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Abstract— This paper describes an innovative remote surface
sterilization approach applicable to the new coronavirus, severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The
process is based on the application of a liquid film on the surface
or object under sterilization (OUS). A beacon signal is used to
self-steer the transmitted power from the designed retrodirective
antenna array (RDA) towards the OUS using circularly polarized
fields; then, the sterilization is completed by raising and maintain-
ing the required temperature for a certain time. Results suggest that
the process takes 5 minutes or less for an angular coverage range
over 60 degrees whilst abiding by the relevant safety protocols. This
paper also models the power incident onto the OUS, providing
consistent results with full-wave simulations. A practical RDA
system is developed using a 2 × 1 microstrip patch array operating
at 2.5 GHz and tested through the positioning of a representative
target surface. Measurements, developed by sampling the power
transmitted by the heterodyne RDA, are reported for various
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distances and angles, operating in the near-field of the system.
To further validate the methodology, an additional experiment
investigating virus deactivation through microwave heating was
also developed. Measurements have been performed with an open
cavity microwave oven on the Coronavirus (strain 229E) and egg
white protein in a cuvette. This demonstrates that the temperature
increases of aqueous films up to 70 ◦C by remote microwave-
induced heat can denature proteins and deactivate viruses. Possible
applications of the method include sterilization of ambulances,
medical equipment, and internet of things (IoT) devices.

Index Terms—COVID-19, medical devices, microwave heating,
near field, retrodirective array, SARS-CoV-2, remote sterilization.

I. INTRODUCTION AND MOTIVATION

THE World Health Organization (WHO) has categorized the
severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) among a family of viruses that can affect animals or
humans, causing the COVID-19 disease [1]. The unprecedented
situation the entire world is facing with COVID-19 calls for
new solutions that help to ensure that medical staff, and the
general public, are safe and protected. Understanding the way
in which the virus propagates and how the infection occurs is
of paramount importance to control the pandemic. When people
infected with COVID-19 cough or exhale, droplets are expelled
from their nose or mouth and they can diffuse onto objects and
surfaces [1]. The virus can survive for hours, or even up to days,
on plastic and metallic surfaces [1], which means that people
can inadvertently become infected with COVID-19, becoming
potential carriers. These emitted droplets, depending on their
size and weight, can also remain suspended in air. The survival
of the virus on contaminated surfaces has a vital role in its
spreading, therefore sterilization of said surfaces is important
to curtail the pandemic.

Accurate information regarding the life-time of the SARS-
CoV-2 on infected surfaces is still not completely clear. Based
on some early results [1] it is expected to act like other coro-
naviruses. A preliminary work developed in 2003, when the
SARS-CoV-1 was discovered, reported on the stability of coro-
naviruses in human specimens and related environments. The
results made it clear that for at least 96 hours SARS was capable
of surviving and being infectious in serum, diluted sputum and
feces, and up to 72 hours for urine. At the same time the virus
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TABLE I
SURVIVAL OF CORONAVIRUS IN AEROSOLS AND ON SURFACES [5]

can remain strongly infectious at low and room temperatures for
at least 2 hours. Only with longer exposure times and at higher
temperatures did the virus start to become non-infectious. In
addition, ultraviolet C (UVC) irradiation for 9 minutes has been
shown to lead to the elimination of the virus [2].

Recent research has also shown that viruses with pandemic
potential, like SARS, have a long survival time on dry surfaces
and can infect field settings [3]. Coronaviruses can also survive in
water and pre-pasteurized settled sewage, making human expo-
sure possible [4]. Aerosol and surface stability of the new SARS
coronavirus has also been recently studied in [5] using different
materials: copper, cardboard, stainless steel, and plastic. The
concentration of the virus (i.e., the titer) was measured at 21 ◦C
to 23 ◦C and 40% relative humidity for more than 7 days. The
titer of the aerosolized virus was expressed in 50% tissue-culture
infectious dose (TCID50) per liter of air. The experiments were
repeated three times each. Table I presents the titer results,
showing that on cardboard and stainless steel it becomes very
low after 24 hours. In aerosol form and on copper, the titers
require only a few hours to drop to low levels. However, the
virus durability on plastic can be very long (up to 48 hours) [5].

