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Quantum annealing for the number-partitioning
problem using a tunable spin glass of ions
Tobias Gra�1, David Raventós1, Bruno Juliá-Dı́az1,2,3, Christian Gogolin1,4 & Maciej Lewenstein1,5

Exploiting quantum properties to outperform classical ways of information processing is an

outstanding goal of modern physics. A promising route is quantum simulation, which aims at

implementing relevant and computationally hard problems in controllable quantum systems.

Here we demonstrate that in a trapped ion setup, with present day technology, it is possible

to realize a spin model of the Mattis-type that exhibits spin glass phases. Our method

produces the glassy behaviour without the need for any disorder potential, just by controlling

the detuning of the spin-phonon coupling. Applying a transverse field, the system can be used

to benchmark quantum annealing strategies which aim at reaching the ground state of the

spin glass starting from the paramagnetic phase. In the vicinity of a phonon resonance, the

problem maps onto number partitioning, and instances which are difficult to address clas-

sically can be implemented.
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S
pin models are paradigms of multidisciplinary science:
They find several applications in various fields of physics,
from condensed matter to high-energy physics, but

also beyond the physical sciences. In neuroscience, the famous
Hopfield model describes brain functions such as associative
memory by an interacting spin system1. This directly relates
to computer and information sciences, where pattern recognition
or error-free coding can be achieved using spin models2.
Importantly, many optimization problems, like number
partitioning or the travelling salesman problem, belonging to
the class of NP-hard problems, can be mapped onto the problem
of finding the ground state of a specific spin model3,4.
This implies that solving spin models is a task for which no
general efficient classical algorithm is known to exist. In physics,
analytic replica methods have been developed in the context of
spin glasses5,6. A controversial development, supposed to provide
also an exact numerical understanding of spin glasses, regards the
D-Wave machine. Recently introduced in the market, this device
solves classical spin glass models, but the underlying mechanisms
are not clear, and it remains an open question whether it provides
a speed-up over the best classical algorithms7–9.

This triggers interest in alternative quantum systems designed to
solve the general spin models via quantum simulation. A
noteworthy physical system for this goal are trapped ions:
Nowadays, spin systems of trapped ions are available in many
laboratories10–15, and adiabatic state preparation, similar to
quantum annealing, is experimental state-of-art. Moreover, such
system can exhibit long-range spin–spin interactions16 mediated
by phonon modes, leading to a highly connected spin model. Here
we demonstrate how to profit from these properties, using trapped
ions as a quantum annealer of a classical spin glass model.

We consider a setup described by a time-dependent Dicke-like
model:
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with am annihilating a phonon in mode m with frequency om and
characterized by the normalized collective coordinates xim. The
second term in H0 couples the motion of the ions to an internal
degree of freedom (spin) through a Raman beam which induces a
spin flip on site i, described by si

x , and (de)excites a phonon in
mode m. Here, Oi is the Rabi frequency, :orecoil the recoil energy,
and oL the beatnote frequency of the Raman lasers. Before also
studying the full model, we consider a much simpler effective
Hamiltonian, derived from equation (1) by integrating out the
phonons16–19. The model then reduces to a time-independent
Ising-type spin Hamiltonian

HJ ¼ �‘
X

ij

Jijsi
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j
x: ð2Þ

Each phonon mode contributes to the effective coupling Jij in a
factorizable way, proportional to ximxjm, and weighted by the
inverse of the detuning from the mode Dm¼om�oL:

Jij ¼ OiOj
orecoil

2oL

X
m

ximxjm

Dm
: ð3Þ

The xim imprint a pattern to the spin configuration, similar to the
associative memory in a neural network1,20. The connection
between multi-mode Dicke models with random couplings, the
Hopfield model, and spin glass physics has been the subject of
recent research21–23, and the possibility of addressing number
partitioning was mentioned in this context23.

Before proceeding, we remind the reader that the concept
of a spin glass used in the literature may have different and

controversial meanings (cf., refs 24–27): (i) long-range spin glass
models5 and neural networks28,29, believed to be captured by the
Parisi picture30,31 and replica symmetry breaking. These lead
to hierarchical organization of the exponentially degenerated
free-energy landscape, breakdown of ergodicity and aging, slow
dynamics due to a continuous splitting of the metastable states
with decreasing temperatures (cf., ref. 32). (ii) Short-range spin
glass models believed to be captured by the Fisher–Huse33,34

droplet/scaling model with a single ground state (up to a total
spin flip), but a complex structure of the domain walls. For
these models, aging, rejuvenation and memory, if any, have
different nature and occurrence32,35; (iii) Mattis glasses36,
where the huge ground-state degeneracy becomes an
exponential quasi-degeneracy, for which finding the ground
state becomes computationally hard37 (see the subsection
‘Increasing complexity’ in the ‘Results’ section). Note that
exponential (quasi)degeneracy of the ground states (or the
free-energy minima) characterizes also other interesting states:
certain kinds of spin liquids or spin ice, and so on.

