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Introduction

Computational modeling: mathematical description integrated 
with experimental data. Computational modeling of signal 
transduction integrates available knowledge about pathway reg-
ulation, and the general chemical and physical principles with 
experimental data from different biotechnology platforms. Such 
approach constitutes a powerful solution for formalizing and 
extending traditional molecular and cellular biology. However, 
success of the entire project depends crucially on the said inte-
gration. Figure 1 illustrates the model’s life cycle paradigm: the 
recurring processes of molecular experiments, measurements, 
bioinformatics analyses, and mathematical modeling.

In this review we sketch existing attempts to model JAK1/2-
STAT1 signaling. There are relatively few such attempts for 
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Despite a conceptually simple mechanism of signaling, 
the JAK-STAT pathway exhibits considerable behavioral 
complexity. Computational pathway models are tools to 
investigate in detail signaling process. They integrate well with 
experimental studies, helping to explain molecular dynamics 
and to state new hypotheses, most often about the structure 
of interactions.

A relatively small amount of experimental data is available 
for a JAK1/2-STAT1 variant of the pathway, hence, only sever-
al computational models were developed. Here we review a 
dominant approach of kinetic modeling of the JAK1/2-STAT1 
pathway, based on ordinary differential equations. We also 
give a brief overview of attempts to computationally infer to-
pology of this pathway.
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this particular pathway. The limiting factor is the availability of 
experimental data. As we will see a new set of molecular data usu-
ally allows researchers to formulate more adequate model.

Formal modeling of signaling pathways most often starts 
with a definition of a topology of the pathway, represented by 
a biochemical reactions network. Construction of a structure of 
a model requires systematization of a diverse, incomplete, and 
usually inconsistent biological knowledge about the underlying 
phenomena. Consequently, the structure of a model itself is a 
valuable contribution, provided that it is validated against avail-
able experimental data. However, computational modeling of 
signaling pathways offers much more. It can help to understand 
roles of designed parts of an investigated pathway. Standard 
examples include comprehension of a function of cascade layers1 
and negative feedback2 in the MAPK pathway or, in case of the 
JAK-STAT pathway, role of a nuclear export of STATs3 and of a 
posttranslational negative feedback.4

JAK-STAT signaling. JAK-STAT pathways are highly con-
served intracellular signaling pathways of all vertebrates and even 
found in some more primitive metazoas.5 These pathways have 
co-evolved with multiple fundamental cellular processes, such as 
innate and adaptive immune response,6,7 cell growth, differen-
tiation and apoptosis regulation,8,9 maintenance of homeostasis,7 
organogenesis,10 or embryonic development.11

JAK-STAT pathways provide a simple and direct route from 
the membrane receptors to the nucleus for mediating cellular 
responses to numerous cytokines. Until now, four receptor-asso-
ciated JAK tyrosine kinases (JAK1/2/3 and TYK2) and seven 
different STAT family members (STAT1/2/3/4/5A/5B/6) have 
been identified in mammalian cells.1,12 In short, there are three 
main stages involved in the transduction of cytokine receptor 
derived signal through any JAK-STAT pathway: activation of 
the receptor, direct translocation of the signal into the nucleus 
and expression of target genes. Binding of cytokine triggers 
changes to the cognate receptor that permit cross-activation of 
receptor-associated JAKs. Activated JAKs phosphorylate intra-
cellular tail of the receptor, thereby providing docking sites for 
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receptor. Consequently, cytokine receptor activates 
a characteristic combination of individual JAKs and 
STATs that is determined by the structure of the 
intracellular domains of the receptor chains.12

Interferons. Interferons, potent regulators of 
innate immunity, play a key role in the inflamma-
tory response after viral infection and in host defense 
against microorganisms. Currently, there are three 
distinct classes recognized: type I (IFN-α/β/ε/κ/ω), 
type II (IFN-γ), and type III (IFN-λ), distinguish-
able by their differing target receptors. Types I and II 
IFN receptors are present in most human cell types 
while type III IFN-λ receptors are highly expressed 
in hepatocytes but not in microvascular endothelium, 
adipocytes, fibroblasts, or CNS cells.17 Types I and 
III IFN, despite signaling through distinct receptor 
complexes, stimulate very similar signaling path-
ways, namely they activate JAK1 and TYK2, which 
phosphorylate STAT1 and STAT2, respectively. In 
this pathway variant, the downstream heterotrimer 
of phosphorylated STAT1, STAT2, and IRF9 is gen-
erated to form interferon-stimulated gene factor 3 
(ISGF3). ISGF3 acts as a transcription factor within 
interferon-stimulated response element (ISRE) sites 

on the promoter or enhancer regions of type I and III IFN-
responsive genes.18,19 The focus of this review is modeling of cel-
lular response to type II IFN (IFN-γ), which signals through the 
IFN-γ receptor (IFNGR), pre-associated with JAK1 and JAK2. 
Stimulation of the receptor leads to phosphorylation and dimer-
ization of STAT1. Both IFN signaling schemes, including path-
way negative regulators are depicted in Figure 2.

