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OBJECTIVE—Oxidative stress induced by free fatty acids con-
tributes to the development of cardiovascular diseases in pa-
tients with metabolic syndrome. Reducing oxidative stress may
attenuate these pathogenic processes. Activation of AMP-acti-
vated protein kinase (AMPK) has been reported to reduce
intracellular reactive oxygen species (ROS) levels. The thiore-
doxin (Trx) system is a major antioxidant system. In this study,
we investigated the mechanisms involved in the AMPK-mediated
regulation of Trx expression and the reduction of intracellular
ROS levels.

RESEARCH DESIGN AND METHODS—We observed that
activation of AMPK by 5-aminoimidazole-4-carboxamide ribonu-
cleotide (AICAR) significantly reduced ROS levels induced by
palmitic acid in human aortic endothelial cells. Activation of
AMPK increased expression of the antioxidant Trx, which medi-
ated the ROS reduction. RT-PCR showed that AMPK regulated
Trx at the transcriptional level.

RESULTS—Forkhead transcription factor 3 (FOXO3) was iden-
tified as the target transcription factor involved in the upregula-
tion of Trx expression. FOXO3 bound to the Trx promoter,
recruited the histone acetylase p300 to the Trx promoter, and
formed a transcription activator complex, which was enhanced
by AICAR treatment. AMPK activated FOXO3 by promoting its
nuclear translocation. We further showed that AICAR injection
increased the expression of Trx and decreased ROS production
in the aortic wall of ApoE�/� mice fed a high-fat diet.

CONCLUSIONS—These results suggest that activation of the
AMPK-FOXO3 pathway reduces ROS levels by inducing Trx
expression. Thus, the AMPK-FOXO3-Trx axis may be an impor-
tant defense mechanism against excessive ROS production in-
duced by metabolic stress and could be a therapeutic target in
treating cardiovascular diseases in metabolic syndrome.
Diabetes 58:2246–2257, 2009

O
xidative stress induced by free fatty acids
(FFAs) plays a key role in the development of
cardiovascular diseases in metabolic syndrome
(1). Excessive generation of reactive oxygen

species (ROS) can cause cellular injury and dysfunction by
directly oxidizing and damaging DNA, proteins, and lipids,
as well as by activating several cellular stress-signaling
and inflammatory pathways (1). Understanding how ROS
production and scavenging are regulated and developing
strategies to reduce ROS production and increase antiox-
idant availability are important for preventing cardiovas-
cular diseases in metabolic syndrome.

An important signaling pathway involved in ROS regu-
lation is the AMP-activated protein kinase (AMPK) path-
way. The AMPK pathway responds to energy depletion by
stimulating ATP production, and it plays an important role
in controlling energy metabolism. It has been increasingly
recognized that activation of this pathway could protect
the cardiovascular system (2–4). ROS can activate the
AMPK pathway (5–7). Previous studies have shown that
activation of the AMPK pathway reduces intracellular
ROS levels (7–10). However, the mechanisms involved
are not completely understood.

The thioredoxin (Trx) system is a major antioxidant
system, which promotes the reduction of proteins by
cysteine thiol-disulfide exchange, and plays a vital role in
maintaining the cellular redox balance (11,12). Trx, a 12
kDa redox-sensitive molecule, is the key component of the
system (11,12). Trx is ubiquitously expressed and protects
the cells from ROS-induced cytotoxicity (13–15). Trx has
been shown to have cardiovascular protective effects.
Inhibition of endogenous Trx in the heart increases oxida-
tive stress and cardiac hypertrophy (16), whereas overex-
pression of Trx (15,17) or administration of exogenous Trx
(18) reduces oxidative stress and protects the cardiovas-
cular system.

Given the importance of Trx in the intracellular antiox-
idant defense system, we postulate that Trx is a key AMPK
target that attenuates excess ROS produced by metabolic
stress. Therefore, in the present study, we examined the
effect of activating the AMPK pathway on Trx expression
and ROS reduction in cells exposed to palmitic acid.

RESEARCH DESIGN AND METHODS

Cell culture. Human aortic endothelial cells (HAECs) (Cell Applications, San
Diego, CA) were cultured in EGM-2 media (Cambrex, East Rutherford, NJ),
which contained endothelial cell basic media, 2% FBS, hydrocortisone,
fibroblast growth factor 2, vascular endothelial growth factor, IGF-I, epider-
mal growth factor, ascorbic acid, GA-1000, and heparin. The cells were
transfected with small interfering RNAs (siRNAs) or plamid DNAs or treated
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with AICAR or palmitic acid at various concentrations and for the time
indicated.
Preparation of fatty acid–albumin complexes. Saturated palmitic acid was
used in this study. We prepared lipid-containing media by conjugating palmitic
acid to BSA using a modification of the method described previously (19).

