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Abstract

Background Precision medicine, space exploration, drug discovery to characterization of dark chemical space of habitats
and organisms, metabolomics takes a centre stage in providing answers to diverse biological, biomedical, and environmental
questions. With technological advances in mass-spectrometry and spectroscopy platforms that aid in generation of informa-
tion rich datasets that are complex big-data, data analytics tend to co-evolve to match the pace of analytical instrumentation.
Software tools, resources, databases, and solutions help in harnessing the concealed information in the generated data for
eventual translational success.

Aim of the review In this review, ~ 85 metabolomics software resources, packages, tools, databases, and other utilities that
appeared in 2020 are introduced to the research community.

Key scientific concepts of review In Table 1 the computational dependencies and downloadable links of the tools are provided,
and the resources are categorized based on their utility. The review aims to keep the community of metabolomics researchers
updated with all the resources developed in 2020 at a collated avenue, in line with efforts form 2015 onwards to help them
find these at one place for further referencing and use.

Keywords Metabolomics - Tool - Database - Software - Annotation - Metabolite - In silico - Recourse - Program

Abbreviations HRMS High-resolution mass spectrometry
AIF All ion fragmentation HR MS/MS High-resolution tandem mass spectrometry
ANOVA Analysis of variance Q-ToF Hybrid quadrupole orthogonal
ANN Artificial neural network time-of-flight
CE Capillary electrophoresis IMS Ton-mobility mass spectrometry
DDA Data dependent acquisition KEGG Kyoto encyclopedia of genes and genomes
DIA Data independent acquisition LC Liquid chromatography
DB Database ML Machine learning
FDR False discovery rate MSI Mass spectrometry imaging
FIA Flow injection analysis MS Mass spectrometry
GC Gas chromatography miz Mass-to-charge
GNPS Global Natural Product Social molecular DL Meep learning
networking MSI Imaging mass spectrometry
GUI Graphical user interface MRM Multiple reaction monitoring
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NMR Nuclear magnetic resonance

PLS-DA Partial least-squares-discriminant analysis

PCA Principal component analysis

CCS Collision cross section

QA Quality assurance

QC Quality control

RSD Relative standard deviation

RT Retention time

R R-Statistical programming

S/N Signal to noise ratio

SRM Single reaction monitoring

MS/MS Tandem mass spectrometry

QqQ Triple quadruple

UPLC-TOF  Ultra-performance liquid chromatography-
time-of-flight mass spectrometry

XCMS Various forms (X) of chromatography mass

spectrometry

1 Introduction

The year 2020 has seen an enormous rise in applications
of ion mobility mass-spectrometry (IMS), and data-inde-
pendent acquisition (DIA) methods of analyses in both
metabolomics and lipidomics. In terms of application,
mass spectrometry as a technology promises advance care
for cancer patients in clinical and intraoperative use (J.
Zhang, Ge, et al., 2020; Zhang, Sans, et al., 2020), imag-
ing mass spectrometry (MSI) based natural products (NPs)
discovery (Spraker et al. 2020), nanoscale secondary ion
mass spectrometry (nanoSIMS) usage in subcellular MS
imaging and quantitative analysis in organelles (Thomen
et al. 2020), capturing urban sources of contamination
from high resolution mass spectrometry (HRMS) (Bowen
et al., 2020) to detection of COVID-19 disease signatures
(Mahmud & Garrett, 2020).

From an analytical method development stand point,
interesting developments such as plasma pseudotargeted
metabolomics method using ultra-high-performance liquid
chromatography—mass spectrometry (UHPLC-MS) (Zheng
et al. 2020) and the need for combined use of nuclear
magnetic resonance spectroscopy and mass spectrometry
approaches in metabolomics (Letertre et al. 2020) are nota-
ble. For volume-limited samples, solutions such as sub-
nanoliter metabolomics via LC-MS/MS such as pulsed MS
ion generation method known as triboelectric nanogenera-
tor inductive nanoelectrospray ionization (TENGi nanoESI)
MS (Li et al. 2020) was introduced. Flow-injection Orbit-
rap mass spectrometry (FI-MS) enabled reproducible detec-
tion of ~9,000 and ~ 10,000 m/z features in metabolomics
and lipidomics analysis of serum samples, respectively,
with a sample scan time of ~ 15 s and duty time of ~ 30 s;
a~50% increase versus current spectral-stitching FI-MS
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methods (Sarvin et al. 2020). A spatial metabolomics pipe-
line (metaFISH) that combined fluorescence in situ hybridi-
zation (FISH) microscopy and high-resolution atmospheric-
pressure matrix-assisted laser desorption/ionization mass
spectrometry to image host—-microbe symbioses and their
metabolic interactions (Geier et al. 2020) was also reported.
Another study that compared the full-scan, data-dependent
acquisition (DDA), and data-independent acquisition (DIA)
methods in HR LC-MS/MS based metabolomics to reveal
that spectra quality is better in DDA with average dot prod-
uct score 83.1% higher than DIA and the number of MS?
spectra (spectra quantity) is larger in DIA (Guo & Huan,
2020a). Furthermore, it was shown that DDA mode con-
sistently generated fewer uniquely found significant features
than full-scan and DIA modes (Guo & Huan, 2020b).

Using with Raman spectroscopy, followed by stimu-
lated Raman scattering (SRS) microscopy and Raman-
guided subcellular pharmaco-metabolomics in metastatic
melanoma cells revealed intracellular lipid droplets that
helped identify a previously unknown susceptibility of
lipid mono-unsaturation within de-differentiated mesen-
chymal cells with innate resistance to BRAF inhibition (Du
et al. 2020). Application of *'P NMR was shown to hold
potential of expanding the coverage of the metabolome
by detecting phosphorus-containing metabolites (Bhinder-
wala et al. 2020).

The effectiveness of the flow injection analysis-contin-
uous accumulation of selected ions Fourier transform ion
cyclotron resonance mass spectrometry (FIA-CASI-FTMS)
workflow utilizing isotopic fine structure (IFS) for molec-
ular formula assignment was realized for metabolomics
applications (Thompson et al. 2020). A buffer modifica-
tion workflow (BMW) in which the same sample is run
by LC-MS in both liquid chromatography solvent with
14NH;-acetate buffer and in solvent with the buffer modi-
fied with 'SNH;—formate, resulted in characteristic mass
and signal intensity changes for adduct peaks, facilitating
their annotation (Lu et al. 2020). Towards reference mate-
rials standardization, quantitative measures of approxi-
mately 200 metabolites for each of three pooled reference
materials (220 metabolites for Qstd3, 211 metabolites for
CHEAR, 204 metabolites for NIST1950) were obtained
and supported harmonization of metabolomics data col-
lected from 3677 human samples in 17 separate studies
analyzed by two complementary HRMS methods (K. H.
Liu, Mrzic, et al., 2020; Liu, Nellis, et al., 2020). Another
review highlighted the recent progresses (since 2016) in the
field of chemical derivatization LC-MS for both targeted
and untargeted metabolome analysis (Zhao & Li, 2020).
The characterization of compounds by the number of labile
hydrogen and oxygen atoms in the molecule, which can be
measured using hydrogen/deuterium and '°0/'80-exchange
approaches allows reduction of the search space by a factor
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of 10 and considerably increases the reliability of the com-
pound identification (Kostyukevich et al. 2020). Preference
for monophasic methods that are quicker and simpler than
biphasic methods for their amenability and integration into
future automation for hydrophilic interaction chromatog-
raphy (HILIC) ultrahigh-performance liquid chromatog-
raphy-mass spectrometry (UHPLC-MS) and nonpolar
extracts by C18 reversed-phase UHPLC-MS based metabo-
lomics in animal tissues and biofluids (Southam et al. 2020)
was also demonstrated. In other innovative applications, use
of short columns and direct solvent switches allowed for
fast screening (3 min per polarity), where a total of 50 com-
monly reported diagnostic or explorative biomarkers were
validated with a limit of quantification that was comparable
with conventional LC-MS/MS (van der Laan et al. 2020).