JAK1/2-STAT1 variant. Active form of IFN-γ receptor is 
more complex than that for types I and III IFN. IFN-γ signal 
transduction engages oligomerization of two subunits IFNGR1 
and IFNGR2, which triggers activation of receptor-associated 
kinases JAK1 and JAK2 and phosphorylation of STAT1 on criti-
cal tyrosine residue. Phosphorylated STAT1 translocate as tran-
scriptionally active homodimers into the nucleus, bind to the 
promoter regions via DNA sequences termed GAS (γ-activated 
site) and, thereby, affect transcription of IFN-γ-induced genes.18 
The mechanism that regulates active nuclear import of tyrosine 
phosphorylated STAT1 dimers was shown to involve a specific 
carrier, importin α5, and metabolic energy.20 It has been sug-
gested that besides the carrier-dependent transport of phos-
pho-dimers, also unphosphorylated STAT1 molecules shuttle 
continuously between the nucleus and cytoplasm, in a process 
mediated by direct interaction with nucleoporins located in the 
nuclear pore complexes.21 This constitutive nucleocytoplasmic 
translocation of unphosphorylated STAT1 occurs both in resting 
and IFN-γ-stimulated cells. The existence of distinct transport 
pathways allows the controlled nuclear transport of phosphory-
lated STAT1 dimers during cytokine induction. It was demon-
strated that nuclear import and nuclear retention are two separate 
steps leading up to nuclear accumulation of STAT1. DNA bind-
ing protects STAT1 from dephosphorylation, so only once 
released from DNA, the phosphorylated STAT1 dimers become 

latent STAT transcription factors. Recruited STAT monomeric 
proteins become subsequently phosphorylated by the proximate 
JAKs, dissociate from the receptor and form homo- or heterodi-
mers directed to enter to the nucleus. Acting as dimers or as more 
complex oligomers STATs bind to consensus DNA sequences in 
the regulatory regions of target genes and initiate or enhance the 
appropriate transcriptional response.5,13

Each stage of JAK-STAT signaling takes different time to 
execute—it ranges from seconds up to hours, depending on an 
organism and a tissue. The magnitude and duration of the trans-
duced signal is tightly controlled and can be attenuated at all 
levels. The key players here are: the protein tyrosine phosphatases 
(PTPs; e.g., SHP-1 or SHP-2), which dephosphorylate receptors 
at the membrane and activated STATs in the nucleus;5 protein 
inhibitors of activated STATs (PIAS), which in principle, block 
STAT dimers DNA binding or transactivation capacity in the 
nucleus, both directly (PIAS-1/3) or by recruitment of other 
co–repressor molecules (PIAS-x/y);14 and expressed as a negative 
feedback, some members of the family of suppressors of cyto-
kine signaling (SOCS1/2/3), which inhibit receptor signaling 
by directly inhibiting both JAKs and cytokine receptors.5,15 In 
principle, these SOCS family members block STAT docking sites 
on the receptor,16 but they also probably mediate STAT degrada-
tion by ubiquitin-proteasome pathway.15 In addition, the tran-
scriptional potency of STATs can be influenced by other proteins, 
either through direct interaction on a promoter (e.g., on NFκB 
promoter) or through posttranslational modification, including 
phosphorylation by growth factor receptors tyrosine kinases or 
mitogen-activated protein kinases (MAPKs).13

In general, JAK-STAT signaling is involved in a broad spec-
trum of fundamental processes. However, each cytokine recep-
tor is activated by a small set of cytokines, specific only to this 

Figure 1. Illustration of the paradigm of an interaction between modeling and 
experiments. Note that conclusions obtained from a model affect an experimental 
setup. Similarly, measurements that provide data to bioinformatics analysis allow 
for model enhancements. In the desired scenario several iterations of such cycle are 
performed.
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NK, and NKT cells, following activation with immune and 
inflammatory stimuli.33 IFN-γ acts on its receptor to augment 
innate cellular immunity by activating NK cells and macro-
phages, upregulating MHC expression, promoting leucocyte 
migration and inducing the expression of proinflammatory cyto-
kines (e.g., IL-12 p40 subunit, TNF-α, and IL-1) and enzymes 
involved in elimination of ingested bacterial or protozoan patho-
gens, such as nitric oxide synthase.34 Some data also implicates 
role of IFN-γ as a critical immune system component, protecting 
the host from development of variety of tumors, e.g., in fibro-
sarcoma, melanoma, and mammary carcinoma models.33 Except 
from effects on both the innate and adaptive antitumor immune 
responses as well as inhibition of angiogenesis, one of the major 
targets of IFN-γ’s antitumor actions is the tumor cell itself. The 
molecular basis of this effect is the JAK1/2-STAT1-dependent 
activation of genes encoding cell cycle inhibitors or implicated in 
promoting tumor cell apoptosis.33