Briefly, palmitic acid was dissolved in ethanol at 200 mmol/l and then
combined with 10% FFA-free, low-endotoxin BSA, giving a final concentra-
tion of 1 to 5 mmol/l. The pH of all solutions was adjusted to �7.5, and the
stock solutions were filter-sterilized and stored at �20°C until used.
Control solutions containing ethanol and BSA were prepared similarly.
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FIG. 1. Activation of the AMPK pathway reduced intracellular ROS levels induced by palmitic acid (PA). A: AICAR significantly reduced palmitic
acid-increased intracellular ROS levels in HAECs. The cells were treated with AICAR in the absence or presence of palmitic acid for 24 h and then
incubated with CM-H2DCFDA. Fluorescence was detected and normalized to cell number. The mean fluorescent intensity was calculated randomly
from five fields per coverslip. Relative ROS levels were compared with the nontreatment control subjects and expressed as the percentage of the
control subjects. Shown are representative microscopic scans and the quantitative analysis of fluorescent intensity from three independent
experiments. Data represent means � SE. *P < 0.05, **P < 0.01, ***P < 0.001. B: AMPK was involved in the AICAR-induced reduction in ROS
levels. HAECs were transfected with AMPK siRNA and then treated with AICAR in the absence or presence of palmitic acid for 24 h. The
effectiveness of AMPK� knockdown was examined by anti-AMPK� antibody. ROS were detected with CM-H2DCFDA. Representative staining and
the quantitative analysis are shown. Data represent the means � SE (n � 3). **P < 0.01 ***P < 0.001. AMPK� siRNA prevented AICAR-induced
reduction of ROS. (A high-quality digital representation of this figure is available in the online issue.)
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Working solutions were prepared fresh by diluting the stock solution (1:10)
in 2% FCS– endothelial cell basic media. All palmitic acid media contained
1% BSA; however, the palmitic acid–to–BSA ratio varied with the palmitic
acid concentration.
siRNA and plasmid DNA transfection. Gene expression was silenced with
specific siRNAs, including AMPK siRNA (Santa Cruz Biotechnology, Santa
Cruz, CA), Trx siRNA (Santa Cruz Biotechnology), and forkhead transcription

factor 3 (FOXO3) siRNA (Dharmacon, Chicago, IL). Various FOXO3a plasmids
(Addgene, Cambridge, MA), including wild type (HA-FOXO3a WT), constitu-
tively active (HA-FOXO3a TM), and dominant-negative (HA-FOXO3a TM
deltaDB) DNAs were used in this study. Transfection of HAECs or human
smooth muscle cells (HSMCs) with siRNAs or plasmid DNAs was carried out
with Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to the manu-
facturer’s instructions. Transfected cells were then treated with palmitic acid
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FIG. 2. Activation of the AMPK pathway upregulated Trx. A: AICAR induced Trx expression in the absence or the presence of palmitic acid (PA).
HAECs were treated with increasing amounts of palmitic acid, AICAR, or palmitic acid and AICAR for 24 h. Trx expression was examined by an
anti-Trx antibody on a Western blot and was normalized with �-actin. The relative levels of Trx were compared and expressed as the percentage
of the control. Representative blots and quantitative analysis from three independent experiments are shown. **P < 0.01, ***P < 0.001 versus
nontreatment control subjects or as indicated. B: Involvement of the AMPK pathway in basal and AICAR-regulated Trx expression. HAECs were
transfected with AMPK siRNAs and then treated with AICAR in the absence or presence of palmitic acid for 24 h. Trx expression was measured
by an anti-Trx antibody on a Western blot and was normalized with �-actin. The relative levels of protein were compared and expressed as the
percentage of the control. Representative blots and quantitative analysis from three independent experiments are shown. **P < 0.01, ***P <
0.001 versus the nontreatment control subjects or as indicated. Knockdown of AMPK� by siRNA downregulated basal Trx protein levels and
reversed the AICAR-induced induction of Trx. C: AICAR enhanced total Trx activity. HAECs were treated with increasing amounts of palmitic
acid, AICAR, or palmitic acid and AICAR for 24 h. Relative Trx activity in the cell lysate was assessed, normalized, and expressed as the
percentage of the nontreatment control subjects. Data represent the means � SE (N � 3). *P < 0.05, **P < 0.01, ***P < 0.001 versus the
nontreatment control subjects or as indicated.
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and AICAR at the designated concentrations for the indicated amount of time.
The efficiency of transfection was confirmed by Western blot.
Quantitative ROS detection. Intracellular ROS levels were detected with
the oxidant-sensitive fluorogenic probes 5- (and -6) -chloromethyl-2�,7�-dichlo-
rodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA). Treated cells on
the coverslip were incubated with 5 �mol/l CM-H2DCFDA in serum-free
medium for 30 min at 37°C. The slides were examined under a Leica DMLS
epifluorescence microscope (Leica Microsystems, Bannockburn, IL), the
images were captured with a Leica DC 100 digital camera using identical
acquisition settings, and the data were analyzed with Image-Pro Plus V4.5
software (Media Cybernetics, Bethesda, MD). Fluorescence was detected and
normalized to cell number. The mean fluorescent intensity was calculated
randomly from five visual fields per coverslip. Relative ROS levels were
compared and expressed as the percentage of the nontreatment control
subjects.

