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Abstract

Motivation: Microbiome functional data are frequently analyzed to identify associations between microbial func-
tions (e.g. genes) and sample groups of interest. However, it is challenging to distinguish between different possible
explanations for variation in community-wide functional profiles by considering functions alone. To help address
this problem, we have developed POMS, a package that implements multiple phylogeny-aware frameworks to more
robustly identify enriched functions.

Results: The key contribution is an extended balance-tree workflow that incorporates functional and taxonomic
information to identify functions that are consistently enriched in sample groups across independent taxonomic
lineages. Our package also includes a workflow for running phylogenetic regression. Based on simulated data we
demonstrate that these approaches more accurately identify gene families that confer a selective advantage
compared with commonly used tools. We also show that POMS in particular can identify enriched functions in real-
world metagenomics datasets that are potential targets of strong selection on multiple members of the microbiome.
Availability and implementation: These workflows are freely available in the POMS R package at https://github.com/
gavinmdouglas/POMS.

Contact: morgan.langille@dal.ca or elbo@tauex.tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

also arisen due to the presence of that pathway in a specific micro-

1 Introduction

Microbiome sequencing has been applied to characterize myriad
environments and is typically analyzed based on the relative abun-
dance of microbial features. These features may include both taxa
(the microbes present) and functions (the genes and pathways they
encode). While both data types have been leveraged to make valu-
able observations, they are typically analyzed independently. Yet,
linking these data types is required to make coherent interpretations
of observed shifts in microbiome data (Douglas and Langille, 2021;
Manor and Borenstein, 2017). For example, an enrichment of a par-
ticular microbial pathway in a group of samples (e.g. a disease or
unique environment) could represent selection on multiple inde-
pendent taxa which possess that pathway, which would be of signifi-
cant biological interest. In contrast, such an enrichment could have

©The Author(s) 2022. Published by Oxford University Press.

bial taxon that is more abundant for various other reasons in the
group of interest, making this enrichment less biologically
interesting.

Two approaches have been developed that partially address the
challenge of how to link taxonomic and functional data types.
FishTaco (Manor and Borenstein, 2017) is a tool that pinpoints the
taxonomic contributors to functional shifts identified by differential
abundance tests. FishTaco, however, is a post-hoc tool that is
applied after significant microbial functions have been identified,
whereas ideally, functional and taxonomic data would be integrated
while testing for differential functions to better identify strong en-
richment candidates.

Phylogenize is an approach that explicitly integrates functional
and taxonomic data during statistical testing (Bradley ez al., 2018;
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Bradley and Pollard, 2020). It identifies functional associations
based on the prevalence or specificity of taxa that encode each gene
family. This is performed using phylogenetic linear models, which
account for the genetic similarity of co-occurring taxa that arises
due to their shared evolutionary history. Using this framework, sig-
nificant gene families and pathways that are contributed by a diverse
set of taxa from within a given phylum are identified. Although this
approach forms a key improvement over past analytical approaches,
it has not been widely adopted. This is at least partially because phy-
logenize requires that users limit their analyses to genomes in the
MIDAS database (Nayfach ez al., 2016).

Some of the complexity of integrating taxonomic and functional
analyses, as well as other challenges in microbiome data analysis,
stem from the difficulties of applying standard statistical approaches
to raw microbiome data due to their compositional nature.
Fortunately, there is growing interest in improved compositional
approaches for analyzing microbiome data. Specifically, analyzing
ratios of microbiome feature relative abundances (rather than the
abundances of features themselves) has recently been proposed as a
solution to the compositionality problem (Gloor et al., 2016;
Morton et al., 2019). However, it is unclear which features should
be used for stably computing these ratios. One proposed solution is
to compare ratios of taxa (based on the isometric log-ratio trans-
formation) on each side of every node in a phylogenetic tree that
links the various taxa (Silverman et al., 2017). This general ap-
proach is now commonly referred to as analyzing balance trees
(Morton et al., 2017). While this is a statistically valid framework
for analyzing microbiome data, it is often unclear how to interpret
differences in taxonomic ratios.

Herein, we aim to address both the challenges involved in func-
tional differential abundance analysis and the limited interpretabil-
ity of balance tree-based approaches by testing for functional
enrichment in a balance tree framework. Specifically, our approach,
termed Phylogenetic Organization of Metagenomic Signals (POMS),
focuses on identifying cases where multiple taxa that encode a given
function are consistently associated with a sample group. Such cases
provide more support to the hypothesis that the function itself con-
fers a selective advantage to microbes in the relevant sample group,
rather than that the function happens to be present in just a few taxa
that are more abundant in that group. In addition to the POMS
workflow, we have also re-implemented several functions present in
phylogenize, which allows this phylogenetic regression framework
to be applied to novel genomes. We find that each workflow pin-
points interesting functional associations in both simulated and real
metagenomics data, and that they have complementary strengths
and weaknesses. This is a valuable proof-of-concept that integrating
functional enrichments into balance tree analyses improves their in-
terpretability and provides novel insights. Importantly, however,
since POMS cannot identify functions with limited taxonomic
breadth as highly enriched, we see it primarily as a complementary
tool to phylogenetic regression, and other more sensitive
approaches.

2 Materials and methods

2.1 Isometric log-ratio

Phylogenetic balances in POMS are calculated based on the isomet-
ric log-ratio of taxa in the two node subtrees (i.e. on one side of the
node compared to the other; Morton et al., 2017; Silverman et al.,
2017). This approach converts microbiome relative abundance data
into ratios of geometric means. Specifically, the balance for a sample
at node 7 is calculated based on the equation
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where n1; and ng; correspond to the numbers of taxa on the left-
and right-hand sides of the node. Similarly, g(y.;) and g(yx;) corres-
pond to the geometric means of the relative abundances of taxa on
the left- and right-hand sides of the node. Note that the choice of
which lineage is considered the left- versus right-hand side of a given
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node is arbitrary. The numbers of taxa on each side of a node are
included in this calculation to scale the balance to give it unit length
(i.e. to make the balances comparable despite varying numbers of
taxa at each node).