Here we analyse the trapped ion setup. Even without explicit
randomness (Oi¼O¼ const.), the coupling to a large number of
phonon modes suggests the presence of glassy behaviour. This
intuition comes from the fact that the associative memory of the
related Hopfield model works correctly if the number of patterns
is at most 0.138N, where N is the number of spins28. For a larger
number of patterns, the Hopfield model exhibits glassy behaviour
since many patterns have similar energy and the dynamics gets
stuck in local minima. However, it is not clear a priori how the
weighting of each pattern, present in equation (3), modifies the
behaviour of the spin model. In certain regimes the detuning
suggests to neglect the contributions from all but one mode,
leading to a Mattis-type model with factorizable couplings36,
Jijpximxjm. The possibility of negative detuning, that is,
antiferromagnetic coupling to a pattern, drives such system into
a glassy phase, characterized by a huge low-energy Hilbert space.
The antiferromagnetic Mattis model is directly connected to the
potentially NP-hard task of number partitioning37,38. Its solution
can then be found via quantum annealing, that is, via adiabatic
ramping down of a transverse magnetic field, see also the
proposal of ref. 39 for a frustrated ion chain.

We start by giving analytical arguments to demonstrate the glassy
behaviour in the classical spin chains. Using exact numerics, we then
focus on the quantum Mattis model. By calculating the magnetic
susceptibility, and an Edward–Anderson-like order parameter, we
distinguish between glassy, paramagnetic and ferromagnetic
regimes. The annealing dynamics is investigated using exact
numerics and a semi-classical approximation. We demonstrate the
feasibility of annealing for glassy instances. Finally, we show that the
memory in the quantum Hopfield model is real-valued rather than
binary. This property might be useful for various applications of
quantum neural networks such as pattern-recognition schemes.

Results
Tunable spin–spin interactions. We start our analysis by
inspecting the phonon modes. For a sufficiently anisotropic
trapping potential, the ions self-arrange in a line along the
z-axis40,41. The phonon Hamiltonian Hph is obtained by a
second-order expansion of Coulomb and trap potentials around
these equilibrium positions zi: Hph¼ M=2ð Þ

P
ij Vijqiqj, with qi the

displacement of the ith ion from equilibrium. For the transverse
phonon branch, Vij is given by16

Vij ¼
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Our exact numerical simulations have been performed for six
40Caþ ions in a trap of frequency o>¼ 2p� 2.655 MHz, as used
in a recent experiment14. To maximize the bandwidth of the
phonon spectrum and thereby facilitate the annealing process, we
choose the radial trap frequency oz as large as allowed to avoid
zig-zag transitions, ozt1.37o> �N� 0.86. Diagonalizing the
matrix Vij leads to the previously introduced mode vectors
nm¼ (x1m, y, xNm), which are normalized to one, and ordered
according to their frequency om:

n T
m0Vnm ¼ o2

mdm;m0 : ð5Þ

The mode nN with largest frequency, oN¼o>, is the centre-of-
mass mode, xiN¼N� 1/2. Parity symmetry of Vij is reflected by
the modes, xim¼±x(Nþ 1� i)m, and even (þ ) and odd (� )
modes alternate in the phonon spectrum. We focus on even N,
for which all components xim are non-zero. Except for the
centre-of-mass mode, all modes fulfil

P
i xim¼ 0.

Previous experiments10–14 have mostly been performed with a
beatnote frequency oL several kHz above oN, leading to an
antiferromagnetic coupling Jijo0 with power-law decay, see
Fig. 1a. Despite the presence of many modes, the couplings Jij

then take an ordered structure. This work, in contrast, focuses on
the regime oLooN, where modes with both positive and negative
xim contribute, and ferro and antiferromagnetic couplings coexist,
see Fig. 1b. This reminds of the disordered scenario of common
spin glass models like the Sherrington–Kirkpatrick model5. In the
following we study the properties of the time-independent
effective spin model, before considering the full time-depedent
problem involving spin-phonon coupling.

Classical Mattis model. Close to a resonance with one
phonon mode, simple arguments allow for deducing the spin
configurations of the ground states. In this limit, we can neglect
the other modes, leading to a Mattis model. A single pattern nm

then determines the coupling, Jijpximxjm. The sign of Jij depends
on the sign of the detuning: Below the resonance, we have
sign(Jij)¼ sign(ximxjm), and accordingly the energy �‘ Jijsi

xs
j
x is

minimized if si
x and sj

x are either both aligned or both anti-
aligned with xim and xjm. Thus, we have a twofold degenerate
ground state given by the patterns ±[sign(x1m), y, sign(xNm)].
We refer to this scenario as the ferromagnetic side of a resonance.

