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Abstract CD36, also known as the scavenger receptor B2, is a multifunctional receptor widely expressed in various organs.
CD36 plays a crucial role in the uptake of long-chain fatty acids, the main metabolic substrate in myocardial tissue.
The maturation and transportation of CD36 is regulated by post-translational modifications, including phosphorylation,
ubiquitination, glycosylation, and palmitoylation. CD36 is decreased in pathological cardiac hypertrophy caused by is-
chaemia–reperfusion and pressure overload, and increased in diabetic cardiomyopathy and atherosclerosis. Deficiency
of CD36 alleviates diabetic cardiomyopathy and atherosclerosis, while overexpression of CD36 eliminates ischaemia–
reperfusion damage, together suggesting that CD36 is closely associated with the progression of cardiovascular diseases
and may be a new therapeutic target. This review summarizes the regulation and post-translational modifications of
CD36 and evaluates its role in cardiovascular diseases and its potential as a therapeutic target.
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1. Introduction

CD36 [also known as fatty acid translocase (FAT), glycoprotein IIIb
(GPIIIb), or glycoprotein IV], is a member of the class B2 scavenger re-
ceptor family, which includes low-density lipoprotein (LDL), high-density
lipoprotein (HDL)-bound scavenger receptor B1, and HDL-bound scav-
enger receptor B3.1–3 The ligands of CD36 are mainly divided into lipid
and protein molecules. The former includes oxidized LDL particles,4

long-chain fatty acids (LCFA),5 phospholipids,6 and others, and the latter
includes thrombospondin,7 advanced glycation end products (AGEs),8,9

advanced oxidation protein products (AOPPs),10,11 S100 family proteins
(S100-A8, S100-A9, S100-A12),12–14 growth hormone-releasing pep-
tide,15 cell-derived microparticles,16 and amyloid proteins.17

CD36 is expressed in various tissues, including endothelial cells,18 car-
diac muscle cells,19 renal tubular epithelial cells,20 liver cells,21 adipo-
cytes,22 platelets,23 and macrophages,24 and is involved in many
pathophysiological processes, including immune regulation25 and meta-
bolic regulation.26 For example, CD36 on the cytomembrane of endo-
thelial cells optimizes fatty acid uptake in tissues.18 It also facilitates the
uptake of AOPPs in renal tubular epithelial cells, which leads to

lipotoxicity and renal tubule interstitial fibrosis in diabetic nephropathy.10

In liver cells CD36 is involved in fatty acid metabolism,27 while on plate-
lets it is related to platelet activation.28 In myocardial tissue, CD36 medi-
ates the uptake of long-chain fatty acids.29 Fatty acids provide over 70%
of the adenosine triphosphate (ATP)for myocardial tissue and most of
the fatty acids enter the cells through protein-mediated diffusion.
Importantly, 70% of this intake is mediated by CD36;29 therefore, CD36
plays an essential role in myocardial lipid metabolism.

The synthesis and translocation of CD36 are affected by many stim-
uli.30 Short-term stimulation of insulin promotes the translocation of
CD36 from the endosome to the cell membrane,31 while long-term
stimulation induces protein synthesis.32 Hyperglycaemia and hyperlipi-
daemia also facilitate the translocation of CD36 to the cell membrane.33

It has been proven that impaired synthesis and abnormal distribution of
CD36 shorten myocardial energy supply,34 resulting in the impairment
of myocardial contractile function.35 Pressure overload decreases the
level of one of the controllers of CD36 synthesis, nuclear receptor per-
oxisome proliferator-activated receptor a (PPARa),36 resulting in insuffi-
cient myocardial fatty acid uptake and the accumulation of toxic lipids,
ultimately leading to heart failure. However, downregulating CD36 in

* Corresponding author. Tel: þ86 13871 24 9571, E-mail: zhouning@tjh.tjmu.edu.cn
VC The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

Cardiovascular Research (2022) 118, 115–129 REVIEW
doi:10.1093/cvr/cvaa319

http://orcid.org/0000-0003-0863-3091
Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
diabetic cardiomyopathy reduces toxic lipids37 and improves the con-
tractile function of the heart. Therefore, the influence of CD36 on the
myocardium may not be consistent and largely depends on the patholog-
ical background.

In this review, we summarize gene polymorphism and post-
translational modification of CD36 and focus on its role in cardiovascular
diseases, particularly ischaemia/reperfusion, diabetic cardiomyopathy,
pathological cardiac hypertrophy, physiological cardiac hypertrophy, and
atherosclerosis. We also provide some suggestions for basic and clinical
research on CD36, to emphasize the significance of CD36 in the cardio-
vascular system and shed light on its potential as a therapeutic target.

2. Cd36 gene polymorphism

The human CD36 gene is located on 7q21.11, which has 36 kb and con-
sists of 19 exons with multiple upstream regulatory promoters.38 Single
nucleotide polymorphisms (SNPs) of CD36 are relatively common and
have been shown to be closely related to several cardiovascular diseases.

The rs1761663 of the CD36 gene has independent effects on body
mass index and left ventricular mass.39 A study conducted among young
adult populations in Australia showed that the rs1527479 and
rs1984112 of CD36 are related to exercise, heart rate, and lipid oxida-
tion.40 In the Chinese Han population, the AG genotype of rs1761667 is
associated with an increased risk of coronary heart disease (odds ratio
2.337, 95% confidence interval 1.336–4.087; P = 0.003), and the plasma
oxLDL level of patients with the AG genotype was significantly higher
than that of patients with the GG and AA genotypes.41 For rs1049673,
rs7755, and rs321159 sites, patients with premature coronary heart dis-
ease have a family genetic predisposition at high LDL-C levels with GA,
AA, and TT genotypes.42 Four common CD36 SNPs were found
(rs1049673, rs7755, rs3211956, and rs3173798) to be significantly asso-
ciated with extreme lipid profiles in the male Han population in northern
China, but no significance was identified in the female population.43 In ad-
dition, rs3211938, which affects susceptibility to malaria, has been shown
to resist metabolic syndrome, increase high-density lipoprotein choles-
terol, and reduce triglycerides.44 These genetic studies suggest that
CD36 gene polymorphism plays a predictive role in distinguishing cardiac
disease risk factors. Therefore, early prevention might be carried out for
susceptible people, using CD36 genotyping.

3. Cd36 protein

Human CD36 has a total length of 472 amino acids and a predicted mo-
lecular weight of 53 kd,45 although due to glycosylation, the actual mo-
lecular weight is 88 kd.46 CD36 contains two phosphorylation sites and
four palmitoylation sites, which are distributed at the terminals of NH2
and COOH. Two ubiquitination sites are also found at the COOH
terminus.