Abraham and colleagues recently developed guidelines for
microwave thermal sterilization in [6]. The authors suggest that
a temperature beyond 60 ◦C is required for the thermal destruc-
tion of the virus; i.e. SARS-CoV-2, highlighting that the time
needed to complete the sterilization is a function of temperature.
Specifically, a 3 minute exposure at 75 ◦C is recommended,
whereas an exposure of 5 minutes at 65 ◦C and of 20 minutes at
60 ◦C is recommended, adopting a conservative approach on the
sterilization time and temperature. Additionally, the Centers for
Disease Control and Prevention (CDC) in the United States has
published a guideline for disinfection and sterilization methods
in health-care facilities, including alcohol, chlorine, and pasteur-
ization [7]. Sterilization can be operated through ionizing and
infrared radiation (indicating powers in the order of 600 W [8]),
which are well-established but are relatively expensive methods,
often requiring bulky systems. These features not always match
the requirements of health-care facilities (ex. US Food and Drug
Administration, FDA) [7]. Microwaves are also regarded as a
promising method for sterilization and have a number of appli-
cations, which include soft contact lenses, dental instruments,
dentures, milk, urinary catheters and many others [7].

The general principle commonly used in a kitchen-based
microwave oven can be exploited to produce heat for steril-
ization [7]. Basically, microwaves can generate friction of the
constituent water molecules, usually at 2.45 GHz; typically, an
effective microbicide dose requires 60 seconds to 5 minutes,

depending on the microorganism being targeted [7]. During
radiation, the electric field hits the polar molecules, generating
vibrations as well as twisting, turning, and stretching, which
causes friction in a viscous environment, thus creating heat. The
mechanism is affected by the amount of water present and by
the intensity of the incident field [9].

UV radiation is also a natural disinfectant that reduces health-
care acquired infections and kills pathogens. It is typically
applied to sterilize drinking water and air [10]. There are various
factors such as temperature, wavelength, and intensity, which
influence the effectiveness of the sterilization process. From a
physical viewpoint, UV radiation is associated with wavelengths
between 100 and 400 nm, while maximum bactericidal effect
takes place at 240 to 280 nm [10]. In health-care environments,
UV covers the inactivation of airborne organisms and microor-
ganisms on surfaces [7]. UV can be applied in health-care
facilities or emergency vehicles, such as ambulances, which are
disinfected by using UV light. Conventional decontamination
time can take about 15–20 minutes [10].

Research exploring the possibility of eliminating viruses
based on a method using confined acoustic vibrations (CAV) was
published in [11]. In this approach, energy can be transferred by
an incident microwave power density by CAV, which induces
stress fractures in the virus structure. This operation has shown
to cause deactivation of the airborne virus, whilst being safe for
the public. Moreover, an experiment took place to understand
the power that was needed for the destruction of the virus, using
a horn antenna, with the viral samples being placed below it.
The results showed that between 6 to 12 GHz was necessary for
the destruction of the viruses with input powers from 0.57 to
3.92 W [11].

We propose here a new methodology and procedure for the
remote microwave thermal sterilization of infected surfaces
using antennas and electromagnetic (EM) waves at microwave
frequencies. The technique is modeled and developed to act
against the SARS-CoV-2 causing the COVID-19 disease. The
technique can be used in various medical scenarios, such as
hospital rooms or ambulances, for contact-less sterilization and
virus deactivation. The level of required energy and the possible
automation of the system in particular, clearly differentiates the
proposed method from other sterilization approaches. For ex-
ample, only a few Watts are required, offering remote operation
with RF beam focusing, not requiring the operator to come in
contact with the contaminated surface. In contrast to a more
conventional disinfectant spray, this approach is not targeted
and focused; i.e., it typically generates a cone of liquid vapour
that disperses in air and further requires manual wiping and
cleaning by an operator. In fact, a harsh disinfectant would need
to be wiped by an operator, which is not always possible, time
efficient or recommended.

The proposed methodology is based on self-steering or
retrodirective antenna arrays (RDAs) [12]-[14], which have
recently been shown to be advantageous for wireless power
transmission systems in the remote charging of batteries within
smart phones, tablets, and other devices [15], [16]. There are two
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Fig. 1. System overview of an RDA operating as a remote microwave thermal
sterilizer. The beacon signal transmitter allows for localizing the OUS and the
RDA re-radiates power towards that direction.