Crossing the resonance, the overall sign of the Hamiltonian
changes. Naively, one might assume that this should not
qualitatively affect the physics, since we have
1
N

P
i 6¼ j ximxjm¼� 1

N ! 0, that is, there is an equal balance
between positive and negative Jij. This expectation, however, turns

out to be false. Recalling the relation between the Mattis model
and number partitioning4,37,38, the antiferromagnetic model
maps onto an optimization problem in which the task is to find
the optimal bi-partition of a given sequence of numbers (xi)i, such
that the cost function E¼ð

P
i2" xi�

P
j2# xjÞ2 is minimized.

Here, the two partitions are denoted by m and k. For a
Hamiltonian of the form H¼

P
ij xisi

xxjs
j
x¼ð
P

i xisi
xÞ

2,
eigenvectors of si

x are Hamiltonian eigenstates with an energy
precisely given by the cost function E. Thus, in the limit of just
one antiferromagnetic resonance, the ground state of H is exactly
the configuration that minimizes the cost function.

With this insight, the ground states of the spin model are
easily found exploiting the system’s parity symmetry: For
even modes, xim¼ x(Nþ 1� i)m, and we simply have to choose
si

x

� �
¼� sN þ 1� i

x

� �
to minimize the cost function. For

odd modes, xim¼ � x(Nþ 1� i)m, and we must choose
si

x

� �
¼ sN þ 1� i

x

� �
. In both cases, this implies that we can choose

half of the spins arbitrarily, leading to at least 2N/2 ground states.
The important observation is that an exponentially large

number of ground states exists in the limit of being arbitrarily
close above a resonance. This is a characteristic feature of spin
glasses, yet it does not lead to computational hardness. In fact, as
pointed out in ref. 38, the number-partitioning problem with
exponentially many perfect partitions belongs to the ‘easy phase’.
How to reach hard instances will be explained in the section
below.

Pushing our arguments further we consider the influence of a
second resonance: In between two resonances, the exponential
degeneracy of the antiferromagnetic coupling on one side is lifted
by the influence of the ferromagnetically coupled mode on the
other side. Interestingly, this does not lead to frustration, since
even- and odd-parity modes alternate in the phonon spectrum,
and the pattern favoured by the ferromagnetic coupling is always
contained in the ground state manifold of the antiferromagnetic
coupling. Accordingly, between two modes the ground-state
pattern is uniquely defined by the upper mode.

Beyond this two-mode approximation, we rely on numerical
results. Taking into account all modes, exact diagonalization of a
small system (Nr10) shows that the two-mode model captures
the behaviour correctly: At any detuning, the degeneracy due to
the nearest antiferromagnetic coupling is lifted in favour of the
pattern of the next ferromagnetic coupling. In Fig. 2a, we plot the
cumulative density of states rcum(E), that is, the number of states
with an energy below E. The corresponding phonon resonances
om are marked in Fig. 2b. The curves clearly reflect the very
different behaviour in the red- and blue-detuned regimes: Fig. 2
illustrates the quick increase of rcum(E) at low energies, when the
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Figure 1 | Power-law decay against quasi-random patterns. We plot the coupling constants Jij (in units of Jrms � 1
N N� 1ð Þ

P
i 6¼ j Jij

�� ��2), for a system of six

ions at different detunings d¼oN�oL. Rabi frequencies are taken as constants Oi¼ const. (a) For negative detuning, d¼ � 2p� 159 kHz, interactions

have a power-law decay. (b) For positive detuning, d¼ 2p� 796 kHz, the coupling constants resemble a spin glass.
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laser detuning is chosen on the antiferromagnetic side of a
phonon resonance. In contrast, a low density of states
characterizes the system on the ferromagnetic side of a resonance.
In intermediate regimes, as shown for d¼ 2p� 199 kHz, the
spectrum is symmetric.

A breakdown of the two-mode approximation is expected for
large numbers of spins: Since the distance between neighbouring
resonances approximately scales with 1/N (at fixed trap frequen-
cies), the influence of additional modes grows with the system size.
The combined contribution of all antiferromagnetically coupled
modes tries to select the fully polarized configurations as the true
ground state, while all ferromagnetically coupled modes, except for
the centre-of-mass mode, favour fully unpolarized configurations.
As a consequence, it is a priori unclear which pattern will be
selected in the presence of many modes.

This observation is crucial from the point of view of a
complexity theory. In the presence of parity symmetry neither the
one-mode problem (that is, the number-partitioning problem),
nor the two-mode approximation are hard problems, as they can
be solved by simple analytic arguments. However, when many
modes lift the degeneracy of the exponentially large low-energy
manifold in an a priori unknown way, one faces the situation
where a true but unknown ground state is separated only by a
very small gap. Identifying this state then usually requires
scanning an exponentially large number of low-energy states, and
classical annealing algorithms can easily get stuck in a wrong
minimum. Below, we discuss how a transverse magnetic field
opens up a way of finding the ground state via quantum
annealing. Moreover, we will discuss strategies to make also the
one-mode model, that is, the number-partitioning problem,
computationally complex.