Knowledge of the crystal structure of CD36 remains unclear, but in-
sight into the potential mechanism of FA transport by CD36 can be de-
rived from the recently reported crystal structure of the CD36 family
member, lysosomal integral membrane protein-2 (LIMP-2).47 LIMP-2 is a
helical bundle where b-glucocerebrosidase binds, and where ligands are
most likely to bind to CD36. The crystal structure also shows the exis-
tence of a large cavity that serves as a tunnel through which cholesterol
(esters) are delivered from the bound lipoprotein to the outer leaflet of
the plasma membrane. CD36 is a double transmembrane protein that

cannot form a channel by itself to allow for fatty acids to transfer through
to the inside.48 Interestingly, the outer ring of CD36 contains a large hy-
drophobic cavity, which provides a docking site for fatty acids and other
hydrophobic ligands,49 facilitating the attraction of hydrophobic ligands
to the cell surface, thus promoting the transportation of fatty acids into
the cell.

3.1 Cd36 signalling
CD36 is a membrane protein that is synthesized in the polyribosome
and then transferred to the endoplasmic reticulum and Golgi apparatus
for further processing, and then finally transported by the endosome to
the cytomembrane.50 Under the stimulation of insulin51 or contrac-
tion,31 it moves to the lipid rafts of the cell membrane to facilitate LCFA
uptake, which may be associated with the activation of PI3K-Akt and
adenosine monophosphate (AMP) kinase (AMPK). CD36 is not only lo-
cated in plasma membranes and endosomes but is also distributed on
mitochondria,52 although its specific function on mitochondria remains
unclear.

The transfer of CD36 from the endosome to the cell membrane sur-
face is mainly regulated by insulin and contraction stimulation,53 which
induces CD36 translocation through different signalling pathways, but fi-
nally converges into Rab GTPase proteins AS160 and Rab 8a, accelerat-
ing CD36 translocation with the (guanosine triphosphate) GTP/
(guanosine diphosphate) GDP cycle.54

PI3K in the insulin signalling pathway has been shown to be critical for
CD36 translocation, supported by the fact that specific inhibitors of PI3K
(Wortmannin and LY-294002) can eliminate CD36 translocation and
downregulate LCFA uptake induced by insulin.55 In addition, among the
two downstream effectors of PI3K, PKC-zeta also participates in insulin-
induced CD36 translocation, and the other downstream effector, Akt, is
involved in the regulation of FOXO1 activity that acts on the CD36 pro-
moter region to regulate CD36 transcription.56 It is worth mentioning
that insulin signalling also promotes the translocation of GLUT4. Under
the stimulation of insulin, CD36 and GLUT4 are simultaneously trans-
ferred to the sarcolemma, resulting in increased fatty acid and glucose
uptake. This is contradictory to the Randle cycle phenomenon, which
states that a competitive inhibition exists between free fatty acid (FFA)
oxidation and glucose utilization.53 Further exploration of the time re-
sponse of GLUT4 and CD36 to different insulin concentrations, and
knowledge of the distinction between the vesicle transport pathway and
subcellular trafficking will help in understanding this contradictory phe-
nomenon.57 Recent studies have found that specific family members of
vesicle-associated membrane proteins (VAMPs) mediate the intracellular
transport of either CD36 or GLUT4. Specifically, VAMP4 translocates
CD36 between the mother endosomal compartment and a hypothetical
endosomal CD36-specific intermediate compartment,58 while VAMP5
and VAMP7 mediate GLUT4 homing to intracellular compartments.58,59

In particular, the distinct subcellular trafficking of CD36 and GLUT4 has
been discussed in detail in a recent review.57

Similar to insulin, contraction stimulation promotes the translocation
of GLUT4 and CD36 simultaneously.60 Importantly, contraction stimula-
tion is in an AMPK-dependent manner.61 It has been confirmed that both
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and oligomy-
cin can induce CD36 translocation by activating AMPK to promote
LCFA uptake. Along with various negative feedback mechanisms, AMPK
activation-induced CD36 translocation regulates AMPK activity in turn;
CD36 forms a protein complex with the AMPK kinase LKB1 and the Src
kinase Fyn,62 and this complex promotes Fyn phosphorylation of LKB1
and its nuclear sequestration, hindering LKB1 activation of AMPK. This

116 H. Shu et al.
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.feedback mechanism facilitates the cells to respond appropriately to the
outside fatty acid and balance the fatty acid oxidation and uptake.

3.2 Cd36 post-translational modifications
The synthesis, distribution, and function of CD36 are largely affected by
its post-transcriptional modification, including ubiquitination, glycosyla-
tion, phosphorylation, and palmitoylation. It is worth noting that al-
though there are many acetylation sites on CD36, further research is
required to reveal their effect.

3.2.1 Cd36 ubiquitination
Protein ubiquitination is the coupling of protein and ubiquitin, mediated
by a ubiquitin ligase (E3).63 CD36 is the target of the E3 ligase, Parkin64

(Figure 1). Differing from the degradation effect of ubiquitination, the
monoubiquitylation of CD36 by Parkin enhances its stability and
increases its plasma membrane level. In the presence of Parkin,65 LCFA-
induced polyubiquitination and degradation of CD36 is significantly
down-regulated, likely because one of the ubiquitination sites of LCFA is

also the target of Parkin. A recent study confirmed that USP14 is a deubi-
quitinating enzyme that mediates CD36 deubiquitylation on macro-
phages. USP14 cleaves ubiquitin chains from ubiquitinated CD36
proteins, thus avoiding the fate of CD36 being transported into the pro-
teasome for degradation66 (Figure 1). However, whether Parkin and
USP14 act as E3 ligases and deubiquitinating enzymes in cardiomyocytes
remains unclear.

LCFA, a ligand of CD36, significantly enhances the ubiquitination of
CD3667 and promotes its degradation after long-term interaction68

(Figure 1). This is a negative factor for the cellular uptake of fatty acids.
Recent studies have shown that ubiquitinated CD36 in myocytes sta-
bilizes the structure of insulin receptor substrate 169 and thus main-
tains insulin signalling. Given that insulin reduces its ubiquitination68

(Figure 1), CD36 may be involved in the self-regulation of the insulin
signalling pathway. Moreover, CD36 ubiquitination in macrophages
inhibits the formation of atherosclerosis by decreasing fatty acid up-
take.70 However, the role of ubiquitinated CD36 in the heart has not
yet been elucidated.

Figure 1 Post-translational modifications of CD36. There are two ubiquitination sites on the N-terminus of CD36: Lys472 and Lys469. CD36 ubiquitina-
tion levels decrease upon insulin stimulation while increase with the presence of LCFA; Parkin is CD36’s E3 ubiquitin ligase, which monoubiquitinates CD36
and enhances its stability, while USP14 mediates CD36 deubiquitylation. There are four palmitoylation sites at the C-terminus and the N-terminus of CD36,
Cys3, Cys7, Cys464, Cys466, and DHHC4/5 are palmitoyl transferases that promote palmitoylation of CD36; CD36 also has two phosphorylation sites,
Thr93 and Ser237, which are phosphorylated by PKC, PKA, and dephosphorylated by IAP, respectively. The large extracellular loop has 10 observed N-
linked glycosylation sites. DHHC, Asp-His-His-Cys; IAP, intestinal alkaline phosphatase; LCFA, long-chain fatty acid; PKA, protein kinase A; PKC, protein ki-
nase C; USP14, ubiquitin specific peptidase 14.