Fig. 2. Illustration of the microwave thermal sterilization process for a medical
device where a liquid film has been applied on it: (a) The medical device sends
a beacon signal towards the RDA, (b) RDA receives the beacon signal and starts
to transmit power towards to the medical device, (c) the required temperature of
the liquid film has been achieved, and (d) the microwave thermal sterilization
has been completed.

basic types of RDAs: passive and active. In the former, the fre-
quencies of the beacon signal and of the re-transmitted signal are
typically the same, whereas in active RDAs the two signals can
have different frequencies to minimize unwanted electromag-
netic coupling. Active RDAs operate by signal heterodyning and
are typically referred to as Pon RDAs [12]. Other applications
for RDAs include [13], [14] wireless communications, remote
sensing, and imaging.

The origin point of the beacon signal can be automatically
tracked by the RDA without a priori knowledge of its physical
position. Therefore, an RDA is capable of transmitting a signal
back to the beacon location automatically. The main concept
of our proposed approach is that the object under sterilization
(OUS) has a thin water film and a small antenna on it. The
antenna generates the radio beacon (see Figs. 1 and 2), allowing
the RDA to localize the OUS, to steer its beam towards it, and to
start to transfer power wirelessly for remote microwave thermal
sterilization and prompt pathogen deactivation.

Existing WiFi transmitters for data communications could
be exploited as the beacon signal [15], [16]. This is because
the OUS could be medical devices, tablets, and other IoTs,
which might connect to conventional wireless local area net-
works (whose connection is based on beacon signals) within
hospitals, ambulances, and other care facilities for example. If
needed, small beacon transmitters could be anyway placed on the
required surfaces by operators, enabling hands-free sterilization.
This can have significant benefits as the radiated beam can be

steered automatically towards the contaminated surface, whilst
the operator need not to physically touch it. Furthermore, the
proposed RDA sterilization approach could be positioned within
the walls of ambulances, for example, and in proximity of other
indoor facilities making the system completely autonomous. It
could also be made handheld for operators with a given steered
beam or fixed to be perpendicular (or broadside) to the sterilizing
antenna unit which generates EM waves.

The paper is divided into three parts. The first part deals
with the theoretical approach and modeling of the problem.
Firstly, the microwave thermal sterilization process using a Pon
RDA is analytically described by modeling a medical device
as a rectangular surface, which is then sprayed with a thin film
of liquid water. This is treated as the OUS in Section II. The
required energy for the sterilization process is examined through
simulations and numerical calculations using a commercial full-
wave EM solver. As the system operates in the near-field (NF),
conventional physical quantities, like the radar cross section
(RCS) and the power transferred by the RDA are evaluated.

In the second part, the operation of the RDA is simulated
and experimentally verified. As outlined in Section III, the OUS
is represented by a rectangular surface comprised of two patch
antennas operating at two distinct frequencies (2.4 GHz and
2.5 GHz). One acts as the beacon while the other as the effective
aperture surface, as required to physically measure the retrodi-
rected high-power signal by the Pon RDA. A parametric analysis
has also been developed for some variable distances and angles.
The theoretical results of the first section are then compared with
simulations and measurements. The power radiated at 2.4 GHz
is set at a level capable of achieving the required temperature to
start the sterilization, abiding by the relevant international safety
protocols.

In the third part, virus inactivation was investigated using an
open-end microwave cavity as described in [17]. To experimen-
tally study the inactivation, the human coronavirus strain 229E
with a green fluorescent protein (GFP) tag (CoV-229E-GFP)
was used [18]. After microwave exposure, residual infectivity
was determined by infection of virus-susceptible Huh7 cells and
measurement of the replication growth curves. Results are pre-
sented in Section IV. Finally, it is demonstrated that microwave
induced heating of liquid films to 60 ◦C with an open end
microwave cavity can lead to protein denaturation, as visually
observed for a solution of egg white, and deactivation of the
CoV-229E-GFP strain, as demonstrated by the aforementioned
experiment. A short discussion and conclusion follows.