From the stand point of data analysis, metabolomics as a
field is starting to benefit by applying machine learning (ML)
(Liebal et al. 2020) and deep learning (DL) (Pomyen et al.
2020; Sen et al. 2020) approaches to address diverse chal-
lenges from data preprocessing to biological interpretation.
In the context of systems and personalized medicine LION-
ESS (Linear Interpolation to Obtain Network Estimates for
Single Samples) and ssPCC (single sample network based
on Pearson correlation) were evaluated and compared in
the context of metabolite—metabolite association networks
(Jahagirdar & Saccenti, 2020). In annotation domains for
low resolution GC-MS data, usage of DL ranking for small
molecules identification, a deep learning ranking model out-
performed other approaches and enabled reducing a fraction
of wrong answers (at rank-1) by 9-23% depending on the
used data set (Matyushin et al. 2020). In the age of artifi-
cial intelligence, spatial metabolomics and IMS promise to
revolutionize biology and healthcare (Alexandrov, 2020).
Approaches such as an integrated strategy of fusing features
and removing redundancy based on graph density (FRRGD)
were proposed that greatly enhanced the metabolome detec-
tion coverage with low abundance (Ju et al. 2020).

For a software survey of other mass-spectrometry derived
omics tools, packages, resources, softwares and databases,
readers can consult other treatise for metaproteomics (Saju-
lga et al. 2020), data-independent acquisition mass spec-
trometry-based proteomics (F. Zhang, Ge, et al., 2020;
Zhang, Sans, et al., 2020), single cell and single cell-type
metabolomics (B. B. Misra, 2020a) among others.

Diverse online resources such as OMICtools (http://
omictools.com/) (Henry et al. 2014), Fiehn laboratory
pages (http://fiehnlab.ucdavis.edu/ and http://metabolomi
cs.ucdavis.edu/Downloads), the International Metabo-
lomics Society’s resource pages, software repositories such
as Comprehensive R Archive Network (CRAN) (https://
cran.r-project.org/web/packages/available_packages_by_
name.html), Bioconductor (https://www.bioconductor.org/),
the Python Package Index (PyPI) (https://www.pypi.org),

GitLab (https://www.gitlab.com), and GitHub (https://www.
github.com/) are excellent resources to obtain software tools,
databases and resources for metabolomics research. Metabo-
lomics Tools Wiki claimed to be an updated resource for
metabolomics tools, databases and software resources has
ceased to be updated since 2017 (Spicer et al. 2017). Whilst
there exists a plethora of programming languages, modern
interpreted scripting languages such as R, Python, Raku,
Ruby, and MATLAB are evidently popular in metabolomics.

Building on the previously established review structure
this overview of major tools and resources in metabolomics,
spanning 2015-2019 (B. Misra & van der Hooft, 2015;
O’Shea & Misra, 2020) is organized into the following sec-
tions: (1) Platform-specific tools, (2) Preprocessing and
QC tools, (3) Annotation tools, (4) Multifunctional tools,
(5) Tools for statistical analysis and visualization, (6) Data-
bases, and (7) Other specialized tools.

Table 1 provides a summary of all reviewed resources
and their availability. Furthermore, in Table 2, highlighted
are unpublished tools that can be found in the CRAN and
PyPI software repositories that are deemed useful for the
metabolomics research community, but are not associated
with a scholarly article that is published.

2 Platform-specific tools

Metabolomics as a discipline depends on mass spectrom-
etry and spectroscopy analytical platforms to generate high
through put omics scale data. These include, and are not lim-
ited to liquid chromatography-mass spectrometry (LC-MS),
gas chromatography-mass spectrometry (GC-MS), capillary
electrophoresis-mass spectrometry (CE-MS), and spectro-
scopic methods such as '"H-NMR, *C-NMR, Raman, and
Fourier transform infrared (FTIR) among others. In this sec-
tion, I discuss all the tools that appeared in 2020 for analyses
of datasets that are specific to a metabolomics platform or
technology, i.e., LC-MS, GC-MS, and NMR.

Automated spectraL processing system for NMR (Alp-
sNMR), is an R-package that provides automated signal
processing for untargeted NMR metabolomics datasets by
performing region exclusion, spectra loading, metadata han-
dling, automated outlier detection, spectra alignment and
peak-picking, integration and normalization (Madrid-Gam-
bin et al. 2020). The tool can load Bruker and JDX samples
and can preprocess them for downstream statistical analysis.

Signature mapping (SigMa), developed as a standalone
tool using MATLAB dependencies, for processing raw
urine "H-NMR spectra into a metabolite table (Khakimov
et al. 2020). SigMa relies on the division of the urine NMR
spectra into Signature Signals (SS), Signals of Unknown
spin Systems (SUS) and bins of complex unresolved regions
(BINS), thus allowing simultaneous detection of urinary
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metabolites in large-scale NMR metabolomics studies using
a SigMa chemical shift library and a new automatic peak
picking algorithm.

NMR filter, is a stand-alone interactive software for high-
confidence NMR compound identification that runs NMR
chemical shift predictions and matches them with the exper-
imental data, where it defines the identity of compounds
using a list of matching rates and correlating parameters of
accuracy together with figures for visual validation (Kuhn
et al. 2020).

MSHub/ electron ionisation (EI)-Global Natural Prod-
uct Social (GNPS) Molecular Networking analysis, as a
platform enables users to store, process, share, annotate,
compare and perform molecular networking of both unit/
low resolution and GC-HRMS data (Aksenov et al. 2020).
GNPS-MassIVE is a public data repository for untargeted
MS? data, EI-MS data, with sample information (metadata)
and annotated MS? spectra (Aron et al. 2020). MSHub per-
forms the auto-deconvolution of compound fragmentation
patterns via unsupervised non-negative matrix factorization
and quantifies the reproducibility of fragmentation patterns
across samples, followed by GNPS molecular networking
analyses.

RGCxGC toolbox, is an R-package that aids in analysis
of two dimensional gas chromatography-mass spectrometry
(2D GC-MYS) data by offering pre-processing algorithms
for signal enhancement, such as baseline correction based
on asymmetric least squares, smoothing based on the Whit-
taker smoother, and peak alignment 2D Correlation Opti-
mized Warping and multiway principal component analysis
(Quiroz-Moreno et al. 2020).