CD36 in cardiovascular diseases 117



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
3.2.2 Cd36 glycosylation
The glycosylation of CD36 is N-linked at asparagine residues (Asn) medi-
ated by glycosyltransferase.71,72 There are 10 glycosylation modification
sites of CD36 in humans, located in the extracellular segment of
CD36.73

Apart from increasing the molecular weight of CD36, glycosylation
could also stabilize the tertiary folding of polypeptides and is therefore
essential for forming the spatial structure of CD36.74 It affects the folding
of CD36, thus influencing its correct translocation to the cell membrane.
It has been proven that carboxyl-terminal sites Asn247, Asn321, and
Asn417 are indispensable for CD36 trafficking.71 Mutations in Asn108
and Asn173 sites result in the abnormal distribution of CD36 on the
COS m6 cell membrane.73 Mutations in Asn 102 of CD36 have been
found in spontaneously hypertensive rats (SHRs).75 Since Asn102 is lo-
cated in the fatty acid-binding pocket, mutations at this glycosylation site
may have a greater potential to affect fatty acid docking in the CD36
pocket, thereby affecting fatty acid transport. CD36 protein levels in
SHR are significantly down-regulated and fatty acid intake is reduced,
which may be related to the glycosylation mutation of Asn102.
However, the role of Asn102 in SHRs has not yet been confirmed exper-
imentally. Further research is required to clarify the role of Asn102 and
other glycosylation sites in cardiovascular diseases.

3.2.3 Cd36 phosphorylation
CD36 has two phosphorylation sites, Thr92 and Ser237, phosphorylated
by protein kinase C (PKC)76 and protein kinase A (PKA),77 respectively
(Figure 1). CD36 in small intestinal epithelial cells is dephosphorylated by
intestinal alkaline phosphatase (IAP)78 (Figure 1). In platelets, phosphory-
lation of Thr92 mediates the binding of CD36 and thrombospondin.79

Phosphorylation of CD36 at Thr92 is also necessary for the adhesion of
plasmodium falciparum-infected erythrocytes to human dermal micro-
vascular endothelial cells under flow condition.80 CD36 phosphorylated
at Ser237 downregulates the fatty acid uptake rate of platelets and enter-
ocytes.78,81 However, in vivo studies are insufficient to validate the
in vitro findings of CD36 phosphorylation.

3.2.4 Cd36 palmitoylation
Most members of the DHHC (Asp–His–His–Cys) family of proteins
have palmitoyl transferase activity, and these members are confirmed to
include the main palmitoyl acyl transferases (PATs).82 DHHC4/5 have
been shown to be the PATs of CD36 in adipocytes (Figure 1). The ab-
sence of either DHHC4 or DHHC5 prevents palmitoylation and the in-
sertion of CD36 on the adipose membrane, thereby destroying the
CD36-dependent fatty acid uptake.83 Selenoprotein K (SelK),84 which is
neither a PAT nor a palmitoyl-protein thioesterase (PPT), is also re-
quired for palmitoylation of CD36 in macrophages, suggesting that other
proteins may also be involved in the palmitoylation of CD36.

CD36 has four palmitoylation sites: Cys3, Cys7, Cys464, and Cys466
(Figure 1). Palmitoylation is strengthened by insulin stimulation.
Combined mutations of these four palmitoylation sites hinder CD36
translocation to the cell membrane for fatty acid uptake, even in the
presence of insulin and AMPK.85 With the inhibition of CD36 palmitoyla-
tion by ceruloplasmin,86 a palmitoylation-specific inhibitor, the process-
ing of CD36 at the endoplasmic reticulum and transport through the
secretory pathway extends from 90 min to 4 h in melanoma cells, indi-
cating that palmitoylation is essential for the transport and translocation
of CD36.

Increased palmitoylation of CD36 is found in liver steatosis and fibro-
sis.27 The decrease in CD36 palmitoylation downregulates the uptake of
fatty acids and helps to balance the fatty acid metabolism in the liver cells,
thus eliminating liver steatosis and fibrosis.27 However, no research has
revealed the effects of the palmitoylation of CD36 in the cardiovascular
system.

4. Cd36 and cardiovascular diseases

4.1 Cd36 and ischaemia/reperfusion
Ischaemia/reperfusion is characterized by the abrupt interruption, fol-
lowed by the subsequent restoration, of blood flow.87 The cut-off of ox-
ygen and nutrition results in various metabolic changes,88 including
alterations in lipid metabolism. The change of CD36 in ischaemia/reper-
fusion has been shown by using (3) H-labelled metabolic substrates to
measure the metabolic changes in Wistar rat hearts at different stages
during ischaemia/reperfusion.89 During ischaemia, CD36 of the sarco-
lemma is down-regulated by 32%, and the fatty acid oxidation rate
decreases by 95%. In the reperfusion stage, CD36 levels remained low,
but the fatty acid oxidation rate returned to the pre-ischaemic state.89

The increased pH of the endosome may contribute to the low level of
CD36 throughout the whole ischaemia/reperfusion period.90 The trans-
location of CD36 to the sarcolemma is significantly enhanced when the
pH of the endosome is high, while a decrease in pH inhibits this translo-
cation. During ischaemia, myocardial glycolysis increased by 86% and lac-
tic acid level increased by seven-fold89 (Figure 2), leading to a low pH
state and subsequently suppressed CD36 translocation. When shifting
to the reperfusion phase, the lactic acid in cardiomyocytes could not be
effectively eliminated in a short period; the cells may still be at a low pH,
and CD36 translocation is still suppressed (Figure 2).

At the same oxygen consumption level, glucose provides more energy
than lipids, so it is the preferred choice for maintaining myocardial func-
tion.91,92 The reduction of CD36 is beneficial to the conversion of the
metabolic substrates from fatty acids to glucose during hypoxia. The
consistently low level of CD36 may help cardiomyocytes to maintain en-
ergy balance (Figure 2). Moreover, the rate of fatty acid oxidation in car-
diomyocytes in ischaemia is reduced to 5% of basal states,89 and a
relatively low CD36 prevents the accumulation of triglycerides in the cy-
tosol by reducing the absorption of fatty acids (Figure 2). High concentra-
tions of fatty acids in cardiomyocytes reduce the recovery of ischaemic
heart function during the reperfusion stage by triggering insulin resis-
tance and cardiomyocyte apoptosis.93–95 Therefore, the reduction of
CD36 during ischaemia benefits the heart by avoiding the excessive ac-
cumulation of triglycerides, and a CD36 decrease during ischaemia is a
favourable adaptation for cardiomyocytes to survive.