II. MICROWAVE THERMAL STERILIZATION TECHNIQUE

This section describes the microwave thermal sterilization
technique of the OUS by using an RDA and the beacon signal.
Classic thermodynamic theory, in combination with conven-
tional wireless power transfer (WPT) and radar techniques,
are considered. A test case with an RDA radiating towards
a rectangular plate, sprayed with a water layer (assumed as
the OUS), from different distances and angles is described. A
numerical model of the time required to start the microwave
thermal sterilization is developed.
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Fig. 3. Orientation of the RDA with respect to a rectangular plate (OUS). The
beacon signal transmitter allows for localizing the OUS and the RDA transmits
power in the NF by an antenna array made byNt elements towards that direction.

A. Description of the Microwave Thermal Sterilization System

The system is illustrated in Fig. 1, where the RDA system
emits the desired level of microwave power needed to start the
microwave thermal sterilization.

The microwave thermal sterilization process is detailed in
Fig. 2: a) the contaminated heart rate monitor (or any generic
medical device, equipment, etc.) is covered by a liquid film at
room temperature (25 ◦C), b) the medical device sends the bea-
con radio signal though a small integrated antenna, c) the RDA
receives it and, because of the phase conjugation mechanism
made possible by the Pon heterodyne circuit system [12], it steers
and radiates power back towards the medical device for a certain
temporal interval. As discussed in [6], the virus is deactivated at
a minimum temperature of 60 ◦C. The required amount of power
and time needed for the liquid film to reach 60 ◦C are discussed
in the following.

Given the electrically large aperture size for the RDA required
to achieve the desired incident power on the OUS positioned at
a distance r and the relevant path losses, it expected that the
RDA should operate in the NF. The boundary between the NF
and the far-field (FF) operation is conventionally approximated
by r = 2D2

λ
, where D is the maximum linear dimension of

the antenna and λ is the wavelength in free-space [19]. Given
the RDA transmitted power (i.e., Pt) and its gain (i.e., Gt),
it is possible to calculate the power impinging on the OUS.
Indicating with θ and φ, the elevation incidence angle and the
azimuthal incidence angle towards the RDA (Fig. 3), the incident
power is given by

Pi =
PtGt (θ, φ)

4πr2
σ (θ, φ) , (1)

where σ is the target radar cross section (RCS) [20], [21].
As a test case, we consider here a flat rectangular plate OUS

with dimensions α, b. The coordinates of the source position
are (r cosφ sinθ, r sinφ sinθ, r cosθ ) where r =‖ r ‖. A simple
formula for the RCS of a rectangular plate in the NF is given in

the following [22]:

σplate (θ, φ) =
πr2cos2θ

4 (1− c2) (1− s2)

∣∣∣∣F1cF1s

+
3c2

1− c2
F1s (F1c + E1c)

+
3 s2

1− s2
F1c (F1s + E1s)

∣∣∣∣
2

. (2)

where the Fresnel integral is defined as F (x) =
∫ x

0 e
jπt2

2 dt and
the following definitions holds: c = sinθ cosφ, s = sinθ sinφ.
On this basis, the F1c, F1s, E1c and E1s functions are given by{

F1c = F (uc + υc) + F (uc − υc)

F1s = F (us + υs) + F (us − υs)
, (3)

⎧⎨
⎩
E1c =

1
jπυc

[
e

jπ(uc−υc)
2

2 − e
jπ(uc+υc)

2

2

]
E1s =

1
jπυs

[
e

jπ(us−υs)2

2 − e
jπ(us+υs)2

2

], (4)

where ⎧⎨
⎩
uc ± υc =

√
r

λ(1−c2)

[
α(1−c2)

r ± 2c
]

us ± υs =
√

r
λ(1−s2)

[
b(1−s2)

r ± 2 s
]. (5)

B. Simulation of the Radiated Power

We evaluate here the incident power given by (1) performing
a simulation. The RDA system is composed of a two-element
array operating at 2.5 GHz with input power Pt = 1 W (3 W
also considered for comparison); a rectangular water layer (i.e,
the OUS) with dimensions α = 14 cm, b = 8 cm, thickness
t = 0.25 mm is included in the simulation. The OUS is rotating
from -90 ◦ to 90 ◦ along the azimuthal angle (φ), keeping constant
the elevation angle (θ). In each rotation the RDA beam was
steered towards the OUS direction and the power incident on it
was recorded, evaluating the antenna gain (Gt(0, φ)) is at the
relevant direction by (1). The plots in Fig. 4 show the results for
two different distances, for r = 10 cm and r = 25 cm; in both
cases the RDA operates within the NF.