Owing to the central role of IFNγ in immune response to 
microbial infections and in promoting antitumor protection, 

dephosphorylated by nuclear phospha-
tases.22 Dimer dephosphorylation is a 
critical step, which enables the return 
of STAT1 to the cytosol to participate 
in additional rounds of the activation 
and deactivation cycle.23

Recent data have proved that 
regulation of STAT1 signaling is 
more complex. There is evidence that 
unphosphorylated STAT1 also exist 
as dimers with DNA binding activity 
and, although less active than phos-
phorylated forms, may regulate gene 
expression.24 Besides, STAT1 is known 
to form larger assemblies than dimers 
when bound to DNA, including tet-
ramers and extended polymers, which 
may significantly influence in vivo 
binding preferences.25

Similarly to other variants of JAK-
STAT signal transduction, JAK1/2-
STAT1 pathway is negatively regulated 
by a number of regulatory mechanisms, 
including activity of various PTPs and 
PIAS family members, as well as feed-
back inhibition by SOCSs. However, 
some of these mechanisms have been 
recognized as specific or particularly 
important for attenuation of IFN-γ-
induced response.

Among PIAS family members, pri-
marily PIAS1 acts as a partial physi-
ological inhibitor of STAT1.26 PIAS1 
was originally shown to block STAT1 
DNA-binding activity,27 but due to 
its E3 SUMO ligase activity it has 
been suggested to promote SUMO-
conjugation to STAT1.28 Simulation of STAT1, which obstructs 
tyrosine phosphorylation and affects STAT1 solubility,29 may be 
a unique mechanism that has evolved to negatively regulate IFN-
γ-induced signaling; however the role of PIAS1 in this process 
has been controversial30 and the identity of the E3 SUMO ligase 
responsible remains unclear.

The most studied inhibitors of JAK-STAT signaling are the 
SOCS proteins.31 IFN signaling-specific SOCS1 is known to 
interact with IFNAR1 receptor and respective TYK2 in type I 
IFN signaling and with IFNGR1 receptor and JAK2 in type II 
IFN signaling.15 SOCS1 is itself upregulated via type II IFN sig-
naling, but not known to be upregulated via type I or III IFN sig-
naling. Moreover, as revealed by gene-targeting experiments, loss 
of SOCS1 results in excessive response to IFN-γ and the majority 
of inflammatory defects exhibited by SOCS1 knockout mice are 
related to unbridled IFN-γ signaling.32 Therefore, SOCS1 is rec-
ognized as a crucial regulator of IFN-γ induced response.

Whereas type I IFNs are primarily induced in response to viral 
infection, IFN-γ is produced predominantly by T lymphocytes, 

Figure 2. Key steps of JAK-STAT signaling in response to IFNs. IFNs induce activation of JAKs, recep-
tors and subsequently, of cytoplasmic STATs; all by phosphorylation. Active STATs essentially form 
dimers, which then are translocated to nucleus where they act as transcription factors in the specific 
gene promoter or enhancer regions. IFN signaling negative regulators include multiple cytoplasmic 
PTPs, nuclear PTP and PIAS proteins, as well as specific to IFN signaling SOCS1 which in principle 
inhibits STAT1 phosphorylation process. See text for more details.
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where the right-hand side of the differential equations 
 is equal to M state-dependent reactions rates 
 linearly combined according to a fixed stoichio-

metric matrix of the biochemical reactions network C, i.e.:

 .
Stoichiometric matrix directly reflects a structure of the mod-

eled network. Reaction rates, typically, follow the mass action 
law47 or its enzyme kinetics approximations such as the simplest 
Michaelis–Menten kinetics.48 Together with the initial state the 
dynamics of the system is formulated as an initial value prob-
lem. Below we briefly review kinetic models for the JAK1/2-
STAT1 signaling. All of them describe dynamics using RRE. 
Development of stochastic counterparts of these models still 
merits further exploration.