The geometric mean of the relative abundance of a set of taxa on
the left-hand side is calculated based on the equation

1
nLi i
g(yLi) = (Hy,-) = "YV1Y2 - Vs
=1

and analogously for the right-hand side. If any taxa have a relative
abundance of 0 then the geometric mean will also be 0. To avoid
this issue, a pseudocount can be added prior to computing these val-
ues. For all POMS analyses in this manuscript, we added a pseudo-
count of 1 to taxonomic abundances prior to computing the
isometric log-ratios.

2.2 Multinomial test

A multinomial exact test is used in POMS to identify consistently
enriched functions (CEFs), which is described in Section 3. This test
considers the counts of three classes of function-significant nodes
(FSNs) per function: (i) FSNs that do not intersect with balance-
significant nodes (BSNs), (ii) FSNs that intersect with BSNs where
the functional enrichment is in taxa that are relatively more abun-
dant in sample group one and (iii) FSNs that intersect with BSNs
where the functional enrichment is in taxa that are relatively more
abundant in sample group two. The null expectation for the propor-
tion of FSNs in each category is based on a mass-action interaction
between FSNs and BSN. In other words, the null expectation corre-
sponds to the case where FSNs and BSNs are assigned randomly.
The expectation also assumes that FSNs that intersect with BSNs are
split equally between BSNs that are higher in sample groups one and
two, respectively. This test is implemented with the xmulti function
of the XNomial R package (tested with version 1.0.4), using the
default log-likelihood ratio statistic to compute the P-value

2.3 Phylogenetic regression

We performed phylogenetic regression using the phylolm function
from the phylolm (Ho and Ané, 2014) R package, which regresses a
vector against the copy number of each tested function, while taking
the phylogenetic similarity of tips into account. The default
Brownian motion model was used for all analyses. We implemented
functions in the POMS package for running this process, as well as
for computing the prevalence and specificity scores described as part
of phylogenize. These latter functions were adapted from the phy-
logenize v0.94 codebase (https://bitbucket.org/pbradz/phylogenize),
which is distributed under an MIT license.

2.4 Pre-processing function copy-number tables

The same filtering cutoffs were used to filter the function copy num-
ber tables ([which link metagenome-assembled genomes (MAGs)
and other taxa to genome annotations]) prior to running all analy-
ses. First, the tables were restricted to include only taxa present in at
least one sample used for the relevant analysis. Then, any function
found in fewer than five taxa, or <0.1% of taxa, was removed.

2.5 MAG-based simulations

The MAG-based simulations were based on 704 control samples
from a large human meta-analysis dataset (Almeida et al., 2019).
These samples all met the metadata criteria to be labeled as derived
from healthy adults not on antibiotics. These samples were also
from studies that included at least 40 samples in total. One sample
was randomly dropped to create balanced groups. MAG abundance
was taken as the previously computed mean read depth (i.e. mean
number of mapped reads per site). MAGs with a breadth of coverage
less than 25% in a sample were given a mean depth of 0 in that sam-
ple. We then excluded all MAGs that were not called as present in
any sample, leaving 1595 MAGs remaining for the simulations.
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These simulations proceeded as described in Section 3. First, the
samples were randomly split into two groups for each of the 1000
replicate datasets. Then, for each profile a focal gene family was ran-
domly chosen, and within one group the abundance of all MAGs
encoding this gene family was incremented by a pseudocount of 1
and these abundances were multiplied by a factor of 1.5. These
simulated datasets are referred to as the ‘focal gene’ profiles. We
also performed parallel simulations where the relative abundance of
random taxa was randomly inflated by identical amounts in one
group only. Importantly, the same number of taxa were perturbed
as were affected in each matching focal gene simulation profile. The
resulting simulated profiles are referred to as the ‘random taxa’ pro-
files. The ‘clade-based’ profiles represent an additional set of simula-
tions that use the same selective pressures but applied only to taxa
descendent from a given node in the phylogenetic tree. There is one
clade-based dataset for each of the 693 nodes in the test tree with at
least five underlying taxa (excluding the root node).

We performed two types of phylogenetic regression on these
simulated datasets. In the first, the model response was the specifi-
city of taxa to the first sample group. In the second, the model re-
sponse was a binary indicator of whether taxa significantly differed
in relative abundance between the sample groups, based on
Wilcoxon tests (uncorrected P < 0.05). The alternative differential
abundance approaches compared in this study were Wilcoxon tests
following normalization by the median universal single-copy gene
(USCG) abundance (using the same approach used by the tool
MUSICC; Manor and Borenstein, 2015), Wilcoxon tests based on
relative abundances, ALDEx2 v1.16.0 (Fernandes et al., 2014),
DESeq2 v1.24.0 (Love et al., 2014) and limma-voom v3.40.6 (Law
et al., 2014; Ritchie et al., 2015). Significant gene families were
identified based on a Benjamini-Hochberg cutoff of <0.05 for all
tested approaches, including POMS.

2.6 Tara oceans dataset validation

The assembled Tara Oceans metagenomics dataset was taken from
a pre-existing project (Delmont et al., 2018). Environmental and
chemical profiles of the ocean samples along with the relative abun-
dance and annotations of MAGs were taken from the published
Supplementary Tables for this project.