3 Preprocessing and quality control (QC)
tools

In untargeted metabolomics workflows that use either
LC-MS/MS, GC-MS or NMR, depend a lot on pre-pro-
cessing of the acquired raw datasets prior to statistical anal-
yses and interpretation. Preprocessing typically involves
tools that aid in the detection of masses (as m/z’s) from
mass spectra (i.e., feature detection), construct and display
extracted ion chromatograms, detect chromatographic peaks,
deconvolution, peak alignment, data matrix curation steps
such as batch and blank corrections to filtration and nor-
malization steps, and quality assessments. Though, there
are decade old popular preprocessing tools available to the
community in the form of xcms (Tautenhahn et al. 2008),
MZmine 2 (MZmine Development Team 2015), MS-DIAL
(Tsugawa et al. 2015) there is a consistent effort to improve
the workflows- from reducing computational time, to devel-
oping graphical user interfaces (GUIs) for users to render
them user friendly to addressing challenges associated with

@ Springer

interpretation of data from advanced platforms such as
HRMS data or those from IMS, MSI etc. In fact, a recent
comparative effort (among software tools such as software
packages MZmine 2, enviMass, Compound Discoverer™,
and XCMS Online) demonstrated a low coherence between
the four processing tools, as overlap of features between all
four programs was only about 10%, and for each software
between 40 and 55% of features did not match with any other
program (Hohrenk et al. 2020). Moreover, quality control
(QC) tools are important to take care of systematic and ran-
dom variations/ errors induced during experimental and ana-
lytical workflows. Batch effects can pose a lot of challenges,
i.e., introduction of experimental artifacts that can interfere
with the measurement of phenotype-related metabolome
changes in metabolomics data (Han & Li, 2020), and data
normalization strategies, tools, and software solutions avail-
able are reviewed to circumvent some of these challenges (B.
B. Misra, 2020b). In this section, I cover the preprocessing
and the QC tools that appeared in 2020.

Correlation-based removal Of multiPlicities (CROP),
implemented as an R-package is a visual post-processing
tool that removes redundant features from LC-MS/MS based
untargeted metabolomic data sets (Koufil et al. 2020), where
it groups highly correlated features within a defined reten-
tion time (RT) window avoiding the condition of specific m/z
difference making it a second-tier strategy for multiplicities
reduction. The output is a graphical representation of corre-
lation network allowing a good understanding of the clusters
composition that can aid in further parameter tuning.

neighbor-wise compound-specific Graphical Time
Warping (ncGTW), is an integrated reference-free profile
alignment method, implemented as an R-package and is
available as a plugin for xcms that aids in detecting and fix-
ing the bad alignments (misaligned feature groups) in the
LC-MS data to render accurate grouping and peak-filling
(Wu et al. 2020).

TidyMS, is a Python package for preprocessing of untar-
geted LC-MS/MS derived metabolomics data that reads
raw data fro-m a .mzML file format, generates spectra and
total ion chromatograms (TICs), allows peak picking, fea-
ture detection, reads processed data from xcms, MZmine 2
among others, offers functionalities for data matrix cura-
tion, normalization, imputation, scaling, quality metrics,
QC-based batch corrections and interactive visualization of
results (Riquelme et al. 2020).

AutoTuner, available as an R-package, is a parameter
optimization algorithm that obtains parameter estimates
from raw data in a single step as opposed to many iterations
in a data-specific manner to generate robust features from
untargeted LC-MS/MS runs (McLean & Kujawinski, 2020).
For input, AutoTuner requires at least 3 samples of raw data
converted from proprietary instrument formats (e.g. .mzML,
.mzXML, or .CDF).
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remove unwanted variation in a hierarchical struc-
ture (hRUV), is an R-package (also available as Shiny app)
that aids in removal of unwanted variation from large scale
LC-MS metabolomics studies which it accomplishes by pro-
gressively merging the adjustments in neighboring batches
(Taiyun Kim, Owen Tang, Stephen T Vernon, Katharine A
Kott, Yen Chin KoaTaiyun Kim, Owen Tang, Stephen T
Vernon, Katharine A Kott, Yen Chin Koay, John Park, David
James, Terence P Speed, Pengyi Yang, John F. O’Sullivan,
Gemma A Figtree, Jean Yee Hwa Yangy, 2020). The pack-
age uses sample replicates to integrate data from several
batches for removal of intra-batch signal drift and inter-batch
unwanted variation and outperforms existing tools while
retaining biological variation. For assessment of the results,
a user can visualize results as three kinds of diagnostic plots,
i.e., principal component analysis (PCA) plots, relative log
expression (RLE) plots, and metabolite run plots.

MetumpX, is a Ubuntu-based R- package that facilitate
easy download and installation of 103 tools spread across
the standard untargeted MS- based metabolomics pipeline
(Wajid et al. 2020). The package can aid in automatically
installation of software pipelines truly speeding up the learn-
ing curve to build software workstations.

MeTaQuaC, is an R- package and aids in implementation
of concepts and methods for Biocrates kits and its application
in targeted LC—MS metabolomics workflows and creates a
QC report containing visualization and informative scores,
and provides summary statistics, and unsupervised multivari-
ate analysis methods among others (Kuhring et al. 2020).

Dbnorm, is an R-package that allows visualization and
removal of technical heterogeneity from large scale metabo-
lomics dataset, after allowing inspection at both in macro-
scopic and microscopic scales at both sample batch and met-
abolic feature levels, respectively (Bararpour et al., 2020).
dbnorm includes several statistical models such as, ComBat
(parametric and non-parametric)-model from sva package
that are already in use for metabolomics data normalization,
and ber function.

MetaClean, available as an R-package, uses 11 peak qual-
ity metrics and 8 diverse ML algorithms to build a classifier
for the automatic assessment of peak integration quality of
peaks from untargeted metabolomics datasets (Chetnik et al.
2020). It was shown that AdaBoost algorithm and a set of
11 peak quality metrics were best performing classifiers, and
applying this framework to peaks retained after filtering by
30% relative standard deviation (RSD) across pooled QC
samples was able to further distinguish poorly integrated
peaks that were not removed from filtering alone.

NeatMS$, is a Python package that is available for untar-
geted LC-MS signal labelling and filtering, which enables
automated filtering out of false positive MS1 peaks reported
by routine LC-MS data processing pipelines. It relies on

neural networking-based classification, and can process out-
puts from MZMine 2 and xcms analysis.