Model by Yamada et al. Arguably, the first model of the JAK1/2-
STAT1 pathway was introduced by Yamada et al.4 This model 
describes a control mechanism and factors influencing kinetics of 
the JAK-STAT pathway in IFN-γ-stimulated hepatocytes, reca-
pitulating liver injury associated with increased IFN-γ activity. 
The Yamada et al.4 model is relatively complex as it captures all 
essential elements in the JAK1/2-STAT1 signaling, together with 
many short-lived, intermediate species. These species most likely 
could be omitted or even systematically eliminated (compare 
refs. 39 and 49). Scheme of the model is depicted in Figure 3A. 
The model can be informally divided into three modules: recep-
tor module, transcription factor module (the STAT life-cycle) 
and posttranslational feedback module. Figure 3B–D shows the 
numerical solutions of RRE for output species of each module. 
Respective modules emit output signal for ca. 25 min, 50 min 
and 1.5 h, with its peak activity in ca. 25th minute, 55th minute, 
and 2nd and a half hour.

The model by Yamada et al.4 is currently curated in DOQCS51 
and BioModels databases,52,53 for instance, in the machine-read-
able SBML format.54 It means that this model is basically ready to 
be simulated and it has been assured that it replicates published 
behavior. This is a priceless advantage of this model because of 
its size. Namely, it consists of over 30 variables representing spe-
cies and of over 60 parameters of reaction rates. In principle, 
this model was calibrated and validated against the experimen-
tal data.4 Kinetic constants and protein concentrations were set 
based on experimental results mainly from Brysha et al.55 There 
are noticeable quantitative differences in the kinetics of response 
to IFN-γ depending on cell type, i.e., mouse liver cells55 and 
T cells data,56 but the overall qualitative behavior of the JAK1/2-
STAT1 pathway is consistent with published biological data.

Yamada et al.4 used their model to underline importance of 
nuclear phosphatase PTPs and the negative feedback created by 
SOCS-1 protein, i.e., importance of the JAK1/2-STAT1 path-
way negative regulators. Through in silico knockout experiments 
nuclear PTP was identified as the most important pathway regu-
lator with respect to attenuation of a signal which can arise from 

JAK1/2-STAT1 pathway exploited by the cytokine is an excel-
lent target for detailed studies. Because of its relative simplicity 
and high evolutionary conservation it has attracted attention of 
systems biologists, who have contributed to mathematical mod-
els of the signaling cascade. Since dysregulation of JAK-STAT 
signaling is associated with various immune disorders and can-
cers, identification of key components and steps in signal trans-
duction pathway provides useful strategy for drug discovery. 
Computational models can greatly facilitate such predictions.

Computational Models

Most of the experimental data for the JAK-STAT pathways avail-
able in the recent literature in vast majority concerns variants 
activated by ligands other than type II IFN. This data was used 
in development of many formal models of JAK-STAT signaling; 
most notably, for the Epo-stimulated pathway variant, a simple 
model which originated from work of Swameye et al.3 This 
model was re-used multiple times in mainly methodological case 
studies, with adjustments such as linear chain approximation of a 
nuclear transport delay.35-38 For other examples of computational 
models of JAK-STAT pathway variants activated by Epo, as well 
as by IL or by type I IFN, see respectively references 39–42. For a 
broader review see reference 43. In this review we focus on mod-
els of the JAK1/2-STAT1 signaling pathway. There are relatively 
few distinct computational models for this variant of the JAK-
STAT pathway.

Please be aware of the fact that in principle mathematical 
modeling is not suitable for the very detailed description of real-
ity. It is important to maintain an appropriate balance between 
the number of mechanistic details responsible for the complexity 
of the model, and their significance in the context of the data 
available for model validation process (compare refs. 3 and 44). 
The identifiability of model parameters is one of key issues here: 
non-identifiable model parameters may require more appropriate 
experimental design, or model reduction, adapting the complex-
ity of the model to the information content of experimental mea-
surements (compare refs. 35 and 45). Finally, focusing on specific 
hypotheses while designing the model should also enhance its 
predictive power (see, e.g., ref. 46).

Kinetic modeling. Mathematical models resulting from a bio-
chemical reactions network are complex, even for the simplest 
signaling pathways, such as JAK-STAT. Therefore, an in silico 
analysis is usually based on computationally efficient numerical 
solutions for a deterministic framework which, despite of a coarse 
simplification of a spatial distribution and diffusion effects under 
spatial homogeneity assumption, proves to be very elucidative. In 
this framework state of a modeled system is represented by the 
time-dependent vector , denoting con-
centrations of N reacting species S

1
 (t), …, S

N
 (t). Dynamics of 

the system is governed by a set of a set of first-order ODE, known 
as the reaction rate equations (RRE), i.e.:

 ,
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of active STAT1 at the site of regulation of gene expression.23 On 
the other hand, mechanism of a posttranslational production of 
SOCS was justified by a requirement of a delay in the activation 
of the negative feedback. To that end, Yamada et al.4 analyzed 
hypothetical model, where SOCS was stimulated directly from 

a non-significant random appearance of IFN, i.e., in case of an 
unintended exposure of cells to a small amount of the cytokine. 
Dephosphorylation of STAT1 dimer by nuclear phosphatase is a 
prerequisite for the transcription factor export to cytoplasm and 
thus one of the crucial factors in controlling nuclear accumulation 

Figure 3. JAK1/2-STAT1 pathway modules denoted by colors on the scheme of a model by Yamada et al.4 (A), and numerical simulations of modules 
output species representing concentration of, respectively, phosphorylated receptor dimer (B), phosphorylated nuclear STAT1 dimer (C), and SOCS1 
(D) with respect to time. Additional decorations of the simulations graphs represent signaling properties, such as: peak activity time τ, duration ϑ, and 
amplitude α50 at the basal, steady-state level τ, corresponding to a constant IFN input of 10 nM. In such in silico experimental setup, unbound active 
receptor reaches peak in ca. 25 min (B) and from that moment on it is gradually used up in activation of STAT1 proteins. In turn, phosphorylated STAT1 
dimers accumulate in nuclei, with maximum concentration reached in ca. 1 h (C). Their slow concentration descent is followed up by delayed expres-
sion of SOCS1 proteins (D), which gradually overtake active receptors (B). The remaining small excess of the latter induces a second, much weaker 
phase of signaling, starting in ca. 5th hour (B–D). After that the signal is completely attenuated. Duration of activity of signaling molecules υ elongates 
downstream of the pathway, and extent of this effect depends on the strength of signaling α (compare the first and the second phase of signaling; 
[B–D]).
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robust cellular response to IFN-γ. This is in line with published 
data implying that active nuclear import induced by cytokine 
stimulation as well as subsequent STAT1:DNA binding requires 
STAT1 dimer formation.5,20 However, the model version by 
Shudo et al.60 differs from the model by Yamada et al.4 by lack 
of a reaction of dimerization of receptor molecules. This reduc-
tion was based on the assumption that cytokine receptors are 
pre-assembled on the membrane.64-66 We studied consequences 
of this reduction in reference 46. The receptor activation mecha-
nism is not easily accessible for experimental measurements, thus 
we performed a comparative computational analysis of four vari-
ants of activation of the JAK1/2-STAT1 pathway. Using GSA, 
complemented with the profile-likelihood based identifiability 
analysis,35 we showed that the on-membrane pre-assembly of the 
dimers in the absence of ligand increases the overall environmen-
tal robustness of the pathway model. In a more general sense, 
we evaluated the usefulness of different model selection methods 
in a frequently encountered, but not much discussed case of a 
model of a considerable size, which has several variants differing 
at peripheries.45 With lack of the sufficient experimental data to 
test against, the generalizability/parsimony principle turned out 
not to be a sufficient criteria for model selection. The sensitivity 
analysis based on the robustness concept enabled more conscious, 
expert-mediated choice of the preferred model.

Hierarchical subsystems identification. On the other hand, 
Soebiyanto et al.67 applied the multilevel hierarchical systems 
framework68 to study the coordination principle in the RRE 
model of JAK1/2-STAT1 signaling by Yamada et al.4 Based on 
the knowledge of biological functionality they divided the model 
into five subsystems—4 modules in the cytoplasm and one repre-
senting the STAT1 activity in the nucleus. Compartmentalization 
of the pathway model coupled with in silico inhibition, knock-
down/deletion, and perturbation experiments identified SOCS1 
as a coordinator. A coordinator’s role is to regulate the subsystems 
at the lower level to achieve the overall objective of the system. 
In fact, SOCS1 was shown to regulate functionally indepen-
dent subsystems related to SHP-2 and cytoplasmic STAT1. This 
discovery of SOCS1 as a coordinator is in line with the recent 
publication56 that shows biological data supporting SOCS1 as a 
crucial signaling component regulator. The model by Soebiyanto 
also showed that a SOCS1 knockdown leads to high-level activa-
tion behavior of the pathway, while SHP2 knockdown results in 
its constitutive, though pathological, activation. These in silico 
experimental data agree with the results of STAT1 phosphoryla-
tion with SOCS1 knockdown shown by Yamada et al.4 and are 
consistent with Brysha et al.55 Moreover, it suggests that with 
abundance of IFN-γ, as it occurs during inflammation, STAT1 
can be persistently activated if a SOCS1 mutation/knockdown 
exists. Without the high availability of cytokines, it is SHP2 that 
is regulating the constitutive activation of STAT1.