Increasing complexity. As discussed above, the instances of the
number-partitioning problem realized in the ion chain are simple
to solve due to parity symmetry. This is a convenient feature
when testing the correct functioning of the quantum simulation,
but our goal is the implementation of computationally complex
and selectable instances of the problem in the device. One strategy
is the use of microtraps to hold the ions42. The equilibrium

positions of the ions can then be chosen at will, opening up the
possibility to control the values of the xim. The computational
complexity of the number-partitioning problem then depends on
the precision with which the xim can be tuned. If the number of
digits can be scaled with the number of spins, one enters the
regime where number partitioning is proven to be NP-hard38.
Thus, the number of digits must at least be of order log10 N,
which poses no problem for realistic systems involving tens of
ions.

Another way of enhancing complexity even within a
parity-symmetric trap would be to ‘deactivate’ some spins by a
fast pump laser. For example, if all spins on the left half of the
chain are forced to oscillate, sj

x ! sj
xeiopumpt , the part of

the Hamiltonian which remains time-independent poses a
number-partitioning problem of N/2 different numbers.

Another promising approach was recently suggested in ref. 43:
operating on the antiferromagnetic side of the centre-of-mass
resonance, single-site addressing allows one to use the Rabi
frequency for defining the instance of the number-partitioning
problem. This could indeed be the step to turn the trapped ions
setup into a universal number-partitioning solver, where arbitrary
user-defined instances can be implemented.

If one is not interested in the number-partitioning problem
itself, one might also increase the system’s complexity via
resonant coupling to more than one mode. Equipping the Raman
laser with several beatnote frequencies o mð Þ

L and Rabi frequencies
O mð Þ

i , it is possible to engineer couplings of the form44:

Jij /
Xmmax

m¼1

O mð Þ
i O mð Þ

j

XN

m¼1

ximxjm

om�o mð Þ
L

: ð6Þ

With an appropriate choice of Rabi frequencies and detunings,
this allows for realizing the Hopfield model, Jij /

Pmmax
m¼1 ximm

xjmm
,

where each coupling m is assumed to be in resonance with one
mode mm. For ferromagnetic couplings, the low-energy states
again are determined by the signs of the ximm

, but in general the
different low-energy patterns are not degenerate, and a glassy
regime is expected for large mmax (ref. 28).
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Figure 2 | Cumulative density of states. (a) For six ions and at trap frequency oz¼ 2p� 770 kHz, we plot the number of states (divided by the total

Hilbert space dimension) below the normalized energy treshold (0: ground state energy, 1: energy of highest state), for different detunings from the centre-

of-mass mode, d¼oN�oL. The density of states at low energies is seen to strongly increase when the detuning is slightly above a phonon resonance. In b

the position of the resonances (measured from the centre-of-mass mode at dN¼0) are shown.
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Quantum phases. So far, we have considered classical spin chains
lacking any non-commuting terms in the Hamiltonian. Quantum
properties come into play if we either add an additional couplingP

ij s
i
ys

j
y , or a transverse magnetic field:

HB ¼ ‘B
X

i

si
z: ð7Þ

The latter has been realized in several experiments10,12,14, and is
convenient for our purposes, as the field strength B, if decaying
with time, provides an annealing parameter: For large B, all spins
are polarized along the z-direction, whereas for vanishing B one
obtains the ground state of the classical Ising chain. As argued
above, the latter exhibits spin glass phases with an exponentially
large low-energy subspace. Even in those cases where the
true ground state is known theoretically, finding it
experimentally remains a difficult task. Our system hence
provides an ideal test ground for experimenting with different
annealing strategies.

Before presenting results for the simulated quantum annealing,
let us first discuss the different phases expected for the effective
Hamiltonian Heff¼HJ þHBþ‘ Es1

x . The last term is a bias
introduced to break the Z2 symmetry. Our distinction between
phases is based on certain quantities which combine thermal and
quantum averages

�h iah iT �

P
l

lh j � lj ia exp �El=kBTð Þ
P
l

exp � El=kBTð Þ ; ð8Þ

with lj i denoting the Hamiltonian eigenstates at energy El. For
a¼ 1, �h iah iT reduces to the normal thermal average. We will use
low, but non-zero temperatures T of the order of the coupling
constant, accounting in this way for the huge quasi-degeneracy in
the glassy regime. The thermal average �h iT plays a role somewhat
similar to the disorder average, as it averages over various quasi-
ground states (pure thermodynamic phases). We therefore expect
si

x

� �� �
T to go to zero in the glassy phase. In contrast, a non-zero

average si
x

� �� �
T detects the ferromagnetic phase of the Mattis

model, while it vanishes in the paramagnetic state. Taking its
square to get rid of the sign, we obtain a global ferromagnetic
order parameter by summing over all spins:

nFM ¼
1
N

X
i

si
x

� �� �2

T : ð9Þ

On the other hand, in the spirit of an Edwards–Anderson-like
parameter, we consider thermal averages of squared quantum
averages, that is,

nEA ¼
1
N

X
i

si
x

� �2
D E

T
: ð10Þ

At a sufficiently low temperature this average would still be zero
for a paramagnetic system, but now it remains non-zero for both
ferromagnetic and glassy systems. Accordingly, a parameter
which is ‘large’ only for glassy systems is given by the ratio
nSG¼ nEA

nFM
, used in Fig. 3 to detect the glassy regions.