4 Annotation tools

Metabolite annotation remains a critical step that defines the
success or failure of untargeted metabolomics efforts. With
newer technologies such as collision cross section (CCS)
data for ion mobility, high resolution mass spectra from
Orbitrap, direct injection data, data independent acquisi-
tion (DIA)/ all ion fragmentation (AIF), imaging MS and
multi-dimensional chromatography the annotation results
have gained additional impetus in compound identification,
but these methods have offered newer challenges in them-
selves for tool development. False discovery rates (FDRs)
of annotations indicate that low FDRs yield low number
yet reliable annotations, whereas higher FDR report high
number of annotations by those of poor-quality annotations.
Though metabolite annotation efforts can benefit from RT
as an orthogonal information, efforts for combining RT pre-
dictions with MS/MS data is currently lacking (Witting &
Bocker, 2020). Clearly reference spectra and spectral DBs/
libraries are not enough to annotate roughly 5-30% of the
total features captured (depending on the environmental/
biological matrices in question) in a given mass spectrom-
etry-based metabolomics dataset. Though experimentally
obtained MS/MS data and NMR data on pure standards are
precious, and aid in development of computational solu-
tions for compound identification, they do not suffice at their
current numbers, accessibility, and availability. Moreover,
in 2020, the Metabolite Identification Task Group of the
International Metabolomics Society assessed and proposed
a set of revised reporting standards for metabolite annota-
tion/ identification and requested community feedback for
levels from A-G, from defining an enantiomer or a chiral
metabolite (level A) (to unknown molecular formula with
specific spectral features (G). Once formalized, these would
positively affect and improve reporting standards in studies
and the publication landscape in metabolomics research. In
Fig. 1, 2, 3, shown are the software interfaces and analysis
outputs for some of the annotation tools discussed in the
following sections.

MEtabolite SubStructure Auto-Recommender (MES-
SAR), is a web-based tool that provides an automated
method for substructure recommendation guided by asso-
ciation rule mining, captures potential relationships between
spectral features and substructures as learned from pub-
lic spectral libraries for suggesting substructures for any
unknown mass spectrum (Y. Liu, Mrzic, et al., 2020; Liu,
Nellis, et al., 2020). Though the interface does not per-
form batch processing currently, it provides an open-source
approach to annotate substructures.

@ Springer
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https://cran.r-project.org/web/packages/lilikoi/index.html
https://cran.r-project.org/web/packages/omu/index.html
https://cran.r-project.org/web/packages/erah/index.html
https://cran.r-project.org/web/packages/MetaDBparse/index.html
https://cran.r-project.org/web/packages/MetaDBparse/index.html
https://cran.r-project.org/web/packages/MetaClean/index.html
https://cran.r-project.org/web/packages/MetaClean/index.html
https://cran.r-project.org/web/packages/tmod/index.html
https://cran.r-project.org/web/packages/crmn/index.html
https://cran.r-project.org/web/packages/LipidMS/index.html
https://cran.r-project.org/web/packages/LipidMS/index.html
https://cran.r-project.org/web/packages/enviGCMS/index.html
https://cran.r-project.org/web/packages/enviGCMS/index.html
https://cran.r-project.org/web/packages/nontarget/index.html
https://cran.r-project.org/web/packages/nontarget/index.html
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Table 2 (continued)

Link

Description

CRAN package name Title

https://cran.r-project.org/web/packages/mosaic.find/

MOSAIC (Multi-Omics Selection with Amplitude

Finding rhythmic and non-rhythmic trends in multi-

mosaic.find

index.html

Independent Criteria) provides a function (mosaic

omics data (MOSAIC)

find()) designed to find rhythmic and non-rhythmic

trends in multi-omics time course data using model

selection and joint modelling

https://cran.r-project.org/web/packages/ActivePathways/

A framework for analysing multiple omics datasets

Integrative pathway enrichment analysis of multivari-

ActivePathways

index.html

in the context of molecular pathways, biological

ate omics data

processes and other types of gene sets. The tool uses

p-value merging to combine gene- or protein-level

signals, followed by ranked hypergeometric tests to

determine enriched pathways and processes

https://cran.r-project.org/web/packages/wilson/index.

Provides modules for creating web-based applications

‘Web-based interactive omics visualization

wilson

html

that use plot-based strategies to visualize and analyse

multi-omics data

The package aims at providing methods to combine https://cran.r-project.org/web/packages/mixKernel/

Omics data integration using kernel methods

mixKernel

index.html

kernel for unsupervised exploratory analysis, that

can help integration of heterogenous types of data

Small Molecule Accurate Recognition Technology
(SMART 2.0), is an artificial intelligence (AI) -based ML
tool for mixture analysis in NMR data analysis workflow that
aid in subsequent accelerated discovery and characteriza-
tion of new NPs. SMART 2.0 generates structure hypotheses
from two dimensional NMR data ['H-!3C- Hetero-nuclear
Single Quantum Coherence (HSQC) spectra], then compares
with a query HSQC spectrum against a library of > 100,000
NPs to provide outputs as simplified molecular-input line-
entry system (SMILES), structures, cosine similarity, and
molecular weights for a given compound of interest.

MetFID, is a tool that uses an artificial neural network
(ANN) trained for predicting molecular fingerprints based
on experimental MS/MS data (Fan et al. 2020). MetFID
retrieves candidates from metabolite databases using molec-
ular formula or m/z value of the precursor ion of the analyte
and the candidate whose fingerprint is most analogous to the
predicted fingerprint which is used for metabolite annota-
tion. However, no codes or accessible tools/ repositories are
provided with the published scholarly article.

CPVA, is a web-based tool that is aimed at the analyses
of untargeted LC-MS/MS generated metabolomics data for
visualization and annotation of LC peaks, where the tool
performs functions such as annotation of adducts, isotopes
and contaminants, and allows visualization of peak mor-
phology metrics (Luan et al. 2020). Further, the tool aids
in capturing potential noises and contaminants encountered
in chromatographic peak lists generated from LC-MS/MS
data, thus resulting in a reduced false positive peak calling in
order to help data quality and downstream data processing.

NRPro, is a web-based application dedicated for derep-
lication and characterization of peptidic natural products
(PNPs) from LC-MS/MS datasets that performs automatic
peak annotation through a statistically validated scoring sys-
tem (Ricart et al. 2020). An example NRPro dereplication
effort revealed that the software was able to identify 169
PNPs in a dataset of 352 spectra with an FDR of 3.55.

MetENP/MetENPWeb, is available as an R-package on
the Metabolomics Workbench repository, also deployed as
a web-based application that allows extending the metabo-
lomics data enrichment analysis to include Kyoto Encyclope-
dia of Genes and Genomes (KEGG)-based species-specific
pathway analysis, pathway enrichment scores, gene-enzyme
data, and enzymatic activities of the significantly altered
metabolites on any Metabolomics Workbench submitted
studies/ datasets (Choudhary et al. 2020). Various plots and
visualizations such as volcano plots and bar graphs are avail-
able to the user of the tool after the analyses.

Class Assignment aNd Ontology Prediction Using mass
Spectrometry (CANOPUS), available as a part of SIRIUS
(Ditihrkop et al. 2019) suite of software, is a computational
tool for systematic compound class annotation from frag-
mentation spectra (Diihrkop et al. 2020). CANOPUS uses
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a deep neural network to predict 2,497 compound classes
from fragmentation spectra, including all biologically rel-
evant classes, and explicitly targets compounds for which
neither spectral nor structural reference data are available
in addition to predicting compound classes lacking MS/MS
training data. Recently, CANOPUS was made available for
analysis of MS/MS spectra obtained from both positive and
negative mode ionization datasets.

molDiscovery, is a mass spectral database search method
that improves both efficiency and accuracy of small mol-
ecule identification by (i) using an efficient algorithm to gen-
erate mass spectrometry fragmentations, and (ii) learning
a probabilistic model to match small molecules with their
mass spectra (Mohimani et al. 2020). A search of over 8
million spectra from the GNPS molecular networking infra-
structure demonstrated that this probabilistic model can cor-
rectly identify nearly six times more unique compounds than
other previously reported methods.