The left ventricle undergoes a wound healing response after myocar-
dial infarction,96 including a strong infiltration of macrophages that pro-
mote the removal of dead cells and the renewal of extracellular
matrix.97 Contrary to the effects of a decrease in CD36, which is benefi-
cial to the energy production and survival of cardiomyocytes, the reduc-
tion of CD36 in macrophages has been proven to be detrimental to the
repair stage after myocardial infarction. The lack of CD36 leads to a re-
duction in the phagocytic receptor (myeloid-epithelial-reproductive-ty-
rosine kinase, Mertk) and nuclear receptor (nuclear receptor subfamily
4, group A, member 1, Nr4a1),98 which affects the phagocytic function
of cardiac macrophages, and exacerbates heart rupture caused by myo-
cardial ischaemia.99 CD36 blockers inhibit phagocytosis of macrophages
and restrain cardiac remodelling after myocardial infarction.99 In addition,

118 H. Shu et al.
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..platelet factor 4 (PF4) reduces the phagocytic function of macrophages
and leads to higher mortality from myocardial infarction, which is also at-
tributed to CD36 signalling down-regulation.100 Therefore, the decrease
of CD36 or its dysfunction in macrophages deteriorates myocardial in-
farction. Although CD36 is more abundantly expressed in endothelial
cells than in cardiomyocytes,101 the role of endothelial CD36 in ischae-
mic cardiomyopathy remains unclear.

Although reducing the content of CD36 has contradictory effects on
macrophages and cardiomyocytes, current treatments for ischaemia–re-
perfusion still focus on inhibiting the function of CD36. The likely reason
is that there are significantly more cardiomyocytes than macrophages in
myocardial tissue,102 and the improvement of cardiomyocyte function
by inhibiting CD36 may exceed the harm caused by macrophages. For
example, Mansor et al. corrected post-hypoxia/reoxygenation cardiac
metabolic disorders by injecting sulfo-N-succinimide oleate (a CD36-
specific inhibitor that results in an arrest of the FFA transport103) into
the hearts of type 2 diabetic male Wistar rats 4 min before hypoxia.104

Pre-injection of selective CD36 ligand EP 80317 (a synthetic hexapeptide
growth hormone-releasing peptide family analogue that is devoid of
somatotroph activity105) and azapeptide CP-3(iv) in mice significantly re-
duced the myocardial infarct size.106,107 Exenatide, a small-molecule drug

that regulates glucose metabolism, has also been shown to improve car-
diac function after cardiac ischaemia–reperfusion injury by inhibiting the
translocation of CD36.108

Drug studies provide strong evidence that inhibiting the function of
CD36 contributes to the recovery of heart function, but the most direct
evidence comes from heart CD36-knockout (cCD36KO) mice.
Inducible cardiomyocyte-specific CD36 ablation does not alter cardiac
morphology but improves functional recovery after ischaemia/reperfu-
sion.109 The decrease in fatty acid oxidation rate caused by the decrease
in CD36 lays the foundation for increasing the rate of glucose oxidation.
It has been shown that this recovery is due to the lower hydrogen ion
concentration resulting from the uncoupling of glycolysis from glucose
oxidation produced before and after ischaemia.109 However, CD36 sys-
temic knockout mice still suffer from severe ischaemia–reperfusion in-
jury;110 presumably, this relates to the general reduction of CD36. Not
restricted to the heart, systemic metabolic changes occur in a vast num-
ber of tissues in the systemic knockout mice, and due to various potential
adaptive adjustments from the embryonic stage, these mice may be sig-
nificantly different from heart-specific knockout mice.

However, some studies on ischaemia/reperfusion in spontaneously
hypertensive rats have challenged the protective effect of a decline in

Figure 2 Effects of CD36 in ischaemic/reperfusion. During the ischaemic phase, the distribution of CD36 on the cell membrane decreases, leading to a de-
cline in LCFA uptake and LCFA entering the mitochondria for aerobic oxidation, while GLUT4 increases on the cell membrane, which results in the uptake
of more glucose. Because of ischaemia and hypoxia, the anaerobic glycolysis process is enhanced, and produces a large quantity of protons, thus resulting in
a low cytoplasmic pH. Hydrion subsequently prevents the transport of CD36 from the endosome to the cell membrane, and further inhibits the distribution
of CD36 on the cell membrane. The relatively increased pyruvate acid enters the mitochondria for aerobic oxidation to produce ATP. During this process,
the decrease in CD36 prevents the accumulation of toxic lipids and indirectly promotes the aerobic oxidation of glucose, which is beneficial to the survival
of myocardial cells during the ischaemic phase. During the reperfusion phase, the anaerobic glycolysis process of glucose decreased and the rate of proton
production decreased. However, due to the low pH caused by the large number of protons accumulated in the ischaemic phase, the membrane distribution
of CD36 remains at a low level. At the same time, the rate of LCFA entering the mitochondria for aerobic oxidation is enhanced because of the accumula-
tion of triglycerides in the ischaemic phase, which is essential for energy production. During this process, the low level of CD36 helps reduce the accumula-
tion of toxic lipids, and the aerobic oxidation of LCFAs provides most of the energy for the myocardium.

CD36 in cardiovascular diseases 119
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CD36. Instead of the inhibition of CD36, the overexpression of CD36 in
SHRs reduced the infarct size, but the underlying mechanism has not
been clarified. Given that the model already has a pathological factor of
hypertension, it is possible that the overexpression of CD36 reduces the
myocardial injury risk brought by hypertension and indirectly protects
the infarcted myocardium caused by ischaemia/reperfusion.111

4.2 Cd36 and diabetic cardiomyopathy
The typical characteristics of diabetic cardiomyopathy are altered lipid
metabolism and impaired insulin signalling pathways.112–114 Without any
pathological stimulus, CD36 on the cardiac sarcolemma is significantly in-
creased in obese Zucker rats,115 db./db. mice,116 and high-fat-fed rats.117

The up-regulation of CD36 has also been confirmed in the cardiomyo-
cytes of patients with diabetic cardiomyopathy.118

The increase in CD36 expression in the sarcolemma in diabetic car-
diomyopathy may be attributed to hyperinsulinaemia, hyperglycaemia,
and hyperlipidaemia. Prior to insulin resistance, CD36 translocates from
endosomes to the myometrium because of the alkalinization of endo-
somes, which is caused by lipid-related inhibition of the proton pumping
activity of vacuolar-type Hþ-ATPase (v-ATPase).30,119 In the early stages
of diabetes, insulin is at high levels.120 Luiken et al. found that insulin stim-
ulation in isolated myocardial rat cells resulted in a 1.5-fold increase in
CD36 on the sarcolemma and a 62% decrease in intracellular CD36, sug-
gesting that insulin could effectively promote the translocation of

CD3631 (Figure 3). Chronic insulin stimulation also induces CD36
mRNA translation by activating the transcription factor forkhead box
O1 (FOXO1) , which further facilitates CD36 protein synthesis121