Thermal averages are difficult to measure, but the contained
information is also present in linear response functions at zero
temperature. Therefore, we have calculated the longitudinal
magnetic susceptibility w, that is, the response of the system to a
small local magnetic field hj

x along the sx direction (in units Jrms
� 2):

w ¼ 1
N

X
ij

@ si
x

� �
@hj

x

� 	2

: ð11Þ

Due to the (quasi)degeneracy in the glass, one expects a huge
response even from a weak field, and thus a divergent
susceptibility.

We have calculated nFM, nSG and w, for N¼ 6 between 0r2p�
dr8 MHz, and 0rBr4Jrms. For the thermal averaging, we have
chosen a temperature kBT¼ Jrms. The results are summarized in
Fig. 3, indicating the regions where these quantities take larger
values than their configurational averages nFM, nSG and w, defined
as f �

R
dB
R

dd f B; dð Þ= Bmaxdmaxð Þ. In this way, we identify
and distinguish ferromagnetic behaviour below, and glassy
behaviour above each resonance. Regions of large susceptibility
w overlap with regions of large nSG, attaining numerical values
which are three orders of magnitude larger than the correspond-
ing averages. For sufficiently strong field B, in contrast, none of
these parameters is large, indicating paramagnetic behaviour.

Note that the existence of the purported glassy phase in the
quantum case is an open problem. We provide here the evidence
only for small systems, since it is numerically feasible and
corresponds directly to current or near-future experiments. If we
increase the complexity of our system by resonant coupling to
many phonon modes, as discussed in the last paragraph of the
previous subsection, the glassy behaviour will result from the
interplay of contributions of many modes similarly as in the
Hopfield model with Hebbian rule and random memory patterns.
Here the beautiful results by Strack and Sachdev21—the quantum
analogue of the Amit et al.29 machinery—can be applied directly
to obtain the phase diagram for large N. If, however, we increase
the complexity by random positioning of the ion traps, then the
resonance condition will pick up the contribution from one
dominant (random) mode, and the Hebbian picture will apply.

Simulated quantum annealing. We will now turn to the more
realistic description of the system in terms of a time-dependent
Dicke model, described by the Hamiltonian H0(t) in equation (1)
with an additional transverse field HB(t) from equation (7). We
assume an exponential annealing protocol B tð Þ¼Bmax exp � t=tð Þ.
Again we apply a bias field hbias¼‘ Es1

x , lifting the Z2 degeneracy
of the classical ground state. We study the exact time evolution
under the Hamiltonian H(t)¼H0(t)þHB(t)þ hbias, using a
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Figure 3 | Magnetic phases. On varying the laser detuning d and the

transverse magnetic field B, we mark, for N¼6 ions and oz¼ 2p� 770 kHz,

those regions in configuration space where the ferromagnetic order

parameter nFM, the spin glass order parameter nSG, or the longitudinal

magnetic susceptibility w take larger than average values (nFM¼0.13,

nSG¼ 5, w¼ 1.6). Below each phonon resonance (marked by the dashed

horizontal lines), there is a regime where large values of nSG and w indicate

spin glass behaviour for sufficiently weak transverse field B. To break the Z2

symmetry of the Hamiltonian, all quantities were calculated in the presence

of a biasing field Es1
x (with E¼� Jrms).
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Krylov subspace method45, and truncating the phonon number to
a maximum of two phonons per mode.

Initially, the system is cooled to the motional ground state, and
spins are polarized along sz. Choosing Bmax�E; Jrms, this
configuration is close to the ground state of the effective model
HJþHBþ hbias at t¼ 0. If the decay of B(t) is slow enough, and if
the entanglement between spins and phonons remains sufficiently
low, the system stays close to the ground state for all times, and
finally reaches the ground state of HJ.

We have simulated this process for N¼ 6 ions, as shown in
Fig. 4. As a result of the annealing, we are not interested in the
final quantum state, but only in the signs of si

x

� �
, which fully

determine the system in the classical configuration. This provides
some robustness. We find that for a successful annealing
procedure, yielding the correct sign for all i, the number of
phonons produced during the evolution should not be larger
than 1. At fixed detuning, we can reduce the number of phonons
by decreasing the Rabi frequency, at the expense of increasing
time scales. As a realistic choice14,15, we demand that annealing is
achieved within tens of miliseconds.