MetIDfyR, developed as an R-package that aids in in sil-
ico drug phase I/II biotransformation prediction and mass-
spectrometric data mining from untargeted LC-HRMS/MS
datasets (Delcourt et al. 2020) to help with feature annota-
tion. With the ability to predict drug metabolism products
from in vitro and in vivo studies, this tool holds potential in
annotation workflows in drug discovery programs.

Qemistree, is a cheminformatics tool available as an
advanced analysis workflow on GNPS infrastructure that
allows mass spectrometry data to be represented in the con-
text of sample metadata and chemical ontologies (Tripathi
et al. 2020). This tree-guided data exploration tool allows
comparison of metabolomics samples across different
experimental conditions such as chromatographic shifts.
The Qemistree software pipeline is freely available to the
microbiome and metabolomics communities in the form of
a QIIME2 plugin as well.

Ion identity molecular networking (IIMN), a workflow
available within the GNPS ecosystem that complements the
feature based molecular networking (FBMN) by aiding in
annotating and connecting related ion species in feature-
based molecular networks (Schmid et al. 2020). Though,
MS1-based ion identity networks (IIN), are well-known,
IIMN helps to integrate IIN into MS2-based molecular net-
works in the GNPS environment, thus adding MS/MS infor-
mation on top of MS1 characteristics of ions.

Food-Biomarker Ontology (FOBI), is a tool developed in
R language, is a web-based analysis and visualization pack-
age that is focused on interactive visualization of the FOBI
structure (Castellano-Escuder et al. 2020). FOBI (Food-Bio-
marker Ontology) is a new ontology that describes food and
their associated metabolite entities and is composed of two
interconnected sub-ontologies, the ‘Food Ontology’ consist-
ing of raw foods and ‘multi-component foods’ and a second:
‘Biomarker Ontology’ containing food intake biomarkers

@ Springer

classified by their chemical classes. These two sub-ontol-
ogies are conceptually independent but interconnected by
different properties. Functionalities of the tool include static
and dynamic network visualization, downloadable tables,
compound ID conversions, classical and food enrichment
analyses.

BioDendro, is a Python package, for feature analysis of
LC-MS/MS metabolomics data as a workflow that enables
users to flexibly cluster and interrogate thousands of MS/
MS spectra and quickly identify the core fragment patterns
causing groupings leading to identification of core chemi-
cal backbones of a larger class, even when the individual
metabolite of interest is not found in public databases (Raw-
linson et al. 2020).

AIICCS, is a freely accessible database/ CCS atlas that
covers vast chemical structures with > 5000 experimen-
tal CCS records and ~ 12 million calculated CCS values
for > 1.6 million small molecules, with medium rela-
tive errors of 0.5-2% for a broad spectrum of small mol-
ecules (Zhou et al. 2020) for annotation of both known and
unknown structures. Further, the tool facilitates a strategy
for metabolite annotation using known or unknown chemical
structures in IMS metabolomics workflows.

Binner, implemented as a standalone Java executable
software package eliminates degenerate feature signals pre-
sent in untargeted ESI-LC-MS/MS metabolomic datasets
(Kachman et al. 2019). When a user provides an aligned
feature table, with unique compound (feature) identifier, m/z,
RT, and feature intensities, the Binner annotation file speci-
fies information on annotation, mass, mode, charge, and tier
information when annotating the final set of features.

MS-CleanR, is an R-package that provides functions for
feature filtering and annotation of LC-MS data, that depends
on the outputs of an need MS-DIAL (v4.00 or higher)
and MS-FINDER (3.30 or higher) (Fraisier-Vannier et al.
2020). It uses MS-DIAL peak list processed in DDA or DIA
obtained using either positive ionization mode (PI) or nega-
tive ionization mode (NI) or both as its input. MS-CleanR
applies generic filters encompassing blank injection signal
subtraction, background ions drift removal, unusual mass
defect filtering, RSD threshold based on sample class and
relative mass defect (RMD) window filtering. Furthermore,
all selected features are exported to MS-FINDER program
for in silico-based annotation using hydrogen rearrangement
rules (HRR) scoring system and it was shown that imple-
mentation of MS-CleanR reduced the number of signals
by nearly 80% while retaining 95% of unique metabolite
features.

Retention time prediction for metabolomics (Retip), is
an R-package, for predicting RT for small molecules in high
pressure liquid chromatography (HPLC) MS data analysis
workflows (Bonini et al. 2020). In order to help annotate
unknowns and removing false positive annotations, it uses
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five different machine learning algorithms [i.e., random for-
est (RF), Bayesian regularized neural network, XGBoost,
lightGBM, and Keras] to build a stable, accurate and fast RT
prediction model. It also includes useful biochemical (struc-
tural) databases like: BMDB, ChEBI, DrugBank, ECMDB,
FooDB, HMDB, KNApSAcK, PlantCyc, SMPDB, T3DB,
UNPD, YMDB and STOFF.

OSRR Automator, is a software package that helps auto-
mate RT prediction model creation that’s been tested with
metabolomics and lipidomics data from multiple chromatog-
raphy columns from published literature and in-house work
from the authors (Naylor et al. 2020).

MFAssignR, is an R-package that performs noise estima-
tion, 13C and 3*S polyisotopic mass filtering, mass measure-
ment recalibration, and molecular formula assignment for
UHPLC-MS data analysis in environmental complex mix-
tures (Schum et al. 2020). The function of this tool includes
determination of noise, S/N threshold, identification of
isotopes, potential recalibrant series, mass list recalibra-
tion, assignment of molecular formula to the recalibrated

mass list, and output plots to evaluate the quality of the
assignments.

Metabolite core structure-based Search (McSearch),
is a program available both as an R-package and a web-
based tool for automated metabolite annotation for LC-MS/
MS data. It utilizes a Core Structure-based Search (CSS)
algorithm, hypothetical neutral loss (HNL) library and
biotransformation database to achieve metabolite annota-
tion using the structural analogs of query compounds (Xing
et al. 2020). The tool is available both as single search mode
(.csv files) and batch search mode (.mgf or .mzXML for-
mats). The input for single search mode is a Core Structure-
based Search (see input_single_search.csv as a template).
For batch mode, we currently accept raw data of .mgf or
.mzXML format as input.

ReDU, is a GNPS based system for metadata capture of
public deposited MS-based metabolomics data, with vali-
dated controlled vocabularies that captures knowledge by
enabling reanalysis of public data and/or co-analysis of one’s
own data for finding chemicals and associated metadata for
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a repository-scale molecular networking (Jarmusch et al.
2020). Currently, 38,305 files in GNPS (19.6% of GNPS)
are ReDU compatible which includes data collected from
natural and human-built environments, human and animal
tissues, biofluids and food from all over the world.