GToTree v1.4.16 (Lee and Ponty, 2019) was run to build a
phylogenetic tree based on shared single-copy genes and to exclude
MAGs with completeness below 60% and redundancy above 10%,
which resulted in retaining 642 MAGs. MAGs were called as pre-
sent within samples if the breadth of coverage was >1%. This is a le-
nient setting, which was chosen based on the empirical distributions
of MAG breadth of coverage across the samples.

Higher-level functions (i.e. KEGG modules and pathways) were
reconstructed based on KEGG mappings from KOs to these catego-
ries downloaded from the KEGG website (Kanehisa et al., 2016) on
April 12, 2021. Reconstruction was performed using the PICRUSz2
script pathway_pipeline.py (Douglas et al. 2020), which leverages
MinPath (Ye and Doak, 2009) and the algorithm implemented in
HUMA#nN2 (Franzosa et al., 2018) to reconstruct higher-level func-
tion abundances. These reconstructions were performed for each
MAG independently.

Because the environmental data, such as the salinity and nutrient
concentrations, were continuous, significant BSNs were identified
based on Spearman correlations between sample balances and these
environmental factors (uncorrected P < 0.05). These results were
then discretized to indicate whether the factors were positively or
negatively associated with the groups at each respective BSN.
Phylogenetic regression was conducted based on a binary indicator
of whether taxon abundances showed significant Spearman correl-
ation (uncorrected P <0.05) with each environmental factor.
Spearman correlations were also computed based on the function
relative abundances themselves against the environmental factors.
The cross-product of the taxonomic abundances per sample and the
functional abundances per taxa was used to produce the
community-wide functional abundances.

Finally, Faith’s phylogenetic diversity was computed based on
the subset of taxa encoding each significant hit output by POMS or

phylogenetic regression. This was done using the Picante R package
(v1.8.2; Kembel et al., 2010).

2.7 Case—control shotgun metagenomics dataset

validations

We focused certain validation analyses on three datasets that were
part of a large meta-analysis of human shotgun metagenomics data-
sets (Almeida et al., 2019). These datasets are defined based on data-
set accession identifiers in the European Nucleotide Archive. We
used the previously generated MAGs, sample MAG abundance pro-
files and MAG phylogenetic tree as inputs to POMS after perform-
ing the same pre-processing steps that were performed for the
MAG-based simulations, but on a distinct subset of samples.
Phylogenetic regression was conducted based on the specificity of
each taxon for samples in the case group for each dataset. Faith’s
phylogenetic diversity computation and reconstruction of KEGG
pathways and modules was performed as for the Tara Oceans
dataset.

2.8 POMS dependencies

POMS is written in R (R Core Team, 2019) and is dependent on the
following R packages (versions used in this manuscript are indi-
cated, but these exact versions are not required): ape v5.3 (Paradis
et al., 2004), parallel v3.6.0, phangorn v2.5.5 (Schliep, 2011), phy-
lolm v2.6.4, stringr v1.4.0 and XNomial v1.0.4. POMS v0.3.1 was
used for all analyses. Testing and development of this approach was
carried out using R v3.6.0 and RStudio v1.2.5033 on a server run-
ning Ubuntu v16.04.5.

Several additional R packages are required to follow the current
analysis workflow after running POMS (again the versions indicated
were used for this article, but are not required versions): ggtree (Yu,
2020 Yu et al., 2017) v1.16.1, ggplot2 v3.3.0 (Wickham, 2016),
plyr v1.8.4 (Wickham, 2011) and reshape2 v1.4.3 (Wickham,
2007). All multi-panel plots displayed were created with the cowplot
(v1.0.0) R package.

2.9 Code availability

The POMS source code is available at: https:/github.com/gavinm
douglas/POMS. The code for all analyses presented in this manu-
script is available at: https:/github.com/gavinmdouglas/POMS_
manuscript/.

3 Results
3.1 POMS overview

POMS is a balance tree framework for analyzing microbial func-
tions (Fig. 1), including both gene families and higher-level func-
tions. The key input tables correspond to taxonomic abundances
across samples and per-taxon functional abundances. A phylogenet-
ic tree containing all taxa present in the samples must also be pro-
vided. The per-taxon functional abundance table corresponds to
genome annotations for MAGs, or other known taxa present in an
environment. This format contrasts with the functional abundance
tables that are largely unlinked from specific taxa, such as those that
are produced through read-mapping against a database of broadly
distributed gene families. The key POMS output is a table
summarizing, for each annotated function, the results of the test for
consistent enrichment.

The workflow begins by first identifying all nodes in the tree
with sufficient underlying tips (10 by default) on both the left- and
right-hand sides. All nodes that do not fit these criteria are excluded
from the analysis. The balances of taxa (per sample) at the remain-
ing nodes, defined as the isometric log-ratios of the relative abun-
dances of taxa on the left-hand side compared with those on the
right-hand side, are then computed. Typically, a pseudocount is
added to the taxonomic abundances to account for cases where taxa
are absent. Standard statistical tests can then be used to determine
whether these phylogenetic balances differ between sample groups.
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Fig. 1. Contrasting examples that illustrate the POMS methodology. (a and b) The two phylogenetic trees correspond to 60 microbial genomes found across two sample groups
(Groups 1 and 2). The mean log;q relative abundance of these genomes in each group is indicated by the heatmaps. The squares indicated on tested nodes indicate whether
there is a difference in the isometric log-ratio of the subtree taxonomic relative abundances between the two sample groups. Red and blue squares are colored to indicate which

subtree is at relatively higher levels in Group 1 samples (relative to the other subtree; see panel ¢ for an example). Note that the taxonomy-based annotations are identical be-
tween the two panels. Panels a and b show the distribution of two different microbial functions across these genomes (small black dots at the tips of trees). The colored circles
on the tested nodes indicate that the function of interest is enriched in one subtree compared with the other. POMS tests whether the intersection between colored squares and

circles is higher than expected by chance. Functions that are consistently enriched in the sample group direction (i.e. where the circle and square colors match at nodes consist-
ently, as in panel a, or alternatively where they consistently mismatch) are particularly of interest. Panel b is a contrasting example where the function is not consistently

enriched in taxa relatively higher in the same sample group. Note that the minimum number of underlying tips on each side for a node to be retained for analysis was set to
four for this example, but it would normally be higher (A color version of this figure appears in the online version of this article.)