C. Required Energy for Microwave Thermal Sterilization

The microwave thermal sterilization of an object requires to
control the involved physical parameters, such as the required
thermal energy, the temporal duration, and the dimensions of the
surface under sterilization. An object with a given mass and heat
capacity can be described with the specific heat cp [23], defined
as the ratio between mass and capacity [24]. Thus, the energy
stored by the substance can be calculated as E = cpΔTm [25],
where E is the required heat energy for increasing the tempera-
ture of the substance.ΔT is the differential temperature between
the initial and the final states of the substance andm is the mass of
the substance, which can be expressed in terms of the volume (V )
and the density (ρ) of the substance as m = V ρ [26]. Assuming
that a source transfers thermal energy, the difference in temper-
ature of the substance is equal to ΔT. In a time interval ttotal,
therefore, the needed power is given by P = E

/
ttotal [27].
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Fig. 4. Incident power generated by a 2×1 RDA, for two different input
power levels (i.e., 1 W and 3 W); upon on a rectangular water-based aperture
considering distances (a) r = 10 cm and (b) r = 25 cm.

Fig. 5. Required time to heat the water film to 60 ◦C to induce the sterilization
of the coronavirus. Water layer aperture as in Fig. 4. For ±30 ◦ azimuthal angles
the time is less than 5 min, for an input power of 3 W. It is expected that with
increased levels of power, sterilization time can decrease.

Combining (1) with the aforementioned basic energy equa-
tions a numerical model of the time needed to increase the
temperature is developed. Given the OUS volume, density and
heat capacity, the original and desired final temperature, RCS,
RDA gain as well as the distance between the two devices, the
following expression can retrieved:

ttotal =
4πr2

Pt

cpΔTV ρ

σ (θ, φ)Gt (θ, φ)
. (6)

The formula in (6) is considered here to evaluate the performance
of the system constituted by a 2×1 RDA and the rectangular
water layer. The desired temperature was set to 60 ◦C, whilst the
original temperature was assumed equal to 25 ◦C. The specific
heat capacity of water is cp = 4179.6 J.kg−1.K−1, its density
is ρ = 103 Kg/m3, and its volume is V = α b t m3 [28]. Fig. 5
presents the total time needed for the sterilization of water in
terms of various distances and azimuthal angles with respect to
the RDA, setting a transmitted power Pt = 1 W and 3 W. The
results in Fig. 5 demonstrate that the azimuthal angles between

Fig. 6. Experimental setup: the relative position between target and the single-
element patch antenna was set to 10 cm; incident angle equal to 0 ◦.

the RDA and the OUS required to reach the desired temperature
to start the microwave thermal sterilization has a significant
impact on the time. As expected, the minimum value is achieved
at broadside, (i.e.; θ = 0 ◦). This is because the antenna gain
decreases off broadside, highlighting the importance of the
self-steering RDA. It should be mentioned that higher input
power (Pt) and directivity can help to reduce the sterilization
time.

In order to validate the formula in (6) the time required
for raising the temperature by 1 ◦C was assessed through a
simple experimental setup. This included a single-element patch
antenna (linearly polarized) operating at 2.5 GHz and a rectan-
gular aluminium (α× α) target covered by a water layer (t ≈
0.5 cm), placed within an anechoic chamber (Fig. 6). A signal
generator (Keysight MXG N5183B) was used with output power
equal to −15 dBm, connected in series with a 30 dB power
amplifier (MiniCircuits ZFL-2500+) so that the input power at
the antenna was Pt = 15 dBm (i.e., ≈ 0.03 W). The relative
distance between the antenna and the target was set to 10 cm
and the incident angle at 0 ◦. Based on these values and the
estimated required time for the changing of temperature by 1 ◦C
is about 3.5 hours. The original temperature of the target was
measured to be 20.3 ◦C through a digital laser temperature gun.
After 3.5 hours the measured temperature was 21.4 ◦C. The
temperature around the water layer was also monitored with a
digital thermometer equipped by a probe; this temperature was
18.6 ◦C at the beginning of the experiment and 19.4 ◦C at the
final target temperature making these results consistent with (6).