Figure 4a shows that one can operate at a detuning
d¼ 2p� 239 kHz, that is, at the onset of a glassy phase according
to Fig. 3. The mode vector which selects the ground state is
n5¼ (0.61, 0.34, 0.11, � 0.11, � 0.34, � 0.61), and the corre-
sponding pattern can be read out after an annealing time
tZ15 ms. On the other hand, even for long times, si¼4

x

� �
saturates only at � 0.15, which is far from the classical value � 1.
As shown in Fig. 4b, a slower annealing protocol leads to more
robust results si

x

� ��� ��40:52 8 i

 �

. In Fig. 4c, a much simpler
instance in the ferromagnetic regime is considered. Good results

si
x

� ��� ��40:36 8 i

 �

can then be obtained within only a few ms.
In addition, dephasing due to instabilities of applied fields

and spontaneous emission processes disturb the dynamics
of the spins. In ref. 43 a master equation was derived that
takes into account such noisy environment. To study the
evolution of the system in this open scenario we have applied
the Monte Carlo wave-function method46. As quantum jump

operators are hermitean, si
x for dephasing and si

z for spontaneous
emission, the evolution remains unitary, but is randomly
interrupted by quantum jumps. Each jump has equal
probability G, and the average number of jumps within the
annealing time T is given by njumps¼2NGT , which we chose close
to 1.

Since a faithful description requires statistics over many runs,
we restrict ourselves to a small system, N¼ 4, with short
annealing times. In a sample of 100 runs, we noted 94 jumps
(42 sx and 52 sz jumps). In 39 runs, no jump occured. Among the
61 runs in which at least one jump occured, 26 runs still produced
the correct sign for all spin averages si

x

� �
. The full time evolution,

averaged over all runs, is shown in Fig. 5. On average, the final
result is (0.65, 0.50, � 0.41, � 0.68), that is, our annealing with
noise still produces the correct answer, but with lower fidelity.

Whether an individual jump harms the evolution crucially
depends on the time at which it occurs: While a spin flip
(sz noise) is harmless in the beginning of the annealing, a
dephasing event (sx noise) at an early stage of the evolution leads
to wrong results. Oppositely, at the end of the annealing
procedure, dephasing becomes harmless while spontaneous
emission falsifies the result. An optimal annealing protocol has
to balance the effect of different noise sources against non-
adiabatic effects in the unitary evolution.

Scalability. Above we have demonstrated the feasibility of the
proposed quantum annealing scheme in small systems. The
usefulness of the approach, however, depends crucially on its
behaviour on increasing the system size. While the exact treat-
ment of the dynamics becomes intractable for longer chains, an
efficient description can be derived from the Heisenberg equa-
tions:

i‘
d
dt

amh i ¼ am;H tð Þ½ �h i;

i‘
d
dt

sj
a

� �
¼ sj

a;H tð Þ
� 
� �

;

ð12Þ
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Figure 4 | Simulated quantum annealing in the closed system. Unitary time evolution of the full system (N¼6) for different laser detunings d between

the fourth and fifth resonance. Thick lines show the result of the exact evolution, while the thin lines have been obtained from the semi-classical

approximation. In all cases, the desired pattern (þ þ þ � � � ) can be read out after sufficiently long annealing times. While in a,b we operate at the

onset of glassiness, d¼ 2p� 239 kHz, c considers a ferromagnetic instance, d¼ 2p� 143 kHz. The annealing protocol in a is defined by Bmax¼ 50Jrms and

t¼3 ms. In b the same instance is solved with higher fidelity by choosing Bmax¼80 Jrms and t¼6 ms. Fast annealing, with Bmax¼ 50 Jrms and t¼ 1 ms, is

possible in the ferromagnetic instance in (c). In all simulations, we have chosen O¼ 2p� 50 kHz, orecoil¼ 2p� 15 kHz, and E¼� 10 kHz.
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with H¼H0(t)þHB(t)þ hbias. To solve this set of 5N first-order
differential equations, we make a semi-classical approximation

amsi
x

� �
� amh i si

x

� �
, and then proceed numerically using a fourth-

order Runge–Kutta algorithm. The semi-classical approximation
is justified as long as the system remains close to the phonon
vacuum. A direct comparison with exact results for six ions (see
Fig. 4) shows that the semi-classical approach,
while slightly overestimating fidelities, accurately reproduces all
relevant time scales.

This approach allows us to extend our simulations up to
N¼ 22 ions, at trap frequency oz¼ 2p� 270 kHz. We operate
between the first and second resonance where the level spacing is
largest, at a beatnote frequency oL¼o1þ 0.2(o2�o1), that is
with a fixed relative detuning between the two modes. This choice
corresponds to d¼ 2p� 1.2 MHz in Fig. 3, characterized as a
glassy instance of the system.