Put simply, a node with significantly different balances between
sample groups indicates that the taxa on either the left- or right-
hand side of that node are at significantly higher abundances relative
to the taxa on the other side of the node in one sample group com-
pared with the other. Significantly different balances between sam-
ple groups are identified based on Wilcoxon rank-sum tests
(uncorrected P < 0.05 by default). Alternatively, the user can specify
which nodes are significantly different based on an external, user-
defined test, which enables more customized analyses.

We refer to each node with a significantly different balance as a
BSN. After identifying each BSN, POMS further determines which
side of the node is enriched within each sample group. In other
words, POMS determines which taxa are at relatively higher levels
(relative to taxa on the other side of the node) in each sample
group. Notably, such taxa are not necessarily at higher relative
abundances in one group or the other, but rather the relative ratios
of the taxa on each side of the node are different between the sample
groups.

Next, POMS tests for enrichment of each annotated function
across the nodes. More specifically, a Fisher’s exact test is computed
based on the counts of tips that either do or do not encode the func-
tion on either side of the node (uncorrected P <0.05 by default).
Importantly, these enrichment tests are computed at all nodes tested
during the balance tree step: not just at BSNs. We refer to each sig-
nificant node based on this approach as a FSN. Again, put simply,
an FSN indicates that the tested function is enriched in taxa on ei-
ther side of the node compared with the other.

Finally, a multinomial exact test is applied to test whether FSNs
coincide with BSNs, and consistently in the direction of the same
sample group, more often than expected by chance. Specifically, for
each tested function, the set of identified FSNs for that function (i.e.
nodes at which this function is enriched in one side of the node com-
pared to the other) can be partitioned into three classes. The first
class corresponds to FSNs that do not intersect with BSNs (i.e. there
is a significant enrichment of a function on one side of the node, but
there is no significant difference in sample balances). The other two
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classes correspond to FSNs that intersect with BSNs: one class where
the function is enriched in taxa that are relatively more abundant in
the first sample group, and the other class where the function is
enriched in taxa that are relatively more abundant in the second
sample group. In our example in Figure 1 these two classes are rep-
resented by intersecting circles and squares of the same and different
colors, respectively. For each function, the multinomial exact test is
performed based on the number of FSNs in each class compared
with the expected proportions given random intersections between
FSNs and BSNs. We refer to significant functions based on this test
as CEFs.

Although this test is primarily intended to identify CEFs enriched
in the direction of a single sample group, this framework can also
identify CEFs that show mixed signal of enrichment toward both
sample groups. In other words, a function could be significant be-
cause there is a depletion of FSNs that do not intersect with BSNs
compared with the random expectation, and not that it is consistent-
ly enriched toward a particular sample group. Such cases could still
be biologically interesting, but this highlights that post-hoc consider-
ation of the number of FSNs of each class is needed to be able to
interpret CEFs appropriately.

3.2 Simulation-based validations

To validate POMS, we first generated simulated datasets based on
samples containing MAGs. The MAGs from shotgun metagenomics
(MGS) control samples, with corresponding mean depths and phylo-
genetic tree, were obtained from a large human gut MGS meta-
analysis. These MAGs had previously been annotated with KEGG
orthologs (KOs). We subsampled 704 control samples into two
equally sized groups 1000 times to create random test datasets.

We then conducted several sets of simulations to evaluate
POMS’s performance. For all these simulations we compared
POMS’s performance with our implementation of phylogenetic re-
gression. This regression was based on either significant taxa be-
tween the groups as determined by Wilcoxon tests, or on the
specificity score developed as part of phylogenize. Although this
comparison provides insight into how POMS compares to an exist-
ing methodology that similarly integrates taxonomic and functional
information, the more practical question is how these methods per-
form compared to standard differential abundance tools, as the lat-
ter are more commonly applied. Accordingly, we also ran several
differential abundance tools, including ALDEx2, DESeq2, limma-
voom and Wilcoxon tests (based on raw relative abundances or
corrected by the abundance of USCGs). We applied these standard
differential abundance approaches to KO abundance tables that
lacked taxonomic links. The per-sample abundance of each KO in
these tables was computed by summing the product of the taxon
abundance and KO copy number for each taxon that encoded the
KO, i.e. we computed the cross-product of the taxa abundance and
KO copy number tables.

To characterize the baseline behavior of each tool, we first inves-
tigated the proportion of significant KOs [based on Benjamini-
Hochberg corrected P-values (BH) < 0.05] identified by each tool
across the 1000 random datasets. Some tools identified significant
KOs only in a small number of datasets; POMS identified significant
KOs in 12 datasets, while ALDEx2 and the relative abundance and
USCG-corrected Wilcoxon test approaches identified 7, 17 and 19
datasets with significant KOs, respectively. In contrast, DESeq2,
limma-voom and the significance-based and specificity-based phylo-
genetic regression approaches identified significant KOs in 543,
1000, 1000 and 1000 datasets, respectively. Although three tools
called KOs as significant in all datasets, the proportion of significant
KOs per-dataset was low. The mean proportion of significant KOs
was 0.163 [standard deviation (SD) = 0.038] for limma-voom,
0.060 (SD=0.029) for the significance-based phylogenetic regres-
sion, and 0.056 (SD=0.027) for the specificity-based phylogenetic
regression.