(Figure 3). In the late stage of diabetes, the insulin level has decreased sig-
nificantly, and the cardiomyocytes are resistant to insulin, but CD36 has
been permanently transferred to the myometrium during the early
stage.117 The decline of insulin does not change the fact that a large num-
ber of fatty acids have already been taken into cardiomyocytes. Similar
to chronic insulin stimulation, high glucose stimulation increases CD36
mRNA translation,122 followed by increased CD36 expression, and
membrane translocation of CD36 by palmitic acid stimulation.33 In the
advanced stage of diabetes, hyperglycaemia and hypertriglyceridaemia
may occur, thus further promoting CD36 expression and increasing its
membrane distribution.123 In addition to external factors such as insulin,
glucose, and lipids, the latest research suggests that the increase in CD36
in diabetic cardiomyopathy is also associated with the regulation of
microRNA. MiR-320, which acts as a small activating RNA in the nucleus,
is highly expressed in mice with diabetic cardiomyopathy and promotes
CD36 expression by directly acting on its nuclear transcription124

(Figure 3). In contrast, miR-200b-3p is remarkably reduced in diabetic
cardiomyopathy, which is an effective inhibitor of CD36 (Figure 3).

CD36 increases during diabetic cardiomyopathy, which in turn wor-
sens heart function.125 The increased distribution of CD36 on the myo-
metrium results in the intake of a large amount of fatty acids. Fatty acids

Figure 3 Effects of CD36 in diabetes cardiomyopathy. In healthy heart, insulin activates the PI3K-Akt pathway, thereby promoting the transportation of
CD36 from the endosome to the cell membrane. At the same time, FOXO1 transcription factor promotes the expression of CD36. LCFA absorbed by
CD36 acts as a mitochondrial substrate for oxidation and storage as lipids. In diabetes, increased insulin strongly activates the PI3K-Akt pathway, promoting
more CD36 from the endosome to the cell membrane, and FOXO1 transcription factor also leads to a robust expression of CD36. In addition, down-regu-
lated mir-200b-3p and upregulated mir-320 also accelerate the transcription and translation of CD36, thus further increasing the distribution of CD36 on
the cell membrane, which facilitates the uptake of LCFA in cardiomyocytes. LCFA promotes the transfer of CD36 in the endosome to the cell membrane,
further increasing the distribution of CD36 on the cell membrane. Intracellular LCFAs either enter the mitochondria for aerobic oxidation producing energy
and the byproducts-ROS or forms triglycerides for energy storage, and the accumulation of triglycerides would trigger insulin resistance. Insulin resistance
and ROS assembly deteriorate cardiac function and result in diabetic cardiomyopathy.
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in the cytoplasm could activate peroxisome proliferator-activated recep-
tors (PPAR),26 thereby inducing the up-regulation of enzymes necessary
for mitochondrial b-oxidation, leading to a significant increase in fatty
acid oxidation rates. However, the rate of fatty acid uptake and storage
is higher than the rate of oxidation, resulting in the accumulation of lipids
in the cell (Figure 3). Excessive lipid intermediates, including diacylglycerol
and ceramide, have been shown to induce insulin resistance126 and trig-
ger myocardial contractile dysfunction.121 At the same time, high levels
of b-oxidation of fatty acids produce a large amount of reactive oxygen
species (ROS),127 which can also induce inflammation128 and insulin re-
sistance129,130 which aggravates myocardial contractile dysfunction
(Figure 3). Lipids could directly lead to contractile dysfunction by pro-
moting myocardial cell apoptosis.131 Therefore, inhibiting the uptake of
long-chain fatty acids by targeting CD36 is the preferred strategy to re-
duce cardiac insulin resistance and ultimately prevent diabetic heart
failure.

A fatty acid–glucose balance is essential for maintaining normal cardiac
function. The heart operates optimally when it uses a mixture of energy-
providing substrates, especially in terms of fatty acids and glucose.132

The preferential use of a single type of substrate impairs the flexibility of
metabolism, limits auxiliary metabolic pathways, and affects the correct
post-translational modification of putative proteins (particularly the tran-
scriptional factors, such as PGC-1a and PPARa),133 thereby impairing
heart function.134,135 In diabetic cardiomyopathy, the metabolic sub-
strate of the myocardium shifts to fatty acids. Cardiomyocytes are insuffi-
ciently equipped to store large amounts of lipids with accumulated
acylglycerols and ceramides, causing cellular damage by lipotoxicity and
insulin resistance.136 Meanwhile, weakened glucose metabolism leads to
an insufficient substrate supply of the pentose phosphate pathway and
hexosamine biosynthetic pathway, resulting in impaired auxiliary metab-
olism.137 Therefore, inhibiting myocardial fatty acid metabolism helps to
reduce lipotoxicity and maintain the fatty acid–glucose balance, thereby
improving diabetic cardiomyopathy.

Several studies have shown that reducing the distribution of CD36 on
the sarcolemma, thereby inhibiting the uptake of LCFAs, helps to im-
prove the heart function of diabetic cardiomyopathy.33 For example,
mice overexpressing myosin heavy chain (MHC)-PPARa show severe
cardiomyocyte lipid accumulation and cardiac dysfunction.138 However,
due to the lack of CD36, the offspring produced by crossing MHC-
PPARa mice with CD36-deficient mice (MHC-PPARa/CD36-/-mice)
had decreased triglyceride accumulation and cardiac dysfunction under
basic conditions and on a high-fat diet. Glucagon-like peptide-1 could
eliminate the lipotoxicity of diabetic cardiomyopathy by stimulating pro-
tein kinase A (PKA) inhibition of the CD36 pathway.139 Exogenous H2S
protects diabetic hearts by inhibiting the translocation of CD36.19 N-
Acetylcysteine also restored Sevo-postC cardioprotection in diabetes
by reducing Foxo1 and CD36.140 Fibroblast growth factor 21 (FGF21)
deletion aggravates cardiac lipid accumulation by upregulating cardiac
Nrf2-driven CD36 expression;141 therefore, FGF21 is a potential agent
for the reduction of lipid accumulation as it ameliorates diabetic cardio-
myopathy by downregulating the expression of CD36.

4.3 Cd36 and cardiac hypertrophy
4.3.1 Cd36 in hereditary hypertrophic cardiomyopathy
Hereditary hypertrophic cardiomyopathy (HCM) is a disease whose
main pathological manifestation is cardiac hypertrophy, and it is caused
by a dominant mutation in the gene encoding the cardiac sarcomeric
protein.142 A survey of CD36 and hereditary hypertrophic

cardiomyopathy patients showed that 37.9% of HCM patients with
asymmetric ventricular septal hypertrophy had a loss of CD36 pro-
tein,143 which is accompanied by defective myocardial long-chain fatty
acid intake, suggesting that the reduced CD36 may play a role in the
pathogenesis of hereditary hypertrophy. The relationship between
CD36 translocation and left ventricular contractile dysfunction has been
verified in HCM mice.143,144 Owing to the decrease in CD36 transloca-
tion to the plasma membrane, ATP and triglycerides in the myocardium
dramatically decline. Although the mechanism by which CD36 decreases
in hereditary hypertrophic cardiomyopathy remains to be investigated,
increasing CD36 and improving fatty acid intake may provide a new solu-
tion for the treatment of hereditary hypertrophic cardiomyopathy.