Our aim is to find the relation of annealing time, measured by
the decay parameter t, and system size while the fidelity F is kept
constant. For a practical definition we demand that F is zero when
the annealing fails, that is when the sign of the spin averages si

x

� �
does not agree with the classical target state for all i. If the
annealing finds the correct signs, the robustness still depends on
the absolute values of the spin averages. The fidelity is then
defined as the smallest absolute value, F¼ mini si

x

� ��� ��. Our results
are summarized in Fig. 6: First, this figure shows that for all sizes
Nr20 large fidelities FZ0.5 can be produced within experimen-
tally feasible time scales, t 	 30 ms. Second, the time scale t
needed for a fidelity F¼ 0.5 fits well to a fourth-order polynomial
in N (with subleading terms of the order exp(1/N)):

t Nð Þ¼N4t0 exp g=Nð Þ; ð13Þ
with t0 and g being free fit parameters. Although the sample of 22
ions is too small to draw strong conclusions, it is noteworthy that

the polynomial fit is more accurate than an exponential one.
This suggests that the proposed quantum simulation is indeed an
efficient way of solving a complex computational problem.
One should also keep in mind that our estimates, based on
a semi-classical approximation, neglect certain quantum
fluctuations which could further speed-up the annealing process.

To study the scaling of dissipative effects, we have extendend
the Monte Carlo wave-function approach to larger systems,
which is feasible if the phonon dynamics is neglected. The unitary
part of the evolution is then described by the effective Ising
Hamiltonian Heff¼HJþHB(t)þ hbias. The dissipative part
consists of random quantum jumps described by si

x and si
z .

The results for a glassy instance (d¼ 2p� 198 kHz at
oz¼ 2p� 700 kHz) are summarized in Table 1 for N¼ 4, 6, 8.
The noise rate is chosen such that on average one quantum jump
occurs in the system with four ions, while accordingly the system
with eight ions suffers on average from two such events. In all
cases, the annealing produces the correct pattern, F40. As
expected, F decreases for larger systems, but fortunately rather
slowly (from F¼ 0.25 at N¼ 4 to F¼ 0.16 at N¼ 8). If the total
amount of noise is kept constant, that is, Gp1/N, the annealing is
found to profit from larger system sizes, since a quantum jump at
spin i is unlikely to affect the sign of hsj

xi for jai. We note that the
spin values produced by the Monte Carlo wave-function method
cannot be described by a normal distribution. Importantly, the
peak of each distribution, roughly coinciding with its median, is
barely affected by the noise. Thus, larger fidelities can be obtained
from the median rather than from the arithmetic mean of hsi

xi.

Spin pattern in the quantum Mattis model. The quantum
annealing discussed above exploits quantum effects to extract
information encoded in the classical model. Now we search for
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Monte Carlo wave-function description averaged over 100 runs, we

simulate the annealing process with N¼4 ions in the presence of

dephasing and spontaneous emission. With a noise rate G¼0.03 Jrms

E120 Hz and a total annealing time T¼ 1 ms, we have on average one jump

per run, njumps¼0:96. We plot expectation values of the spins and total

number of phonons, produced by the coupling, as a function of time. Here,

we have operated in the ferromagnetic regime between the second and

third phonon resonance, d¼ 2p� 159 kHz. Choosing O¼ 2p� 50 kHz,

orecoil¼ 2p� 15 kHz, oz¼ 2p�876 kHz, Bmax¼ 50 JrmsE200 kHz, and

E¼� 10 kHz, we are able to perform very fast annealing, t¼0:1 ms, with

high fidelity. After a time T¼ 1 ms, the time evolution without noise has

converged to s1
x

� �
; s2

x

� �
; s3

x

� �
; s4

x

� �
 �
¼ (0.97, 0.70, �0.65, �0.85),

correctly reproducing the classical pattern (þ þ � � ).
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the scaling behaviour by plotting (in double-logarithmic scale) the value of t
which is needed for a fidelity F¼0.5 as a function of N. A fourth-order
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parameters, as defined by equation (13), are t0¼ 90
40ð Þms and

g¼ 12.0±1.2. For all calculations, we have chosen a beatnote frequency

between the two lowest resonances, oL¼0.8o1þ0.2o2, a trap frequency

oz¼ 2p� 270 kHz, and a bias potential E¼� 1 kHz. The initial value of the

transverse field was Bmax¼ 10 kHz.
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information which is encoded in the quantum, but not in the
classical model. Therefore, we focus on the ferromagnetic Mattis
model, which in the classical case keeps a binary memory of a
spin pattern, that is, of N bits. Our considerations can also be
generalized to the Hopfield model1, which memorizes multiple
patterns. We will show how quantum effects can increase the
amount of information encoded by these models.

Recall that in the classical case, the spin pattern was defined by
a resonant mode in terms of the sign of each component. In the
quantum case, however, one cannot simply replace classical spins
by quantum averages, sign si

x

� �
 �
. Even in a weak transverse field

B, this quantity vanishes due to the Z2 symmetry, sx-�sx.
Instead, the pattern is reflected by li¼ C1h jsi

x C2j i, where C1j i
and C2j i are the ground and first excited state. For small B, we
find numerically sign(li)¼ sign(xim). For large B, the stronger
relation li¼ xim holds approximately, see Fig. 7. Thus, the former
binary memory has become real-valued.