We then introduced taxonomic variation between the two
groups in each dataset using three different approaches. In the first
approach, for each of the 1000 random datasets, we randomly
selected a KO encoded by at least five MAGs. We then simulated

selection acting upon the genomes encoding this gene, by adding a
pseudocount of one to these genomes and then multiplying their
abundance by 1.5 in one sample group only (Supplementary Fig.
S1). Each randomly selected gene is referred to as the focal gene per
dataset and represents a gene that confers a selective advantage in
one of the two sample groups to taxa that encode it. This set of
simulated datasets is referred to as the focal gene profiles. In the se-
cond approach we conducted analogous simulations, but where ran-
dom genomes (rather than genomes that encode a specific focal
gene) were selected to increase in abundance in one group. For con-
sistency, the number of random genomes that were perturbed in this
approach in each profile was the same as the number of genomes
encoding the focal gene in the corresponding focal gene profile. This
set of simulated datasets is referred to as the random taxa profiles.
Finally, we also simulated cases where all taxa in the same clade, ra-
ther than randomly selected taxa, were perturbed. This involved per-
turbing the abundance of taxa underlying each node (for all nodes
with at least underlying five tips and excluding the root node) in the
tree. This resulted in 693 datasets, corresponding to each such node
in the tree. These datasets are referred to as the clade-based profiles.
We included these simulations to explore to what degree POMS is
robust to the blooming of individual clades, rather than of multiple
independent clades that encode similar functions. After producing
these simulated profiles, we applied POMS, the phylogenetic regres-
sion workflows and the differential abundance approaches to iden-
tify significant KOs.

We evaluated the results based on the significance ranking of the
focal gene relative to all other significant KOs identified by each
method in a given replicate, such that the highest ranking (i.e. the
rank of one) was assigned to the gene with the smallest P-value.
Under our focal gene-based simulations, MAGs encoding the focal
genes across the profiles were the only direct targets of selection,
and accordingly the focal gene was expected to be highly ranked
(i.e. close to one, indicating a smaller P-value compared to those of
other genes).

Comparing the approaches based on their distributions of focal
gene rankings over the simulation replicates reveals drastic differen-
ces (Fig. 2a). The clearest difference is that the focal genes identified
by all three phylogenetic methods are ranked significantly higher
than were the focal genes identified by the differential abundance
tools. The phylogenetic regression approaches ranked the focal
genes the highest, with a median rank of one, followed by POMS
with a median rank of two, and DESeq2 with a median rank of
65.75. We observed the same overall results based on simulations
with less extreme selection pressures, and with altered number of
MAGs (Supplementary Figs S2 and S3). In addition, we observed
the same overall trend with simulated sparse abundance profiles
based on reference genomes, which shows that this result is not
driven by bias related to focusing on MAGs (Methods and Results;
Supplementary Figs $4 and S5).

We next investigated what factors were underlying the variation
in focal gene ranking across the simulation replicate profiles. We
suspected that the number of MAGs that encoded each focal gene
would markedly impact detection ability. Indeed, we found that
focal genes were ranked highly overall based on the phylogenetic
methods, except for those encoded by very few MAGs (Fig. 2b;
Supplementary Fig. S6). For instance, focal genes identified by
POMS with relative rankings within the top 10 ranked KOs were
encoded by a median of 228 MAGs, whereas those not included in
the top 10 ranked KOs were encoded by a median of only 16.5
MAG:s. This trend was reversed for the differential abundance tests.
For instance, focal genes in the DESeq2 output ranked within the
top 10 KOs were encoded by a median of 38 MAGs, whereas those
not included in the top 10 KOs were encoded by a median of 89
MAGs.

The approaches also varied in terms of how often they called the
focal genes as significant. In particular, the focal gene was not called
as significant by POMS in numerous cases: we found that the focal
gene was significant in 78.8% of the POMS outputs, while it was
called as significant in a mean of 95.1% of the outputs by all other
tools. Most occurrences where the focal gene was not significant in
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Fig. 2. POMS performs best on simulated data based on focal gene rankings and the proportion of significant gene families. (a) Ranking of focal gene (i.e. the gene expected to
be significant) in the output of all significant genes, based on P-values. No point is shown for cases where the focal gene was not significant. There was a total of 4710 gene
families (KEGG orthologs) tested in each replicate. (b) Comparison of the numbers of MAGs that encode the focal gene in cases where the focal gene was ranked within the
top 10 gene families in panel a versus cases where it was not. (c) Proportion of gene families identified as significantly different between the simulated sample groups by each
approach. The ‘Focal gene’ panel represents the 1000 simulations where the MAGs that encode a specific gene family increased in abundance in one sample group. The
‘Random taxa’ panel corresponds to 1000 replicates where the abundance of randomly selected MAGs was perturbed in one sample group. Under these conditions no system-
atic differences in functional abundances would be expected on average. The ‘Clade-based’ panel represents the 693 instances where taxa underlying the same node were
selected as the target of perturbation. In all panels, each gray point corresponds to one simulation replicate profile. Note that ‘lower is better’ is indicated on panel ¢ to empha-
size that identifying almost all functions as significant is not useful and that few genes are expected to be significant in the random taxa and clade-based tests

the POMS output corresponded to cases where the gene was
encoded by either extremely few or almost all MAGs
(Supplementary Fig. S7). This result highlights the fundamental dis-
tinction between POMS and other approaches: POMS is more likely
to identify significant genes that are consistently enriched in inde-
pendent taxonomic lineages, which can be most clearly detected for
widely encoded (but not ubiquitous) genes. In contrast, differential
abundance—and to some extent phylogenetic regression—
approaches call genes as significantly different even when these
genes are linked to only a small number of taxa.