Identifiability of the model. Finally, Quaiser et al.49 also ana-
lyzed the model by Yamada et al.,27 focusing, however, on the 
mathematical problem of model identifiability. Authors proposed 
an iterative method for model simplification, and demonstrated 
its use by simplifying the JAK1/2-STAT1 model. Their pro-
cedure numerically estimates kinetic parameters of the model, 

a downstream of a signal, before the end of transcription and 
translation of target genes. In such case inhibition turned out not 
to be effective, and available experimental data clearly show that 
SOCS-1 expression is induced by IFN-γ and overexpression of 
SOCS-1 inhibits IFN-γ signaling.57,58

The only obvious component of the JAK-STAT pathway in 
general, which is missing in the model, is the PIAS inhibitor. 
Moreover, this model does not take into consideration some cur-
rently accepted regulatory mechanisms affecting STAT1:DNA 
binding activity, such as STAT1 simulation and transcriptional 
activity of unphosphorylated STAT1. One of the reasons is obvi-
ously the fact that these processes had not been clearly defined at 
the time, when the model was created.

Sensitivity analysis. The same model was analyzed in several 
following papers,46,59,60 which, to some extent, employed a con-
cept of biological robustness, based on a mathematical technique 
termed as the sensitivity analysis. Robustness is a property of 
a system to maintain one or more of its functions under exter-
nal and internal perturbations.61 On the other hand sensitivity 
analysis in principle investigates the relation between uncertain 
parameters of a model and the observable output. For a review 
of sensitivity analysis methods applicable to chemical reaction 
networks and signaling pathways in particular see references 62 
and 63. Global sensitivity analysis (GSA) is the most suitable for 
highly nonlinear models, such as RRE models.62 Based on the 
mathematical model developed by Yamada et al.,4 by means of 
GSA of the IFN-γ-induced JAK-STAT signaling pathway, Zi 
et al.59 confirmed that SOCS1 and nuclear phosphatase are criti-
cal components for the perturbation of the system output and 
additionally pointed out an importance of cytoplasmic STAT1 
for a general dynamic behavior of the pathway. The result that 
the nuclear phosphatase and SOCS1 are more critical than 
SHP-2 and the cytoplasmic phosphatase underscores the impor-
tance of downstream (hence, more direct upon STAT1) nega-
tive regulators compared with upstream regulators. The SOCS 
proteins are expressed at low levels in unstimulated cells and 
become rapidly induced by cytokines, thereby blocking contin-
ued signaling and forming a classic negative-feedback loop.31 The 
finding by Zi et al.59 that the nuclear phosphatase (which pro-
motes the nuclear export) is an important signaling component 
matches well with the importance of nucleocytoplasmic shuttling 
process of STAT1, described in biological systems. Along that 
line of research, Swameye et al.,3 who developed a much simpler 
model of the JAK2-STAT5 pathway variant, showed that STATs 
nucleocytoplasmic shuttling parameters are the most sensitive to 
perturbations with respect to the total amount of nuclear acti-
vated STAT.

The Yamada et al.4 model and three hypothetical models, 
which differ by a form in which STAT protein enters the nucleus 
and acts as a transcription factor, were compared in work of 
Shudo et al.60 The original model was selected as an evolutionary 
preferable one, by presenting the most reasonable strength and 
time of the response, as well as lowest local sensitivity of kinetic 
parameters with respect to the input stimuli. This computational 
reasoning was used to justify that the STAT1 dimerization is an 
indispensable signaling step in the generation of adequate and 
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it was feasible to model the network dynamics using a set of dif-
ferential equations. Taking one step back, a different modeling 
approach that can be found in the literature aims in inference of 
the network topology from experimental measurements, a meth-
odology that was previously successfully applied in the field of 
gene regulatory network reconstruction (see, e.g., ref. 69).

In the context of JAK-STAT signaling Kaderali et al.70 recon-
structed the network topology from gene knockout data obtained 
with the use of RNAi screening technology. The pathway is mod-
eled as Bayesian network with probabilistic Boolean threshold 
functions. Moreover the efficient Monte Carlo procedure to 
sample from the posterior over model parameters was proposed.

Knockout RNAi data set. The knockdown experiments was 
conducted for 10 genes involved in two variants of JAK-STAT 
pathway (JAK1/2-STAT1 and JAK1/TYK2-STAT1/2) in 
humane hepatoma cell line under three different conditions: no 
stimulation, IFN-α stimulation, and IFN-γ stimulation. The 
main obstacle in the network reconstruction task is the fact that 
the number of possible network topologies increases exponen-
tially with the number of nodes in the network. To reduce the 
complexity 10 genes of the pathway were manually grouped into 
six complexes: IFN-α receptor complex, IFN-γ receptor com-
plex, JAK1 and TYK2 kinase complex, JAK1 and JAK2 complex, 
STAT1, STAT2 and IRF9 complex, and STAT1 homodimer. 
The proposed method correctly reconstructed the core topol-
ogy of JAK-STAT pathway. All edges were identified except of 
STAT1 phosphorylation by JAK1/TYK2.