4.3.2 Cd36 in pathological/physiological cardiac

hypertrophy
Differing from hereditary hypertrophic cardiomyopathy generated by
genetic mutations, secondary cardiac hypertrophy is mainly caused by
external stress, including pressure overload or physical exercise. It is nat-
urally divided into physiological cardiac hypertrophy and pathological
cardiac hypertrophy according to different stimulus factors and out-
comes. Changes in CD36 in two different types of hypertrophic hearts
were first demonstrated in 2013.36 Exercise training significantly in-
creased the expression of CD36 in the heart, but pressure overload re-
duced the expression of CD36.145 The decrease in CD36 in pathological
cardiac hypertrophy and the up-regulation in physiological cardiac hyper-
trophy may be related to PPARa and peroxisome proliferator-activated
receptor c coactivator-1a (PGC1a). Physical exercise increases the ex-
pression of PPARa146,147 and PGC1a148,149in the heart, while cardiac
pressure overload reduces them150,151 (Figure 4). The promoter region
of CD36 contains PPARa response elements.152 It has been shown that
the nuclear receptor PPARa and nuclear receptor peroxisome
proliferator-activated receptor-c (PPARc) regulate CD36 expression in
macrophages and cardiac microvascular endothelial cells.153,154

As mentioned before, when myocardial cells are facing a crisis of is-
chaemia and hypoxia, metabolism is remodelled. As for hypoxic patho-
logical cardiac hypertrophy,155 early and timely reduction of the
distribution of CD36 on the cell membrane helps to eliminate the injury
caused by a subsequent large intake of fatty acids. The reduction of
CD36 not only promotes the substrate transition of fatty acids to glu-
cose92 but also eliminates the accumulation of toxic lipid intermediates.
However, the reduction of CD36 may ultimately shorten the energy
supply in the chronic stage of pathological cardiac hypertrophy.145

Although the glycolytic pathway of glucose is enhanced in maladaptive
pathological cardiac hypertrophy due to the inhibition of fatty acid me-
tabolism, by elevated phosphofructokinase and lactate dehydrogenase
levels,145 glycolysis and energy generated from other substrates (lactic
acid, branched-chain amino acids, and ketone bodies) could not compen-
sate for the reduction of fatty acid oxidation, putting the heart in an insuf-
ficient cardiac energy state (Figure 4). Although the reduction of CD36
leads to a remarkable decline in the overall intake of fatty acids, studies
have shown that fat synthesis-related enzymes, including sterol-
responsive element-binding protein-1c (SREBP-1c), stearoyl-CoA desa-
turase 1 (SCD1), stearoyl-CoA desaturase 2 (SCD2), and glycerol-3-
phosphate acyltransferase (GPAT), are not down-regulated in pathologi-
cal cardiac hypertrophic cardiomyocytes (Figure 4). However, the activity
and content of hormone-sensitive lipase (HSL) and diacylglycerol lipase
(DAGL) that break down fat both decrease, resulting in a 31% increase
in triglycerides and a 200% increase in diacylglycerol in myocardial
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..cells143 (Figure 4). Insulin resistance caused by accumulated toxic lipids
further exacerbates the lack of energy supply in the heart. In addition,
pressure overload-induced cardiac hypertrophy leads to an excessive
metabolic shift from fatty acid to glucose.156 As mentioned before, the
aberrant preference to one substrate would cripple the metabolic flexi-
bility and cardiac contractility.134,135,157 Fatty acid metabolism needs to
be strengthened in order to restore the balance of fatty acid and glucose
and improve cardiac metabolism. In other words, heart function will
worsen if CD36 is excessively down-regulated.

Recent studies on CD36 cardiac-specific knockout mice and systemic
knockout mice have demonstrated the role of CD36 in pathological car-
diac hypertrophy. CD36 cardiac-specific knockout mice rapidly trans-
ferred from compensatory cardiac hypertrophy to heart failure due to
an imbalance of energy. Comparatively, CD36 systemic knockout mice,
when compared to wild-type mice, show pronounced myocardial inter-
stitial fibrosis, cardiac enlargement, and contractile dysfunction after
transverse aortic constriction (TAC) surgery.158 The myocardium of
CD36KO-TAC leads to insufficient energy supply not only due to the
decrease of CD36 but also because of the increase of de novo amino
acid synthesis from glucose, which further reduces the size of the high-

energy phosphate pool.159 However, whether overexpression of CD36
relieves the energy deficiency in pathological cardiac hypertrophy, and
thereby stops the heart failure caused by cardiac pressure overload
needs further investigation. It is certain that increasing the supply of fatty
acids in myocardial cells to expand the high-energy phosphate pool is
beneficial for hypertrophic myocardium. Even in the case of a decrease
in medium-chain acetyl-CoA dehydrogenase, providing medium-chain
fatty acids for cardiomyocytes lacking CD36 and bypassing long-chain
fatty acids can still relieve cardiac pressure overload-induced heart
failure.34

4.4 Cd36 and atherosclerosis
Atherosclerosis is a progressive chronic inflammation of the arterial wall,
manifested by the accumulation of foam cells, retention of macrophages
in plaques, and thrombosis.160 CD36 expression in macrophages is signif-
icantly increased in human carotid atherosclerotic tissue, particularly in
advanced atherosclerosis.161 In diet-induced mouse atherosclerosis
models and in vitro atherosclerosis models, CD36 on macrophages was
also remarkably elevated.162,163

Figure 4 Effects of CD36 in pathological and physiological cardiac hypertrophy. Under pressure overload, intranuclear PPARa and PGC1a are down-reg-
ulated and lead to decreased CD36 expression and LCFA uptake by myocardial cells, resulting in an insufficient energy state. At the same time, the activity of
HSL and DAGL that break down fat decreases, while fat synthesis-related enzymes, including SREBP-1c, SCD1, SCD2, and GPAT, are not down-regulated,
leading to the accumulation of toxic lipids. Accumulated lipids and insufficient energy support both contribute to the development of pathological cardiac hy-
pertrophy. During regular exercise, intranuclear PPARa and PGC1a increase and upregulate CD36 and fatty acid transfer rate-limiting enzyme CPT1, thus
facilitating the uptake and utilization of LCFA. With the increase of CPT1 on the mitochondrial outer membrane, more LCFA undergoes aerobic oxidation
in mitochondria. The increase in PPARa and PGC1a would also promote the transcription of mitochondrial oxidative phosphorylation-related proteins,
which jointly improves the efficiency of fatty acid oxidation. Moreover, fat synthesis-related enzymes, including SREBP-1c, SCD1, SCD2, and GPAT, and the
activity of HSL and DAGL that break down fat are both upregulated, thereby avoiding excessive accumulation of toxic lipids. Sufficient energy and less toxic
lipids maintain the proper cardiac function of physiological cardiac hypertrophy. CPT1, carnitine palmitoyl transferase 1; DAGL, diacylglycerol lipase; GPAT,
glycerol-3-phosphate acyltransferase; HSL, hormone-sensitive lipase; SCD1, stearoyl-CoA desaturase 1; SCD2, stearoyl-CoA desaturase 2; SREBP-1c, ste-
rol-responsive element-binding protein-1c.
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The main cause of foam cell generation is the excessive influx of modi-