Having shown that the focal gene is successfully detected and
highly ranked by POMS, we next turned to compare the overall
number of significantly different KOs identified by POMS versus
standard differential abundance tests. This analysis demonstrated
that the proportion of significantly different KOs in the random
taxa simulated profiles was clearly lowest based on POMS (mean-
=0.001; SD=0.0.017) compared to all other approaches [e.g. the
next lowest was phylogenetic regression (specificity): mean=0.051;
SD =0.028; Fig. 2c]. However, importantly, the random taxa and
focal gene simulated profiles yielded substantially different results
based on the phylogenetic methods, particularly for POMS, whereas
the difference between the two profiles was less pronounced using
the differential abundance approaches Specifically, there was a
12026% increase in the mean proportion of significant KOs
detected by POMS in the focal gene dataset compared to the random
taxa dataset, while the corresponding increase based on DESeq2
(which had the highest such increase among the differential abun-
dance tools) was 46.8%. In contrast, the mean proportion of signifi-
cant KOs identified by POMS in the focal gene dataset was only
166% greater than the proportion identified in the clade-based

analysis. These results suggest that POMS, and phylogenetic regres-
sion (Fig. 2c), better control the false positive rate in cases where no
consistent functional differences are expected, but can still identify
substantial number of significant hits when there is a true signal.
Interestingly, the outliers in clade-based POMS results (Fig. 2¢) indi-
cate that this approach can erroneously call significant genes when
only a single clade is shifted in abundance, at least in rare instances.
This is clearly an unintended result and is important to appreciate
(see Discussion). Nonetheless, a more striking concern is that the
standard differential abundance tests frequently identified more
than 50% of functions as significant even in cases where sample
group differences were based on random taxonomic perturbations.
These overall results were consistently observed regardless of par-
ameter settings (Supplementary Fig. S8).

Finally, we also used modified versions of these simulated datasets
(see Supplementary Methods) to assess the resource usage of the
phylogenetic methods we implemented. We found that the POMS
running time (on one core) increases linearly with the number of
genomes (Supplementary Fig. S9). For instance, on one core the work-
flow took 69s with 500 MAGs, and 130s with 1000 MAGs. The
phylogenetic regression workflows showed runtimes on the same
order of magnitude, but ran slightly faster than POMS when the num-
ber of input MAGs was large. The regression workflows also con-
sumed more than double the memory of POMS (max: 0.42 GB for
POMS and 0.96 GB for the phylogenetic regression approaches).

3.3 Application to real datasets
We next applied all approaches discussed above to several real meta-
genomics datasets. Unlike in our simulated datasets, for these
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datasets we had no clear expectations regarding which functions
would be identified as CEFs, and our evaluation is accordingly vul-
nerable to subjective biases in interpretation. Yet, as we argue
below, many of the significant CEFs identified by POMS are reason-
able given the presence of similar findings in the literature.

We first focused on MAGs assembled as part of the Tara Oceans
project. Since strong selection pressures may act upon microbes
across environmental gradients in the ocean (Ibarbalz ez al., 2019;
Salazar et al., 2019), these metagenomics samples represent an
appealing test case for POMS. Our analysis focused specifically on
93 samples with 642 MAGs annotated with KOs. Environmental
factors associated with the water samples were also available,
including temperature, salinity, oxygen levels, nitrate concentra-
tions, phosphate concentrations and nitrogen dioxide concentra-
tions. We applied POMS to this dataset to detect microbial
functions associated with each of these factors independently. We
considered KEGG pathways and modules in addition to KOs for
this analysis. These higher-level functions were computed for each
MAG independently based on the KO annotations (see Section 2).
Because the environmental factor data is continuous rather than par-
titioned into discrete groups, we identified BSNs based on Spearman
correlations between the balances at each node and the factor levels.
The direction of each BSN was inferred from the sign of the correl-
ation coefficient. We also binned CEFs in this analysis as either
stringent, intermediate or lenient, based on BH cutoffs of 0.05, 0.15
and 0.25, respectively.

Our analysis across all environmental factors identified in total
one CEF below the intermediate cutoff and 19 CEFs below the leni-
ent cutoff (Table 1). These CEFs were associated with either

Table 1. Tara oceans POMS results

phosphate or mean salinity levels (for which there were 13 and 11
BSNs, respectively), and indeed some of the identified functions like-
ly reflect selective actions of these two factors. For instance, a path-
way linked to biofilm formation, ko05111, was found to be
associated with higher phosphate levels, in agreement with previous
findings of the non-trivial relationship between phosphorus levels
and biofilm formation (Danhorn et al., 2004; Fang et al., 2009).
Several significant CEFs linked to higher phosphate levels are also
membrane and transport-related genes, which could be related to re-
sponse to an environmental stress. Reasonable connections can also
be made with the CEFs associated with mean salinity levels, such as
the positive association with limonene and pinene degradation
(ko00903). Limonene and pinene are monoterpenes that can be
metabolized to modify cell membrane fluidity. This could reflect a
potential adaptation that could facilitate an organism’s survival in
the face of high salinity levels (De Carvalho and Fernandes, 2010).
We next investigated how the results would differ if phylogenetic
regression or Spearman correlations were used to test for associa-
tions (see Section 2). We found that using these approaches resulted
in substantially more functions associated with each factor. For in-
stance, there were 1008 and 1348 significant KOs (BH < 0.25) asso-
ciated with mean salinity and phosphate levels, respectively, based
on phylogenetic regression. Using Spearman correlation there were
4169 and 4974 significant KOs for mean salinity and phosphate lev-
els, respectively. Only 10/20 and 5/20 CEFs identified by POMS
were also significant in the Spearman correlation and phylogenetic
regression outputs (Table 1), respectively. We also assessed the
phylogenetic distribution of taxa encoding significant functions,
based on Faith’s phylogenetic diversity. Taxa sets encoding POMS