Constraint-based approach. To reconstruct the JAK-STAT sig-
naling network in a human B cell, Papin and Palsson71 applied 
the method called extreme pathways analysis. The methodology, 
proposed originally in the context of metabolic pathways, enables 
to study various properties of signaling systems such as: input/
output relationships, crosstalk, correlated reaction sets, and net-
work redundancy.72 Extreme signaling pathways represent the 
edges of the steady-state flux cone derived from convex analysis 
of systems of reaction equations (given by stoichiometric matrix) 
with (in)equality constraints such as mass balance and reaction 

create an identifiability ranking for them, and finally simplify the 
model based on the identifiability analysis results. A parameter is 
called identifiable if it is uniquely defined by the model structure 
and data, simulated or experimental. The simplification steps are 
applied until the model is identifiable (i.e., parameter variances 
are small). Fully identifiable version of the original model was 
obtained after six in silico iterations. The resulting model has 
only 9 state variables and 10 parameters. Simplifications include: 
constitutive binding of JAKs and receptors (compare ref. 46); 
lumping formation of the receptor complex with STAT1 phos-
phorylation and, conversely, modeling step dissociation of the 
whole receptor complex in a single step; as well as omitting cyto-
plasmic STAT1 dephosphorylation (compare ref. 4).

Modeling based on PSC molecular data. A qualitatively differ-
ent mathematical model of IFN-γ-mediated signaling in pancre-
atic stellate cells (PSC) was presented by Rateitschak et al.44 It 
was based on authors own quantitative experimental data. Their 
relatively small RRE (11 kinetic parameters, 9 species variables) 
model describes kinetics of chemical reactions. Delayed processes 
(such as transcription and translation) have been described as a 
distributed time delay with gamma kernel. Reduced reaction net-
work includes main JAK1/2-STAT1 signaling features, i.e.: bind-
ing of the cytokine (IFN) to the receptor (R) combined with its 
immediate activation, phosphorylation of STAT1 combined with 
its immediate homodimerization, nuclear cycling of STAT1, 
transcription of IRF1 and SOCS1 as target genes and negative 
feedback formed by the latter protein. Most notably this model 
lacks negative regulation corresponding to cytoplasmic phospha-
tases, but on the other hand, includes a posttranslational positive 
feedback loop, representing expression of STAT1 in response to 
activation of IFN-γ receptors (via unknown underlying mecha-
nism). The scheme of biochemical reactions is shown in Figure 4.

The results indicate that the contribution of SOCS1 to the 
termination of STAT1 activation in PSC is limited. The authors 
suggest exhaustion of IFNγ and dephosphorylation of STAT1 by 
tyrosine phosphatases as critical steps of STAT1 inactivation in 
this experimental system.

The proposed JAK1/2-STAT1 model44 successfully repro-
duced key laboratory findings and more importantly allowed to 
predict the results of new independent experiments not previously 
used for model calibration. One of them compared the efficiency 
of different stimulation modes with respect to the expression/
activation of different components of the STAT1 pathway. We 
considered this experimental design interesting for the following 
reason: Interferons are cytokines with a variety of clinical appli-
cations. Since interferon action also involves induction of nega-
tive feedback loops, the application mode (e.g., time between two 
applications; dose split vs. a single high dose) is likely to influ-
ence biological efficiency. Thus, studies at the molecular level 
may provide deeper insights into the cellular basis of interferon 
responsiveness or resistance. The model developed specifically for 
PSC is of potential clinical interests because of the role played by 
STAT1 in the mediation of antifibrotic effects of IFN.

Network topology reconstruction. In all computational mod-
els described up to now one assumed a priori knowledge of the 
key biochemical reactions involved in the pathway. Consequently 

Figure 4. Scheme of the JAK1/2-STAT1 pathway model from the work 
of Rateitschak et al.44 Waved (transcription and mRNA relocation) and 
dashed arrows represent delayed processes. Names of variables have 
been adjusted for a consistency of this review. See text for details.
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With respect to more mundane aspects of model building, 
standardization of published models is essential, yet still not 
widely practiced. This can be achieved, for instance, through 
common file formats, such as SBML,54 databases of model files, 
such as BioModels,52,53 and annotation of model components 
with common vocabularies, such as Systems Biology Ontology.74 
In context of computational models of JAK1/2-STAT1 signaling 
pathway this is perfectly exemplified by variants of the model by 
Yamada et al.4 In fact, Zi et al.59 and Soebiyanto et al.,67 most 
likely being unable to exactly reproduce the original model, used 
a slightly different, smaller variant of the model (with just over 50 
instead of 60 rate parameters). Similarly, as already mentioned, 
Shudo et al.60 applied their own adjustments to the model. 
Although in a model of such size none of these changes made 
significant qualitative differences, small quantitative differences 
are noticeable and confusing.

