterProfiler R package92,93 and the C3 regulatory target gene

sets in theMolecular Signatures Database (MSigDB) provided by the msigdbr R package was used.125 Data

preparation and visualizations were performed in R using the tidyverse (v1.3.1), gplots (v3.1.1),

ggplot2(3.3.5), and plotly(4.10.0) packages.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical testing was carried out in MATLAB. Group comparisons were performed by the two-sided paired

t test (ttest function). For comparison of multiple groups, one-way ANOVA or two-way ANOVA (anovan

function) and Tukey’s HSD test for multiple comparisons (multcompare function) was used. Lower case n

refers to the number of biological replicates noted in the figure legends. Statistical significance was consid-

ered with p values smaller than 0.05 and ns represents non-significant. The precise p values are noted in the

figure legends with asterisks: p <0.05 (*), p % 0.01 (**), p % 0.001 (***), p % 0.0001 (****).
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