Env. factor  Datatype  Func.id.  Function description (simplified)  Total FSNs N FSNs N FSNsnotn  Corr. Sig.
FSNs  BSNs (high)*  BSNs (low)? BSNs® P Reg.d
Phosphate Pathway ko05111  Biofilm formation—V. cholerae 13 8 0 5 0.13 No
Salinity Pathway ko00903  Limonene and pinene 15 8 0 7 0.16 No
degradation
Phosphate KO K00705  4-Alpha glucanotransferase 9 7 2 0 0.17 No
Phosphate KO K01361  E3.4.21.96; lactocepin 7 6 1 0 0.17  Yes
Phosphate KO K01745 HAL; histidine ammonia-lyase 12 9 0 3 0.17  No
Phosphate KO K07137  Uncharacterized protein 12 9 1 2 0.17  Yes
Phosphate KO K15523  Protein-ribulosamine3-kinase 8 7 0 1 0.17 No
Phosphate KO K00151 5-Carboxymethyl-2-hydroxymu- 12 8 0 4 0.20 No
conic-semialdehyde
dehydrogenase
Phosphate KO K01712  UROCI1; urocanate hydratase 12 8 0 4 0.20 No
Phosphate KO K06872  Uncharacterized protein 12 8 0 4 0.20 No
Phosphate KO K06894  Alpha-2-macroglobulin 11 8 1 2 0.20  Yes
Phosphate KO K06940  Uncharacterized protein 12 8 0 4 0.20 No
Phosphate KO K07709  Two-component system, sensor 5 5 0 0 0.20 No
histidine kinase HydH
Phosphate KO K08988  Putative membrane protein 9 0 2 0.20 No
Phosphate KO K09933  mtfA; MtfA peptidase 9 7 0 2 0.20 No
Phosphate KO K02065 Phospholipid/cholesterol/ 17 9 0 8 0.24  Yes
gamma-HCH transport system
ATP-binding protein
Phosphate KO K15176 ~ RNA polymerase-associated 6 N 1 0 0.24 No
protein CTR9
Salinity Module MO00040  Tyrosine biosynthesis 6 5 0 1 0.24  Yes
Salinity Module MO00535  Isoleucine biosynthesis 10 6 0 0.24  No
Salinity Module MO00879  Arginine succinyltransferase 10 0 6 4 0.24 No

pathway

“FSNis intersecting BSNs associated with higher levels of environmental factor.
ESNs intersecting BSN's associated with lower levels of environmental factor.

“FSNs not intersecting BSNs.
dSignificant based on phylogenetic regression.
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CEFs had slightly higher values (mean = 50.0; SD =27.2), compared
to phylogenetic regression hits (mean =46.9; SD = 44.1), but the dif-
ference was not significant (Wilcoxon test, W=18,123, P=0.069;
Supplementary Fig. S10a). In all cases, POMS-detected CEFs were
not consistently amongst the most highly ranked hits by these other
tools (Supplementary Fig. S11a).

We then investigated how POMS performs on case—control
metagenomics datasets. We focused on a dataset of MAGs compiled
from human-associated microbiomes that were published as part of
a large-scale meta-analysis. We used subsets of this dataset corre-
sponding to three disease datasets: two obesity datasets and one
colorectal cancer dataset.

The first obesity dataset we analyzed included stool samples
from 477 obese and 257 control individuals that collectively con-
tained a total of 1401 MAGs. We applied POMS to this dataset and
identified 34 BSNs that differed between obese and control individu-
als. The second obesity dataset analyzed included 251 obese and
159 control individuals harboring a collective total of 1161 MAGs
in their stool microbiomes, with 31 resulting BSNs. POMS identified
79, 2 and 21 KOs, pathways and modules, respectively, which were
consistently enriched in at least one dataset (Supplementary Table
S1). Of these hits, two KOs, no pathways and two modules were
called as CEFs across both datasets.

Importantly, many of these significant hits are reasonable given
our knowledge of the link between the human microbiome and
obesity. For example, one of the strongest CEFs detected by POMS
was for the module cytochrome bd ubiquinol oxidase (M00153),
which was associated with case samples. This function could reflect
a broad shift in energy production through oxidative phosphoryl-
ation, or potential adaptation to oxidative stress, in obese individu-
als (Giuffré et al., 2014). Several other CEFs are also consistent with
similar broad selection pressures due to dietary or metabolic differ-
ences. For instance, KOs involved in vitamin B1 and B2 biosynthesis
(K00941 and K00794), as well as a module involved in vitamin K2
biosynthesis (M00116), were CEFs in case samples. The connection
between these vitamins and obesity is controversial, but in certain
cases they have been reported at lower levels in obese individuals
(Gunanti et al., 2014; Ravera et al., 2021). Similarly, beta-lactam re-
sistance (ko01501) was also significantly associated with case sam-
ples, which is particularly interesting as exposure to antibiotics has
long been known to be associated with obesity (Wilkins and Reimer,
2021). Thus, one hypothesis consistent with these results is that
these functions represent widespread adaptations to stresses and the
resource landscape in the gut environment of obese individuals.