Mass Spectrometry Search Tool (MASST), is a web-
based MS search engine avaialble within the GNPS infra-
structure that enables searches of all small-molecule MS/MS
data in public metabolomics repositories (Wang, Jarmusch,
et al., 2020; Wang, Leber, et al., 2020). MASST comprises
a web-based system to search the public data repository
part of the GNPS/MassIVE knowledge base and an analy-
sis infrastructure for a single MS/MS spectrum. All public
data submitted to/ available in GNPS/MassIVE becomes
MASST-searchable. MASST searches yield results accord-
ing to user-defined search parameters.

NPClassifier, is a DL tool for automated structural clas-
sification of NPs (Wang, Leber, et al. 2020). Currently avail-
able as a web-based tool for a simple search effort. The tool
aims to accelerate NP discovery by facilitating and enabling
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large-scale genome and metabolome mining efforts and link-
ing NP structures to their bioactivity.

LipidLynxX, developed in Python and available both as
a standalone tool and web interface, is a software to convert
diverse lipid annotations to unified identifiers and cross-ID
matching (Ni & Fedorova, 2020). It primarily offers three
models, the Converter, that allows conversion of different
abbreviations to uniformed LipidLynxX IDs, an Equalizer
that allows cross comparison of different levels of IDs on
selected levels, and a Linker module that allows linking
abbreviations to available resources.

patRoon, is a R-package that aids in non-target HR MS
data analysis workflows (Helmus et al. 2021). The tool
offers various functionality and strategies to simplify and
perform automated processing of complex (environmental)
data effectively using well-tested algorithms by harmoniz-
ing various open-source software tools and with reduced
computational times.
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5 Multifunctional tools

Multifunctional tools, in this review are defined as tools
that allow an user to start with raw mass spectrometric or

spectroscopic data and go through pre-processing steps,
QCs, statistical analyses, data visualization and interpreta-
tion. In this section I cover software solutions that surfaced
in 2020.

@ Springer
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Skyline, originally developed for SWATH (and DIA)
and targeted proteomics workflows, has now expanded to
data analysis for small molecule analysis, including selected
reaction monitoring (SRM), HRMS datasets, and calibrated
quantification, for data visualization and interrogation fea-
tures already available in Skyline, such as peak picking,
chromatographic alignment, and transition selection among
others (Adams et al. 2020).

notame, available as an R-package and a Wranglr Shiny
web application for automation of worklist files, is a mul-
tifunctional tool for untargeted LC-MS/MS metabolomics
data analyses that aids in reading outputs from MS-DIAL,
allows drift correction, flagging and removal of low-quality
features, imputation of missing values, batch effect correc-
tion, offers novel clustering methods, statistical analyses and
visualization for QC, explorative analyses aiding in interpre-
tation of statistical tests (Klavus et al. 2020).

Breath AnaLysis viSualizAtion Metabolite discovery
(BALSAM), is an interactive web-based tool that integrates
state-of-the-art preprocessing and analysis techniques for
supervised feature extraction and visualization of multi
capillary column—ion mobility spectrometry (MCC-IMS)
data preprocessing workflows that deals with breath analy-
sis (Weber et al. 2020). In addition, it supports peak detec-
tion and peak alignment as well as RT based GC-MS and
LC-MS data analysis.

MRMEit, is a software solution for data processing of
large scale targeted LC—MS -based metabolomics data that
performs automated peak detection, peak integration, nor-
malization, batch effect correction, quality metric calcu-
lations, visualizations of chromatograms, and removal of
redundant peaks from multimodal classes by RT selection
(Teo et al. 2020).

MetaboShiny, available as a MetaboShiny, a R/Shiny-
based package featuring data analysis, database- and formula
prediction -based annotation and visualization on diverse
MS datasets (Wolthuis et al. 2020). MetaboShiny allows a
diverse set of customization and global settings to an user,
in addition to adding databases, data normalization and fil-
tering, statistical functions ranging from dimension reduc-
tion [from PCA, partial least-squares-discriminant analysis
(PLS-DA) to t-distributed stochastic neighbor embedding
(t-SNE)], univariate analyses on sets of features, range of
visualizations from volcano plots to heatmaps, Venn dia-
grams, power calculations, and metabolite enrichment
analyses.

SmartPeak, is a programmable software application
that offers novel algorithms for RT alignment, calibration
curve fitting, and peak interrogation for facilitating repro-
ducibility by reducing operator bias to ensure high QC/
quality assurance (QA) for automated processing of CE-,
GC- and LC-MS(/MS) data, and HPLC data for targeted

@ Springer

and semi-targeted metabolomics, lipidomics, and fluxomics
experiments (Kutuzova et al. 2020).

MS-DIAL 4, is a standalone DIA software tool that pro-
vides a comprehensive lipidome atlas with RT, CCS, and
MS/MS information encapsulating mass spectral fragmen-
tations of lipids across 117 lipid subclasses and includes
analysis of ion mobility MS/MS data (Tsugawa et al. 2020).
Using lipidomics data from diverse samples the study
reported semi quantified 8,051 lipids using MS-DIAL 4 with
a 1-2% estimated FDR.

Integrated mass spectrometry-based untargeted metabo-
lomics data mining (IP4M), is a multifunctional tool for
untargeted MS-based metabolomics data processing and
analysis that has 62 functions categorized into 8 modules
(Liang et al. 2020). The modules cover all majority of the
steps of metabolomics data mining, including raw data
preprocessing (alignment, peak de-convolution, peak pick-
ing, and isotope filtering), peak annotation, peak table pre-
processing, basic statistical description, classification and
biomarker detection, correlation analysis, cluster and sub-
cluster analysis, regression analysis, receiver operating char-
acteristic (ROC) analysis, pathway and enrichment analysis,
and sample size and power analysis.

DropMS, is a online tool with a user-friendly and
browser-based interface to facilitate the processing of high
resolution and precision oil mass spectrometry data for
petroleomics applications (Rosa et al. 2020). Uploaded mass
spectra to the server are processed using various algorithms
reported in the literature, such as S/N ratio filters, recalibra-
tions, chemical formula assimilations and data visualiza-
tion using graphs and diagrams popularly known in mass
spectrometry such as Van Krevelen and Kendrick diagrams
among other visualizations.

6 Tools for statistical analysis
and visualization

In this section, described are tools dedicated for statis-
tical analyses and visualization of metabolomics data
visualization.

EpiMetal, is a web-based application that allows statisti-
cal analyses and visualization of large datasets for epide-
miological analyses and self-organizing maps (SOMs) for
metabolomics (Ekholm et al. 2020). A pilot data with > 500
quantitative molecular measurements for each sample and
two large-scale epidemiological cohorts (N> 10,000) are
available to users on the interface as well.

Metabolite AutoPlotter, is an R-package and wrapped
into a Shiny web application that can be run online in a
web browser, which uses pre-processed metabolite-intensity
tables as inputs and accepts different experimental designs,
with respect to the number of metabolites, conditions and
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replicates and process and plots metabolite data sets (differ-
ent types), converts and cleans-up the data, allows data nor-
malization for sample descriptions and metabolite names as
well as sorting experimental conditions (Pietzke & Vazquez,
2020).

Metabolite-Investigator, is a free and open web-based
tool and stand-alone Shiny application, that provides a
scalable analysis workflow for quantitative metabolomics
data from multiple studies by performing data integration,
cleaning, transformation, batch analysis and multiple sta-
tistical analysis methods including uni- and multivariable
factor-metabolite associations, network analysis, and factor
prioritization in one or more cohorts (Beuchel et al. 2020).