fied low-density lipoproteins (LDL), and the accumulation of cholesterol
esters in intimal macrophages. As an important scavenger receptor in
macrophages, CD36 plays a critical role in cellular oxLDL accumulation
and foam cell formation. Macrophages bind with and internalize oxLDL
via CD36 due to their high-affinity CD36-oxLDL.23 Along with the inter-
nalization of the CD36-oxLDL assembly, oxLDL enters the cell and
accumulates, to transfer the macrophages into the foam cells. OxLDL
also provides putative oxidized lipids as ligands for the transcription fac-
tor PPAR-c, which is the main transcription factor of CD36, thereby acti-
vating CD36 gene expression to further increase the uptake of
oxLDL.164 The uptake of oxLDL by CD36 triggers a chain reaction and
creates a cycle, putting CD36 in the centre of foam cell formation.

Many pathogenic factors that lead to atherosclerosis are involved in
the regulation of CD36. Smoking and hyperglycaemia are risk factors for
atherosclerosis;122,165 nicotine promotes the expression of CD36 in
macrophages in a PPAR-c dependent manner, and hyperglycaemia
results in high CD36 mRNA translation efficiency, which increases the
expression of CD36. Premature atherosclerotic cardiovascular disease is
a common destructive complication of systemic lupus erythematosus
(SLE), which may be related to elevated CD36 expression, for reasons
currently unknown.166 IL-34, a cytokine associated with various inflam-
mations and autoimmune diseases, also increases the expression of
CD36 via the p38 MAPK signalling pathway to promote the formation of
foam cells, and thus is a potential biomarker of atherosclerosis.167

CCN3 (Cyr61, CTGF, Nov) is an important regulator of vascular ho-
meostasis.168 The lack of CCN3 leads to the increased formation of
foam cells, which is attributed to the increased expression of CD36, pos-
sibly due to the elevated level of CCN1 protein. Thrombin also pro-
motes the formation of atherosclerosis by regulating protein kinase Ch
dependent activating transcription factor 2-mediated CD36 expres-
sion.169 Retinol binding protein 4 (RBP4), an adipokine that plays a deci-
sive role in glucose metabolism and insulin sensitivity, has recently been
shown to promote atherosclerosis by upregulating CD36 expression.
The method is dependent on the Jun N-terminal kinase signal transducer
and activator of transcription 1, and activation of CD36-mediated cho-
lesterol uptake to facilitate the formation of foam cells.170

In addition to the formation of foam cells, CD36 is also involved in the
inflammatory response of macrophages. For example, targeting CD36
inhibits the NLRP3 inflammasome, resulting in a decrease in serum IL-1b
in atherosclerotic mice.171 CD36-related uptake of oxLDL induces the
specific expression profile of macrophage oxidative stress markers (5-
epi-5-F2t-IsoP, 15-E1t-IsoP, 8-F3t-IsoP, and 15-keto-15-F2t-IsoP) and in-
flammation markers (PGDM, 17-trans-PGF3a, and 11b-PGF2a).172 Even
relatively low concentrations of oxLDL can induce a durable atherogenic
macrophage phenotype through epigenetic histone modification.173

In addition, CD36 was recently found to drive the chronic inflammatory
response of macrophages by reprogramming mitochondrial
metabolism.174

Generally, the acute inflammatory response gradually subsides, as the
infiltrating immune cells gradually migrate to the draining lymph
nodes.175 However, inflammation in atherosclerosis does not spontane-
ously subside. Macrophages, with a pro-inflammatory phenotype, are
trapped in the atherosclerotic plaque, causing a continuous inflammatory
response.176,177 The oxLDL/CD36 interaction is essential for the reten-
tion of macrophages in plaques. The migration chemokines, CCL19 and
CCL21, largely decrease in macrophages after oxLDL stimulation,178

with persistent expression of CD146 that promotes macrophage reten-
tion in plaques.178 Importantly, the migration of CD36 null macrophages

is not inhibited by oxLDL, compared with wild-type macrophages,
underscoring the importance of CD36 signalling in macrophage reten-
tion.179 Two mechanisms may explain oxLDL/CD36 signal-related mac-
rophage retention. Firstly, oxLDL-mediated CD36 signal transduction
results in the continuous activation of focal adhesion kinase and the inac-
tivation of Src homology 2 containing phosphotyrosine phosphatase,
which leads to disorders of cytoskeleton assembly and disassembly,179

and the loss of macrophage activity. Secondly, oxLDL can also induce
the loss of macrophage polarity by activating the Vav/Rac pathway and
inactivating the non-muscle myosin II.176 In addition to oxLDL stimula-
tion, CD36 also mediates the inhibitory effect of advanced glycation end
product [Ne-carboxymethyllysine (CML)] on the retention of macro-
phages.180 CD36 is activated by CML and triggers the production of nic-
otinamide adenine dinucleotide phosphate oxidase (NOX)-derived
ROS, which then promotes F-actin polymerization to inhibit the migra-
tion of macrophages and accelerate the development of atherosclerosis
in diabetic patients.

CD36 is a glycoprotein with a high expression level in platelets and is
closely related to the formation of the prethrombotic phenotype in the
high-fat state. Accumulating evidence has shown that there is a high cor-
relation between the platelet activation response to oxLDL and the ex-
pression level of CD36.181 CD36 null subjects have slow thrombosis,
while elevated platelet CD36 expression may increase the risk of throm-
boembolism.182,183 Animal experiments showed that the deletion of the
CD36 gene protects mice from the increased platelet reactivity associ-
ated with hyperlipidaemia and the accompanying thrombotic pheno-
type.184 OxLDL-mediated CD36 signal transduction can activate
platelets in a variety of ways. Firstly, after CD36 is activated, it recruits
Src family kinases Fyn and Lyn, and further promotes the activation of
non-receptor tyrosine kinases Syk and (c-Jun-N-terminal kinase) JNK,
leading to the exposure of P-selectin and activated integrin, thereby en-
hancing thrombosis.185 Secondly, oxLDL stimulates the continuous gen-
eration of NOX2-derived ROS through the CD36-PKC pathway and
promotes platelet hyperfunction by regulating cGMP signal transduc-
tion.28 Thirdly, in response to the signal of oxLDL/CD36, the activated
protein kinase ERK5 promotes the exposure of procoagulant phosphati-
dylserine (PSer) on the platelet surface,186 thereby causing platelet acti-
vation and aggregation.23 Meanwhile, CD36 also activates platelets
through the interaction with endothelial cell-derived microparticles
oxPL, which makes platelets more sensitive to low concentrations of
agonists.16,187 Lastly, advanced glycosylation products (AGEs) in diabetic
patients also serve as ligands to bind to platelet CD36, leading to platelet
hyperreactivity and inducing a prethrombotic phenotype.8