III. NEAR-FIELD RDA

A. Pon-Based RDA Design and Operation

The Pon RDA is a heterodyne system that avoids the use of
circulators since the transmit and receive arrays are isolated;
the structure uses RF mixers to provide retrodirectivity by phase
conjugation [14]. This principle is simple and well established, it
exploits the product between two input signal tones [12], which
constitutes the RF input signal and the local oscillator signal
(LO). Gain blocks (namely, amplifiers) are typically employed
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Fig. 7. Measured received power at different distances from the RDA (broad-
side) in comparison with the theoretical expected power using the free-space path
loss model (FSPL) and the indoor propagation ITU model [31]. The arrays for the
dual-pol Pon RDA prototype (using CP antenna elements) are shown in the inset.
RF components: including mixers (1), amplifiers (2 and 3), power dividers (4)
and voltage control oscillators (5). CP antenna elements are employed to provide
orientation flexibility for the OUS and the RDA.

to boost the retrodirected power. The Pon RDA designed in this
work follows [15] and collects the beacon signal with a receiving
array (with one polarization) and it retrodirects the radiation back
to the OUS with a high-power transmitting array with another
polarization. The radiating element in this RDA architecture is a
two-element circularly polarized (CP) patch array. CP operation
is needed to avoid potential polarization mismatches between
the target and the RDA while also allowing for orientation free
movement of the OUS. Element decoupling strategies were not
considered for simplicity in our work, as element coupling values
were −20 dB or less. Different approaches, such as in [29], [30],
can be adapted to our design if better performance is needed.

To test the performance of the RDA system in the NF, an
RDA system with lower gain and reduced cost when compared
to [15], was designed with FR-4 material constituting a simple
demonstrator as shown in Fig. 7 (see inset). The tracking plane is
perpendicular to the RDA aperture containing the two-element
arrays. Thus, each RF chain is defined by a receiving CP an-
tenna element, a mixer (Linear Technology), a driver amplifier
from (MiniCircuits ZFL-2500+), a power amplifier (TriQuint
TQP9111), and a CP transmitting antenna.

Considering a two-element Pon-RDA, the received beacon
signal at the antenna elements (i.e., fRX ) goes directly into the
RF port of each mixer. It should be mentioned that all mixers
share a common LO to ensure consistent reference. The output
signal is then phase conjugated [12], thus an inverted progressive
phase difference between antenna elements is achieved, result-
ing in a wavefront (fTX ) propagating towards the same direction
as the beacon signal generated by the OUS. This process occurs
in real-time, thereby performing analog signal processing [32].

The power received at broadside and at different distances
from the OUS has been measured as shown in Fig. 7. The
following NF expression for the path loss is considered [33]:

P (r, f) =
GTXGRX

4

(
1

(kr)2
− 1

(kr)4
+

1

(kr)6

)
, (7)

Fig. 8. Monostatic measurements for various ranges; i.e. RDA to the OUS.

where GTX is the gain of the transmitter, GRX is the gain
in reception, k is the free-space wavenumber. The measured
received power well approximates the trend for the free-space
path loss model (Fig. 7). However, there is poor agreement
with the indoor propagation model after about 1 m [31] which
takes into consideration multipath effects. Such disagreement is
justified in the fact that the measurements were made inside an
anechoic chamber, replicating a free-space environment.

Monostatic and bistatic measurements were completed for
proof of concept (see Figs. 8 to 10). The procedure to acquire
monostatic and bistatic patterns is illustrated in Fig. 7 of [15].
The bistatic pattern corresponds to the radiation pattern of the
RDA when the beacon tone is set at a given angle. To test the
tracking capabilities of the RDA, several bistatic patterns at
different angular positions of the beacon signal are considered.
The transmit signal of the OUS, i.e., the beacon, is kept at a
given angle, while the receiver patch (which samples the field)
rotates around to map the complete beam pattern for a given
angular range. Therefore it is expected that the RDA will be
continuously pointing and tracking its maximum back towards
the beacon OUS.