VIIME (VIsualization and Integration of Metabolomics
Experiments), available as a web server, provides a work-
flow for metabolomics research by offering state-of-the-art
integration algorithms and visualizations (Choudhury et al.
2020). A user starts with an uploaded spreadsheet of quanti-
tative metabolomics data and runs a semi-automated process
which informs about low-variance and high-missingness
data, allows arbitrary sample and metabolite exclusion, and
performs adjustable missing data imputation, informs about
data pretreatment, runs PCA and block PCA, statistical anal-
yses such as Wilcoxon and analysis of variance (ANOVA),
and finally provides interactive tables, charts, heatmaps and
networks diagrams as outputs on a given metabolomics data.

struct (Statistics in R using Class-based Templates), is
an R/ Bioconductor package that defines a suite of class-
based templates to allow users to develop and implement
standardized and readable statistical analysis workflows for
metabolomics and other omics technologies (Lloyd et al.
2020). Struct integrates with the STATistics Ontology to
ensure consistent reporting and maximizes semantic inter-
operability. A related package, the structToolbox, which
includes an extensive set of commonly used data analysis
methods using the templates provided in the struct pack-
age. struct includes a suite of S4 class-based templates (i.e.,
model, sequence, iterator, chart and metric classes) to facili-
tate the standardization of R-based workflows for statistics
and ML. The toolbox includes pre-processing methods (e.g.
signal drift and batch correction, normalisation, missing
value imputation and scaling), univariate (e.g. t-test, vari-
ous forms of ANOVA, Kruskal-Wallis test and more) and
multivariate statistical methods [e.g. PCA and partial least
squares (PLS), including cross-validation and permutation
testing] as well as machine learning methods (e.g. support
vector machines).

lipidr, is an R/Bioconductor-package for data mining and
analysis of lipidomics datasets that implements a lipidomic-
focused analysis workflow for targeted and untargeted lipi-
domics (Mohamed et al. 2020). /ipidr imports numerical
matrices, Skyline exports, and Metabolomics Workbench
files directly into R interface, and allows thorough data

inspection, normalization, and uni- and multivariate analy-
ses, resulting in interactive visualizations as well as a novel
lipid set enrichment analysis.

NORmalization and EVAluation (NOREVA 2.0), is a
web-server (also available as a standalone R-package) for
normalization of metabolomics data, with the latest version’s
capabilities to deal with time-course and multi-class metabo-
lomics datasets (Yang et al. 2020). In addition, NOREVA 2.0
integrates a total of 168 normalization methods and combi-
nations thereof leading to removal of unwanted variations,
correction of signal drifts based on QCs, performance evalu-
ation of the datasets, thus, pointing to the best normalization
methods for a given dataset.

%polynova_2way, is a Macro written for the statistical
software Statistical Analysis System (SAS) to help identify
metabolites differentially expressed in study designs with a
two-way factorial treatment and hierarchical design struc-
ture (Manjarin et al. 2020). The Macro calculates the least
squares means using a linear mixed model with fixed and
random effects, runs a 2-way ANOVA, corrects the P-values
for the number of metabolites using the FDR or Bonferroni
procedure, and calculates the P-value for the least squares
mean differences for each metabolite.

rawR, available as an R-package that provides operat-
ing system (OS) independent access to all spectral data and
chromatograms logged in the mass spectrometry vendor,
Thermo Fisher Scientific’s .RAW files obtained from MS
runs (Kockmann & Panse, 2020).

Metaboverse, is an interactive standalone software tool
for the exploration and automated extraction of potential
regulatory events, patterns, and trends from multi-omic
data within the context of a metabolic network and other
global reaction networks (Berg et al. 2020). The tool aids
in analysis of Reactome knowledgebase derived networks
for 90 + model organisms, helps integrate multi-condition
and time course data, in addition to facilitating exploration
of super-pathway specific reaction perturbation networks
among others.

JavaScript mass spectrometry (JS-MS) 2.0, is a stan-
dalone visualization GUI software suite that provides a
dependency-free, browser-based, one click, cross-platform
solution for creating MS1 ground truth set of features (i.e.,
defined as raw data points manually curated into features,
whether extracted ion chromatograms or isotopic enve-
lopes) (Henning & Smith, 2020). The tool enables loading,
viewing, and navigating MS1 data in 2- and 3-dimensions,
and adds tools for capturing, editing, saving, and viewing
isotopic envelope and extracted isotopic chromatogram
features. It further interfaces via Hypertext Transfer Pro-
tocol (HTTP) to the MsDataServer application program-
ming interface (API) for access to the MS data stored in the
MzTree format.

@ Springer
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7 Databases

In this section, I discuss the databases (both spectral and
structural) that have appeared or updated in 2020.

COlleCtion of Open Natural prodUcTs (COCONUT), is
available as a webserver (with downloadable structural data
on NPs) an aggregated dataset of NPs from different open
resources and offers a subsequent web interface to browse,
search and easily and quickly download NPs (Sorokina &
Steinbeck, 2020). The DB contains structures and sparse
annotations for over 400,000 non-redundant NPs.

METLIN MS2, is chemical standards spectral DB that
is well annotated and structurally diverse database consist-
ing of over 850,000 chemical standards with MS/MS data
generated in both positive and negative ionization modes
at multiple collision energies (CEs), collectively containing
over 4,000,000 curated HR MS/MS data that covers almost
1% of PubChem’s 93 million compounds (Xue et al. 2020).

EMBL-MCEF, is an open LC-MS/MS spectral library that
currently contains over 1600 fragmentation spectra obtained
from 435 authentic standards of endogenous metabolites
and lipids (Phapale et al. 2021). The EMBL-MCEF spectral
library is created and shared using an in-house developed
web-application.

The Wake Forest CPM GC-MS spectral and RT librar-
ies consist of HR EI-MS and HR chemical ionization (CI)-
MS/MS spectra obtained from silylated chemical standards
obtained from the Mass Spectrometry Metabolite Library of
Standards (MSMLS Kit™) (B. B. Misra & Olivier, 2020).

Chemical Shift Multiplet Database (CSMDB), is a data-
base that uses JRES spectra obtained from the Birmingham
Metabolite Library (BML), to provide scores by accounting
for both matched and unmatched peaks from a query list and
the database hits (Charris-Molina et al. 2020). This input list
is generated from a projection of a 2D statistical correla-
tion analysis on the J-RESolved (JRES) spectra, p-[JRES-
Statistical TOtal Correlation SpectroscopY (STOCSY)],
being able to compare the multiplets for the matched peaks.
The CSMDB is complemented with “consecutive queries
to assess biological correlation” (ConQuer ABC), a sim-
ple inspection of peaks left unmatched from the query list
and consecutive queries to assign all (or most) peaks in the
original query list.

8 Other specialized tools

This section covers numerous tools that did not quite fall
into the six categories listed above, and are developed with
a purpose to address a specialized application to facili-
tate metabolomics data analysis. These tools include the
ones developed for isotopic data analysis in stable isotope
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labelling experiments, softwares for analysis of lipidomics
data, mass spectrometry imaging data, and multiomics/ inte-
grated omics analysis.