In view of the important role of CD36 in promoting atherosclerosis,
anti-atherosclerotic drugs mainly focus on reducing the expression of
CD36. Traditional Chinese medicine, including salvianolic acid B (a hy-
drophilic component derived from the herbal salvia miltiorrhiza),188

andrographolide (the biologically active component of Andrographis pani-
culata),189 and scopolamine (plant flavonoids),162 all suppress the devel-
opment of atherosclerosis by lowering the expression of CD36.
Tamoxifen, an anti-breast cancer drug, has also been confirmed to inhibit
the expression of CD36 by inhibiting the PPAR-c signalling pathway,
thereby combating atherosclerosis.190 The apoA-I mimetic peptide D4F
can also reduce the formation of macrophage-derived foam cells by
inhibiting the expression of CD36.191 The new members of the calcito-
nin gene-related peptide family intermedin and C1q/tumour necrosis
factor-related protein 13 (CTRP13) inhibit the formation of macrophage
foam cells and reduce atherosclerosis plaques by promoting the degra-
dation of CD36 mRNA and promoting autophagolysosomal-dependent
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CD36 degradation, respectively.192 Vasostatin-1 is a chromogranin A
(CgA)-derived peptide (76 amino acids) that can inhibit vasoconstriction
and angiogenesis. Its inhibitory effect on atherosclerosis is also associated
with the down-regulation of CD36. Currently, researchers are studying
the nanoparticles targeting CD36 specifically to enhance efficacy and re-
duce side effects.193

5. Conclusion and perspective

Cardiovascular diseases have been seriously endangering the physical
and mental health of older adults,194 and they are particularly prominent
with the current increase in the aging population. Cardiac lipid metabo-
lism remodelling plays a key role in cardiovascular system diseases such
as ischaemia–reperfusion, diabetic cardiomyopathy, and cardiac hyper-
trophy.195 CD36 is a vital molecule in lipid metabolism.29 Changes in its
synthesis, localization, and function directly affect the energy supply and
metabolism of the heart. Studies on CD36 in different diseases suggest
that CD36 may be potentially useful for treatment. Therefore, transcrip-
tional activation, post-translational modification, and localization changes
of CD36 may provide new directions for the treatment of cardiovascular
diseases.

Post-translational modifications of CD36 have been studied for nearly
30 years.79 Post-translational modifications, including phosphorylation,
ubiquitination, palmitoylation, and glycosylation, accurately regulate the
maturation, transport, and positioning of CD36.1 In vitro research has
revealed the impact of post-translational modification of CD36 on cellu-
lar fatty acid uptake in adipocytes83 and muscle cells.69 However, few
studies have demonstrated its importance in cardiovascular systems.
Whether these modifications of CD36 alter the cellular uptake of fatty
acids in the myocardium and further influence cardiac function still
remains to be elucidated. Determining which enzymes mediate these
modifications in cardiomyocytes and whether these enzymes are useful
as new therapeutic targets, requires further investigation.

Fatty acids may also cause excessive lipid accumulation while provid-
ing energy.196,197 The increase in fatty acid uptake caused by CD36 can
be beneficial or harmful under different pathological conditions. Fatty
acids in cells are modulated by CD36 and are also affected by the rates
of mitochondrial aerobic oxidation, and triglyceride synthesis and de-
composition.198,199 Therefore, to evaluate the role of CD36 in myocar-
dial lipid metabolism, the corresponding mitochondrial aerobic
oxidation and triglyceride synthesis also needs to be taken into consider-
ation. Since it is not uncommon that more than two pathological factors
are combined at the same time, such as hypertension111 and myocardial
infarction200 in diabetes, the impact of CD36 on myocardial lipid metab-
olism and cardiac function is definitely more complicated when that
occurs. Therefore, further research is needed to investigate these
situations.

The function of CD36 in regulating lipid metabolism in cardiomyo-
cytes is not limited to lipid uptake. CD36 in mitochondria increases in
parallel with the up-regulation of FA oxidation, and recent studies have
shown that CD36 mediates a mitochondrial metabolic switch from oxi-
dative phosphorylation to superoxide production in response to its li-
gand, oxidized LDL.201,202 Moreover, mitochondrial-specific inhibition of
superoxide inhibited oxidized LDL-induced nuclear factor-jB (NF-jB)
activation and inflammatory cytokine generation.174 In addition, CD36
also forms complexes with certain metabolic molecules and participates
in the energy regulation process through direct interactions. For exam-
ple, CD36 regulates the activity of AMPK by forming a molecular

complex with Lyn and LKB1 and inhibits the activation of LKB1,62 which
is a known AMPK202 agonist. Further study on the function of CD36 be-
yond myocardial lipid uptake will help to provide a more comprehensive
understanding of myocardial lipid metabolism dysfunction and related
cardiovascular complications.

In response to insulin and contraction stimulation, both CD36 and
GLUT4 translocate to the sarcolemma to increase fatty acid and glucose
uptake, respectively, which is contradictory to the Randle cycle phenom-
enon.203,204 How to specifically regulate CD36, without affecting the
recycling of subcellular GLUT4, is also an area that remains to be deter-
mined. Previous studies have focused on the related proteins in the
GLUT4 and CD36 vesicle transport pathways. For example, VAMP4
mainly mediates vesicle transport of CD36, while VAMP5 and VAMP7
are involved in GLUT4 vesicle transport.58 These studies on the subcel-
lular transport of CD36 and GLUT4 help explain and distinguish the dif-
ferent energy regulation patterns made by cardiomyocytes in the face of
different signal stimuli.

In the cardiovascular system, CD36 is not only expressed on the sur-
face of cardiomyocytes but also exists in other cells, such as endothelial
cells.176 Although a large number of studies have reported that the
CD36 of endothelial cells is critically involved in the progression of vas-
cular diseases such as atherosclerosis,205,206 little research has been per-
formed to explore its effect on diabetic cardiomyopathy, hypertrophic
cardiomyopathy, and other diseases. Therefore, an in-depth study of the
effects of CD36 on myocardial metabolism in other types of cells is also
an important issue. In addition, in view of the universality of CD36 ex-
pression, drugs developed for targeting CD36 should specify cell popula-
tions and CD36 sites to limit side effects, avoid the potential for off-
target effects, and improve their efficacy.
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111. Necká�r J, �Silhav�y J, Zı́dek V, Landa V, Mlejnek P, �Simáková M, Seidman JG, Seidman
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Moreno T, Calaza M, Álvarez-Barredo M, Mosquera-Leal A, Parrington J, Brugada J,
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