Results of the monostatic measurements can be found in
Fig. 8. A comparison of the normalized received power of the
patch antenna for a range from −50 ◦ to 50 ◦ and of various
distances from NF to FF is presented. The boundary in this case
is at 35 cm. Respectively, results of the bistatic measurements
can be found in Fig. 9. Comparison of the normalized received
power for a range from −50 ◦ to 50 ◦ and of various distances
from NF to FF, as well, for five given angles θ: (a) 0 ◦, (b) −30 ◦,
(c) −15 ◦, (d) 15 ◦ and (e) 30 ◦.

Bistatic measurements at 10 cm and 25 cm have also been
made and compared in this case to the simulations in Fig. 10. In
Fig. 10(a) it can be observed that measurements and simulations
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Fig. 9. Bistatic measurements in the NF at different angles and distances for
the proposed RDA: (a) 0 ◦, (b) −30 ◦, (c) −15 ◦, (d) 15 ◦ and (e) 30 ◦.

Fig. 10. Bistatic measurements (circles) and simulations (cont. lines) for
different ranges and angles: (a) 10 cm and (b) 25 cm, (i) −20 ◦, (ii) 0 ◦ and
(iii) 20 ◦.

have a similar field pattern. Despite the difficulties to make
the measurements with high accuracy (the mechanical supports
were very close together for the RDA and patch receiver), the
shape of the measured points follows the expected trend. On the
other hand, in Fig. 10(b), the measured points match very well
to that of the expected pattern shape, also demonstrating that the
required NF traking is possible.

B. Health and Safety Discussion

The International Commission on Non-Ionizing Radiation
Protection (ICNIRP) has set limitations on exposure to elec-

TABLE II
ELECTROMAGNETIC FIELD EXPOSURE RESTRICTIONS LIMITS, BASED ON

ICNIR, FROM 100 KHZ TO 300 GHZ [34]

tromagnetic fields. There are two exposure scenarios, one for
the occupational and one for the general public. Those two have
different limits, in three categories. The first one refers to the
whole body exposure and the others to the local head/torso and
the local limb exposures, respectively. There are a number of
different ways the exposure can be measured, the most common
being the specific energy absorption rate (SAR, W/Kg). Table II
shows the exposure limits for the five aforementioned categories,
from 100 kHz to 6 GHz. The restrictions refer to average
intervals of 30 minutes in terms of the whole-body average SAR
and 6 minutes for the local SAR [34].

IV. VIRUS DEACTIVATION THROUGH MICROWAVE

RADIATION EXPERIMENTS

This section describes the microwave heat experiment for
coronavirus strain CoV-229E-GFP deactivation. The experiment
demonstrated the protein denaturation and coronavirus deacti-
vation, using a microwave open ended cavity system, which
induced microwave heating of aqueous films.

A. Inactivation of the Virus

The microwave open ended cavity system used for the heat
experiments was originally developed to enable rapid bonding
of individual microelectronic components on a board assem-
bly [17], [35], [36]. This system has an advantage of volumetric
and uniform heating, selective energy deposition with reduced
processing times and increased energy efficiency. Microwave
heating was achieved using this open-ended single mode res-
onant microwave applicator/oven which has been described
in [35]. Test specimens consisted of 200 μl of Cov-229E-GFP
diluted to a multiplicity of infection (MOI) of 0.3 in DMEM,
in a cuvette of internal volume 8 mm × 8 mm × 8 mm. The
samples were then heated at a constant ramp up rate of 1.5 ◦C/s
to the chosen inactivation temperature (50, 60, 70 and 100 ◦C)
held for varying amounts of time (10 seconds to 60 seconds).
Residual virus infectivity was determined by infection of virus-
susceptible Huh7 cells and measurement of virus replication
growth curves as a function of the GFP fluorescence.

Fig. 11 shows the set and measured temperature profiles and
net input power for a 70 ◦C temperature cycle with 60 seconds set
hold time. The net input microwave energy for this temperature
cycle is 164 Joules, approximately. Fig. 12 indicates the survival
rates of virus at various temperatures and exposure durations. It
can be seen that the virus survival decreases with both time and
temperature with a maximum of 30% virus death at 60 ◦C, and
100% virus death following exposure to 70 ◦C for 30 seconds.
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Fig. 11. Net microwave power along with the temperature profile for a 70 ◦C
heating cycle experiment with the virus suspension for 60 s hold time period.