On the final note, we sketched recent attempts to an even 
more challenging task of inference of the network topology from 
experimental measurements. Such approach is invaluable in cases 
when the network of biochemical reactions is unknown. In the 
context of JAK1/2-STAT1 modeling the extreme pathway analy-
sis approach71 seems more adequate to understand biochemical 
reactions network design principles than the Bayesian network 
inference.70

Concluding, to appreciate the usefulness of a formal model, 
we need to be conscious that the main role of computational 
models of signaling pathways is compacting a large pool of 
detailed knowledge and determining, within the overall glance at 
the pathway and its dynamics, which of its elements, when, and 
why are important. It happens that discoveries provided by mod-
eling approach were already known, but their importance lies 
in the fact that these hypotheses had been confirmed indepen-
dently by the iterative process of model development and calibra-
tion. This is for example the case of nucleocytoplasmic shuttling 
importance from the model by Swameye et al.3 Likewise, com-
putational model helped to demonstrate the role of dimerization 
of STAT1 in avoiding undesirable activation caused by the noise 
in the IFN activity.60 Finally, in a similar manner, it was eluci-
dated that the reported preassembly of cytokine receptors that 
precedes the appearance of an IFN stimuli strengthens stabil-
ity of the pathway signal transduction process in slightly vary-
ing intracellular conditions.46 Each of these examples of modest 
computational finding gives a more in-depth understanding of 
the design principles of JAK-STAT signaling, and signaling path-
ways in general.
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irreversibility. The method was used to reconstruct whole JAK-
STAT signaling network based on the stoichiometric matrix 
consisting of 15 different receptors and 15 corresponding ligands 
identified in human B cells. There were 297 reactions in total 
that gave rise to 147 extreme pathways characterizing fundamen-
tal functional states of the network. The structure of crosstalk in 
the JAK-STAT network, formally defined as a nonnegative linear 
combination of extreme pathways, was also analyzed. Such con-
straint-based approach may provide the tool for the description of 
biologically and medically significant properties of the pathway.

Discussion

Combination of theoretical and experimental analysis can provide 
valuable insight into mechanisms of signaling pathways. High 
quality data are the limiting factor in computational modeling of 
JAK1/2-STAT1 pathway. We briefly reviewed here analysis per-
formed for existing kinetic models: a set of models derived from 
the model by Yamada et al.4 and a more recent model of JAK1/2-
STAT1 pathway in pancreatic stellate cells build from the scratch 
on the independent data set.44 Rigorous mathematical approach 
allows one to study the network dynamics, while techniques of 
sensitivity analysis and model reduction contribute to identifica-
tion of key pathway components (potential drug targets).

We would like to emphasize that all reviewed kinetic mod-
els of JAK1/2-STAT1 pathway neglect the aspect of intrinsic 
noise caused by stochastic fluctuations. Our preliminary com-
parison of mean and standard deviation of the stochastic pro-
cess with the numerical solution of RRE, both underlying the 
model by Yamada et al.,4 suggests that the deterministic model 
is a good approximation.73 However, there is an evident lack of 
an exhaustive, systematic analysis of influence of both intrinsic 
and simultaneous intrinsic and extrinsic noise on the behavior of 
JAK1/2-STAT1 signaling.

In principle, kinetic models building is a tricky and difficult 
task for many reasons. Except for incomplete biological knowl-
edge, there is no clear notion of model optimality. However, there 
is a well-established principle of tailoring model complexity to 
the information content of available experimental data or the 
research question at hand.3,35,44,49 This parsimonius approach of 
defining a minimal sufficient model stands as an alternative to 
including all currently available knowledge of the pathway com-
ponents and their interactions.4 Although the latter case provides 
an invaluable systematization of the research subject, the amount 
of qualitative knowledge about the structure of the biochemical 
network is usually far in excess of the feasibility of validiating its 
dynamical behavior. In other words, in the case of large mod-
els it is practically impossible to fairly assess model relevance to 
experimental kinetic data at hand, at least with the quantities of 
data usually available. The obvious drawback of parsimonious 
models is their limited predictive power. Therefore, we would 
like to stress that it is absolutely crucial for a modeler to main-
tain an appropriate balance between the number of mechanistic 
details and their significance in the context of the data available 
for validation of the model as well as tools available for the model 
assessment.
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