Last, we applied POMS to the microbial profiles of stool samples
from 75 colorectal cancer patients and 53 controls, which contained
1187 MAG:s. In this case, there were only 14 BSNs and no signifi-
cant CEFs. Nonetheless, the sole outlier in the results (the only fea-
ture with corrected P <0.6) was glyoxylate and dicarboxylate
metabolism (enriched in control patients; corrected P =0.294). This
outlier is noteworthy, as it has previously been identified as the most
significantly depleted function in colorectal cancer samples (relative
to controls) based on metabolite profiles (Arima et al., 2020).

In contrast to the POMS results, phylogenetic regression (speci-
ficity-based) resulted in many more hits in the colorectal cancer
dataset (2996) than in the obesity dataset (1202). In addition, no
pathways, and only 14/79 KOs and 4/21 modules (Supplementary
Table S1) were called as significant by both approaches in the same
dataset. In this case, taxa sets encoding POMS CEFs exhibited
significantly higher values of Faith’s phylogenetic diversity (mean-
=114.9; SD =69.9; Wilcoxon test, W =80,348; P=4.0 x 1077),
compared to those encoding the phylogenetic regression hits
(mean = 80.2; SD =74.0; Supplementary Fig. S10b). In addition,
POMS CEFs were not amongst the highest ranked significant calls
based on phylogenetic regression or the differential abundance
approaches (Supplementary Fig. S11b-d). These results highlight
that POMS identifies distinct sets of significant hits compared with
both other phylogenetic methods and standard differential abun-
dance tests.

4 Discussion

Herein we have presented and validated the POMS framework: a
novel approach for identifying CEFs in microbiome data. Using sim-
ulations, we have demonstrated that POMS can accurately identify
widely encoded microbial functions that confer a strong selective ad-
vantage. While we present several different analyses to validate and
justify our approach, perhaps the most convincing evidence is that
focal genes (i.e. genes that were simulated as conferring a selective
advantage) were amongst the most significant functions identified
by POMS, whereas this was often not the case for standard differen-
tial abundance approaches. On the other hand, the focal genes were
frequently identified by phylogenetic regression as well, but it is
much more difficult to interpret the output of this approach. In add-
ition, although POMS produced sensible results on real shotgun
metagenomics datasets that were assembled into MAGs, these CEFs
were typically not top hits based on phylogenetic regression. This
suggests that POMS and phylogenetic regression are complementary
tools that potentially give insight into different types of functional
associations.

For instance, POMS can only identify functions that are widely
encoded by taxa and that are variably present across different line-
ages; a gene restricted to an individual lineage, even if that lineage
has many members, should not be identified as a CEF (although this
can occur: see discussion of clade-based simulations below). This is
because POMS requires a function to be enriched repeatedly (and in
consistent directions) at independent BSNs to identify a function as
significant. These functions necessarily will show a signal at deeper
nodes in the tree, rather than on small clades or tips. This difference
is reflected in the fact that taxa encoding significant POMS hits
often had significantly higher Faith’s phylogenetic diversity com-
pared to those encoding significant phylogenetic regressions hits.
Consequently, POMS may miss many functions that would be iden-
tified by phylogenetic regression, and which may exhibit signal at
sporadic tips in the tree. However, CEFs identified by POMS have a
clear biological interpretation: each CEF represents the hypothesis
that the function provides a fitness advantage in certain contexts to
those taxa which encode it. This need not be the case for significant
hits identified by phylogenetic regression: a small number of taxa
may simply have bloomed or become depleted for a different reason.

It should also be appreciated that significant CEFs identified by
POMS are not guaranteed to be enriched only in a single direction.
The POMS multinomial test evaluates whether the distribution of
FSNs into the three categories departs from the random expectation.
Significant functions could simply be enriched at BSNs of both
types, i.e. a mixture of BSNs relatively higher in both sample groups.
Such cases could still be biologically interesting but would be inter-
preted differently than CEFs primarily enriched toward a single sam-
ple group. Accordingly, the counts of FSNs of each category should
be considered when interpreting any CEFs identified by POMS.

There are also other limitations to the POMS approach. For in-
stance, identifying CEFs requires that sufficient BSNs are present to
identify significant enrichments. Even if an adaptive function is
widely distributed phylogenetically, it will not be identifiable by
POMS unless there are corresponding BSNs that could be driven by
this function. In addition, POMS assumes that all nodes in the tree
have independent balance distributions. This is partially invalid be-
cause particular taxonomic groups are more likely to vary across
individuals and taxon co-occurrence can occur even at long evolu-
tionary distances (Ma et al., 2020). It is also a caveat for all balance
tree approaches that there can be correlations in node balances sim-
ply due to the same tips underlying the nodes. We assessed the ex-
tent of this problem with our clade-based perturbation simulations,
which indicated that on occasion POMS can produce erroneous
results due to this issue. However, the proportion of significant KOs
was still much lower than for the differential abundance tools.
Future development that focused on building a similar framework
based on phylofactorization (Washburne et al., 2019) instead of bal-
ance trees could help address this issue.

Despite these caveats, we have shown that compared with more
common approaches, integrating functional information into a bal-
ance tree framework can better identify functions that could provide
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a selective advantage. POMS is just one example of how this general
analysis scheme can be implemented, and future work could incorp-
orate more sophisticated approaches for analyzing balances across
phylogenetic trees (Silverman ez al., 2017; Washburne ez al., 2019).
Nonetheless, the current POMS framework represents a more robust
methodology compared to the common practice of applying differ-
ential abundance tests to community-wide functional abundances.
More generally, given the wide range of results yielded by popular
microbiome differential abundance approaches (Nearing et al.,
2022) and their poor performance in our simulation experiments,
clearly phylogenetic methods should be preferred in this context.
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