Fig. 12. Survival rates of virus when exposed to the microwaves in an open
ended microwave cavity for 10-60 s at four different temperatures: 50 °C, 60 °C,
70 °C and 100 ◦C.

B. Visual Thermal Assay Based on Protein Denaturation

In order to demonstrate that microwave-induced heating of
aqueous films can lead to protein denaturation and virus deac-
tivation, an open microwave cavity as described above is used
to irradiate protein solution (1:1 mixture of hen egg white and
phosphate buffered saline (PBS) at pH 7.4). The protein solution
was monitored for 2 minutes where there was an obvious colour
change from colourless to white. The transparent solution turns
white opaque upon irradiation, therefore giving a direct visual
indication that the protein denatured and gelled. Hen egg white
proteins are known to denature at 60 ◦C [37]. This was also
confirmed by another controlled experiment in which the egg
white/PBS solution was thermally heated to 60 ◦C. To this
end, approximately 500 μL of the solution was pipetted onto
a glass microscope slide. A second slide was placed on top of
the solution to minimise loss of solution by evaporation. This
was then placed on a variable temperature hotplate set to 60 ◦C.
This experiment was repeated with the open ended cavity system
with a heating ramp up from 25 to 60 ◦C at 1 ◦C/s and a hold
time of 60 seconds. In this second experiment, the solution was
monitored for 2 minutes where there was an obvious colour
change from colourless to white (Fig. 13) similar to the hotplate
experiment.

While these three sets of experiments show that microwave
irradiation of thin aqueous films to above 60 or 70 ◦C can
lead to protein denaturation and virus deactivation, it has to be

Fig. 13. Microwave heated protein solution result to 60 ◦C by microwave
irradiation. (a) Colourless solution before being thermally heated. (b) White
solution after thermal heating. The white colour in the solution shows that the
protein has been denatured and gelled.

emphasized that these experiments were done with a simpler
microwave set-up as the one outlined in this publication, be-
cause the current RDA prototype does not yet have a powerful
enough power source and beam directivity to deliver the required
radiation intensities. Nevertheless, the experiments show that
microwave heating to a modest 60 ◦C is sufficient to achieve
the desired damage to proteins and to viruses, respectively, and
therefore to sterilize surfaces demonstrating proof-of-concept
for the proposed methodology and approach for remote mi-
crowave sterilization. Two videos can also been found in the
supplementary information about the hotplate and microwave
cavity denaturing of egg white.

V. CONCLUSION

A sterilization method applicable against the new coronavirus
has been presented in this paper. The technique requires a
small transmitter suitably positioned on the OUS to provide its
location. The RDA receives the transmitted beacon signal and
transmits power to the OUS until it reaches the desired temper-
ature. A study has been done to test the tracking capabilities of
the Pon RDA in the NF.

A liquid film of water was considered to produce heat for
sterilization and the amount of power needed to deactivate the
coronavirus was calculated. More specifically, the total time
needed to reach 60 ◦C. The studied liquid film has dimensions
α = 14 cm, b = 8 cm and thickness t = 0.25 mm, whilst
the total input power of the RDA is 3 W, maintaining below
the exposure limits. The results showed that the study can be
feasible for an azimuthal angle range from −40 ◦ to 40 ◦ and
a distance r = 10 cm. For r = 25 cm the range reduced from
−20 ◦ to 20 ◦. At the best case scenario (i.e., an OUS placed
at broadside and r = 10 cm) less than 4 minutes were needed
to complete the required heating and the sterilization process.
Better performances can be achieved indeed by increasing the
power of the transmitter or increasing the aperture size of the
RDA. Experiments have also been conducted to demonstrate
that microwave-induced heating of aqueous films can lead to
protein denaturation and virus deactivation. Measurements from
these experiments show that the deactivation of viruses due to
microwave induced heat is possible above 60 ◦C and can be
achieved with < 99.9% certainty at 70 ◦C above 20 seconds.
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