To show this behaviour, we note that for strong B, the ground
state |C1i is fully polarized along z, and the first excited state |C2i
is restricted to the N-dimensional subspace with one spin flipped,
that is, Sz¼

P
i s

i
z¼N � 2. Within this subspace the Hamiltonian

HJ is given by an N � N matrix approximately proportional to
~Jij¼� ximxjm for iaj, and ~Jii¼ constant. Here we neglect all but
the m-th mode close to resonance.

It is easy to see that the vector nm is a ground state of the matrix
� ximxjm, which differs from ~Jij only by the diagonal elements,
which approach unity for large N. Thus, the first excited state reads
C2j i¼

PN
i¼1 xim ij i, where ij i denotes the state in which spin i is

flipped relatively to all others (in the sz basis). This shows that
liExim, and the small deviations decrease quickly with N.

Measuring li experimentally is possible by full state tomo-
graphy. The absolute value of li can be obtained via a simple si

z
measurement. In the limit of strong B-fields we have
li¼ 1� si

z

� �
 �
=2

� 
1=2
.

Many applications are known for the classical spin system with
couplings defined by spin patterns, reaching from pattern
recognition and associative memory in the Hopfield model1 to
noise-free coding2,47. Our analysis suggests that patterns given by
real numbers could replace patterns of binary variables by
exploiting the quantum character of the spins.

Discussion
In summary, our work demonstrates the occurrence of Mattis
glass behaviour in spin chains of trapped ions, if the detuning of
the spin-phonon coupling is chosen between two resonances. In
these regimes, the effective spin system has an exponentially large
number of low-energy states, and finding its ground state
corresponds to solving a number-partitioning problem. This
establishes a direct connection between the properties of a

physical system and the solution of a potentially NP-hard
problem of computer science. Given the state-of-art in experi-
ments with trapped ions, the physical implementation is feasible:
In comparison with the previous experiments with trapped
ions10–14, only the detuning of the spin-phonon coupling needs
to be adjusted. Differently from other approaches to spin glass
physics, our scheme does not require any disorder. In its most
natural implementation, parity symmetry allows one to
analytically determine the ground state. Different ways to break
this symmetry can be implemented to increase the complexity of
the problem.

The ion chain then becomes an ideal test ground for applying
quantum simulation strategies to solve computationally complex
problems. By applying a transverse field to the ions, quantum
annealing from a paramagnet to the glassy ground state is
possible. The ionic system may be used to benchmark quantum
annealing, which has become a subject of very lively and
controversial debate since the launch of the D-Wave
computers7,8. Exact calculations for small systems (N¼ 6) and
approximative calculations for larger system (N¼ 22)
demonstrate the feasibility of the proposed quantum annealing,
and suggest a polynomial scaling of the annealing time.
Accordingly, this approach may offer the sought-after quantum
speed-up. In view of sizes of 30 and more ions already trapped in
recent experiments (cf., ref. 48), a realization of our proposal

Table 1 | Annealing in effective spin model with and without noise.

Closed system (1.0, 0.97, �0.39, �0.42)
N¼4 Open system, mean values (0.79, 0.70, �0.25, �0.32)

Open system, median values (1.0, 0.97, �0.39, �0.42)

Closed system (1.0, 0.99, 0.76, �0.40, �0.64, �0.66)
N¼ 6 Open system, mean values (0.82, 0.68, 0.55, �0.23, �0.43, �0.46)

Open system, median values (1.0, 0.98, 0.76, �0.39, �0.64, �0.66)

Closed system (1.0, 0.99, 0.96, 0.58, �0.31, �0.70, �0.75, �0.77)
N¼ 8 Open system, mean values (0.83, 0.69, 0.69, 0.40, �0.16, �0.43, �0.55, �0.53)

Open system, median values (1.0, 0.98, 0.94, 0.58, �0.30, �0.69, �0.75, �0.76)

We perform quantum annealing (t¼ 3 ms and T¼ 30 ms) for a glassy instance (d¼ 2p� 198 kHz at oz¼ 2p� 700 kHz, E¼� 1 kHz) at different system sizes N, using an effective spin model description.
The results s1

x

� �
; . . . ; sN

x

� �
 �
, are shown for the closed-system dynamics and for a noisy system, with mean and median over a sample of 2,000 runs. The average number of noisy event scales with the

system size, and is adjusted to 4/N. In all cases, the signs of hsi
xi reproduce correctly the mode pattern, and the fidelity decreases with the system size. In contrast to the arithmetic mean values, the

median values in the noisy sample are barely affected by the noise.
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could not only confirm our semi-classical results, but also go
beyond the sizes considered here.

Finally, resonant coupling to multiple modes opens an avenue
to neural network models, where a finite number of patterns is
memorized by couplings to different phonon modes. Quantum
features can increase the memory of such networks from binary
to real-valued numbers. It will be subject of future studies to work
out the possible benefits which quantum neural networks may
establish for information processing purposes.
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