Mass isotopolome analysis for mode of action identi-
fication (MIAMI), is a tool that uses MetaboliteDetector
(https://md.tu-bs.de/) and non-targeted tracer fate detec-
tion (NTFD) libraries (http://ntfd.mit.edu/), combines the
strengths of targeted and non-targeted efforts for estimation
of metabolic flux changes in GC-MS datasets (Dudek et al.
2020). In stable isotope labeling experimental data, MIAMI
determines a mass isotopomer distribution-based (MID)
similarity network and incorporates the data into metabolic
reference networks and aids in the identification of MID
variations of all labeled metabolites across conditions, tar-
gets of metabolic changes are detected.

isoSCAN, is an R-package that automatically quantifies
all isotopologues of intermediate metabolites of glycolysis,
tricarboxylic acid (TCA) cycle, amino acids, pentose phos-
phate pathway, and urea cycle, from low resolution (LR)
MS and HRMS data (i.e., GC-chemical ionization -MS) in
stable isotope labeling experiments (Capellades et al. 2020).

LiPydomics, is available as a Python package which per-
forms statistical and multivariate analyses (“stats” module),
generates informative plots (“plotting” module), identifies
lipid species at different confidence levels (“identification”
module), and performs a text-based interface (“interactive”
module) aiding in further interpretation (Ross et al. 2020).

LipidCreator, is available both as a Skyline plugin and
a standalone/command-line operation, is a lipid building
block-based workbench and knowledgebase for semi-auto-
matic generation of targeted lipidomics MS assays and in
silico spectral libraries (Peng et al. 2020). It can support
diverse lipid categories, allows SRM/ parallel reaction moni-
toring (PRM) assay generation for both labeled and unla-
beled lipid species and their derived fragment ions, allows
in silico spectral library generation and CEs optimization
and the entire workflow can be integrated into Konstanz
Information Miner (KNIME™) and Galaxy workflows as
a native node.

Lipid Annotator, is a standalone software for lipidomic
analysis of data collected by HR LC-MS/MS (Koelmel et al.
2020). Lipid Annotator algorithm, intended for lipid anno-
tation based on in-silico libraries, consists of five general
steps: feature finding, association of MS/MS scans with
features, annotation of possible lipids for each feature, cal-
culation of the percent abundance of each fatty acyl con-
stituent under a single chromatographic peak in the case
of mixed spectra, and filtration of final annotated features.
Lipid Annotator can be used on large datasets for rapid anno-
tation, relative quantification, and statistics (using a down-
stream workflow with commercial tools such as MassHunter
Profinder (Agilent Technologies) and MassHunter Mass Pro-
filer Professional softwares (Agilent Technologies).
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Raman2imzML, available as an R-package is a converter
that transforms Raman imaging data in text format exported
from WiRe 5.2 (Renishaw) and FIVE 5.1 (WiTec) into the
.imzML data format (Iakab et al. 2020). The .mzML is a
standardized common data format created and adopted
by the mass spectrometry community and this tool exclu-
sively handles imaging data for further exploratory imaging
analysis.

Metabolomics datasets play an indispensable role in
multi-omics data integration and analytics workflows as
metabolites are the closest to the phenotype and helps con-
nect with the genotype (Fiehn, 2002). Recent efforts in
multi-omics domain encompass harmonization of quality
metrics and power calculation in multi-omic studies (Tara-
zona et al. 2020) to standardized data sharing guidelines
(Krassowski et al. 2020). A recent review introduced the
tools for computational methods and resources in metabo-
lomics and multiomics integration (Eicher et al. 2020).
Another review focused on metabolomics-centric integra-
tion of data for biomedical research (Worheide et al. 2021).
Integration of omics datasets, such as those of metabolomics
and microbiome/ metagenomics present challenges of their
own (B. B. Misra, 2020c), and hence, more effective tools
are necessary to address the challenges in this area. In this
section, I capture a couple of the multi-omics tools devel-
oped in 2020.

Shiny Utility for Metabolomics and Multiomics Explor-
atory Research (SUMMER), is a Shiny-based tool that ena-
bles mechanistic interpretation of steady-state metabolomics
data by integrating transcriptomics or proteomics data with
metabolomics datasets by helping capture enzyme activities
estimated from transcriptomics or proteomics data by calcu-
lating changes in reaction rate potentials (Huang et al. 2020).
The tool offers several modules to perform PCA, differential
expression analysis, pathway analysis, and network analysis.

metPropagate, is a network-based approach that uses
untargeted metabolomics data from a single patient and a
group of controls to prioritize candidate genes in patients
with suspected inborn errors of metabolism (IEMs) (Gra-
ham Linck et al. 2020). This approach determines whether
metabolomic evidence could be used to prioritize the causa-
tive gene from this list of candidate genes, where each gene
in a patient’s candidate gene list is ranked using a per-gene
metabolomic score termed the “metPropagate score”, which
represented the likely metabolic relevance of a particular
gene to each patient.

9 Summary of current tools

In this section, I summarize the observed trends for the tools
reported in 2020, which are:

a. Majority of the software tools and packages focus on
‘annotations’, i.e., almost 35% of the total 72 tools
reported for the year deal with untargeted metabolomics
data annotation.

b. 82% of the total tools reported are concerned with data
analysis challenges with “LC-MS/MS”, mostly untar-
geted LC-HRMS/MS efforts.

c. Programming languages used for these tools mostly
are R language packages (28 tools), Python language
packages (11 tools), Java language (5 tools) or are web-
servers/ web-based tools (23 tools).

d. 48% of the reported tools are ‘easy to use’ (click to start,
web-based, or plug-and-play type tools) from a user
stand point for community of biologists and chemists
who are not computational savvy.

e. Of the total tools reported here, 57% of the tools have a
GitHub repository associated with them.

f.  Couple of tools are improved versions, suggesting these
are active tools that are being developed/maintained.

g. Lot of tools reported in the year deal with specialized
applications: ranging from data integration (i.e., metabo-
lomics data with proteomics/transcriptomics data), epi-
demiological metabolomics data, lipidomics, MSI data.

10 Concluding remarks

In summary, one can observe that there are numerous
tools that were either developed from scratch or evolved
from their previous versions in 2020 alone. Some tools
and approaches found new applications, such as GNPS
in the domain of GC-MS-based metabolomics (Aksenov
et al. 2020), or released as a beta/ advanced version, i.e.,
MS-DIAL for lipidomics (Tsugawa et al. 2020) workflows.
Only the future years will dictate as to which of these
2020 tools live on to see another year in terms of utility/
application, stays maintained and remain available, get
improved, and get adopted by the metabolomics research
community. Irrespective, all these tools help understand-
ing metabolomics data from diverse stand points and are
welcome additions to the community going forward into
the big data-driven precision medicine era. In general, the
trend is to develop, fast, computationally less intensive,
robust, open-source, user-friendly tools that can adhere
to findable, accessible, interoperable, and reproduc-
ible (FAIR) guidelines. Undoubtedly, the metabolomics
research community needs more of these improved tools,
and in the coming years the tools, resources, and databases
will keep coming and getting better.
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