Tissue ROS levels were detected with DHE. Fresh segments of thoracic
aorta were frozen in optimal cutting temperature compound. Cryosections (6
�m) were equilibrated with Krebs-HEPES buffer (130 mmol/l NaCl, 5.6 mmol/l
KCl, 2 mmol/l CaCl2, 0.24 mmol/l MgCl2, 11 mmol/l glucose, and 8.3 mmol/l
HEPES; pH 7.4) at 37°C for 30 min. Cryosections were incubated with 2
�mol/l DHE at 37°C for 30 min and stained with the nuclear counterstain
DAPI (0.1 �g/ml) at room temperature for 5 min. Fluorescence was
detected and all images were captured with identical acquisition parame-
ters. Values of red ethidium fluorescence were normalized to blue DAPI
fluorescence. The mean fluorescent intensity randomly counted from three
visual fields per vessel was calculated.
Immunofluorescent staining and immunohistochemistry. Cells were
grown on glass coverslips and treated with palmitic acid and AICAR. Treated
cells were washed with PBS, fixed with 4% paraformaldehyde for 10 min,
and permeabilized with 0.2% Triton X-100 for 5 min. The coverslips were
blocked with 1% BSA, incubated with the primary antibody, washed with
PBS, incubated with Texas Red–labeled secondary antibody, and then
stained with 0.1 �g/ml DAPI at room temperature for 5 min. Fluorescence
was detected.

For immunohistochemical analysis, formalin-fixed, paraffin-embedded aor-
tic sections were deparaffinized and rehydrated before antigen retrieval in
citrate buffer (92–98°C for 12 min). Endogenous peroxidase activity was

quenched by incubating the slides with 3% hydrogen peroxide for 10 min, and
nonspecific staining was reduced by blocking with 5% normal blocking horse
serum. The sections were incubated with the primary antibodies at 4°C
overnight and then incubated with second antibody and detected with
3,3-diaminoben zidine (DAB) using the VECTASTAIN ABC kit (Vector Labo-
ratories, Burlingame, CA). Nuclei were counterstained with hematoxylin.
Slides treated only with normal IgG were used as negative controls. The
images were captured and analyzed with Image-Pro Plus V4.5 software (Media
Cybernetics). The signal density was normalized to vascular area. The mean
intensity was calculated randomly from three visual fields per vessel.
Western blot analysis. Treated cells were collected and lysed as described
previously (20). The NE-PER nuclear and cytoplasmic extraction kit (Thermo
Fisher Scientific, Rockford, IL) was used to separate and prepare nuclear and
cytoplasmic proteins from cultured HAECs. Protein samples (15 �g per lane)
were subjected to SDS-PAGE and transferred to polyvinylidene fluoride
(PVDF) membranes. The membranes were blocked, incubated with primary
antibody, washed, and incubated with the secondary HRP-labeled antibody.
Bands were visualized with enhanced chemiluminescence (Amersham Bio-
sciences, Piscataway, NJ). Protein bands, including �-actin, were quantified by
densitometry with the Quantity One imaging program (Bio-Rad, Hercules,
CA). The relative protein levels were normalized to �-actin and expressed as
the percentage of the nontreatment control subjects.
Quantitative RT-PCR. Total RNA from treated cells was extracted with
Trizol (Invitrogen) according to the manufacturer’s protocol. The mRNAs
were reverse-transcribed with the iScript cDNA synthesis kit (Bio-Rad).
Quantitative RT-PCR (qRT-PCR) was performed with the iCycler iQ RT-PCR
detection system (Bio-Rad). Primers were designed with Beacon Designer 2.0
software (Premier Biosoft International, Palo Alto, CA). We used the following
primers for human Trx: forward 5�-GCCTTGCAAAATGATCAAGC-3 and re-
verse 5�-TTGGCTCCAGAAAATTCACC-3�. mRNA levels were acquired by
normalizing the threshold cycle (Ct) of Trx to the Ct of �-actin. The relative
levels of mRNA were compared and expressed as the percentage of the
nontreatment control subjects.
Chromatin immunoprecipitation assay. We used the chromatin immuno-
precipitation (ChIP) assay kit (Upstate Biotechnology, Lake Placid, NY) as
described previously (20). The immunoprecipitated DNA and the input DNA
were quantified with the qRT-PCR detection system (Bio-Rad). The relative
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FIG. 3. Trx mediated the AMPK-induced reduction in ROS levels. HAECs were transfected with Trx siRNA and then treated with AICAR in the
absence or the presence of palmitic acid (PA) for 24 h. The effectiveness of Trx knockdown was examined by anti-Trx antibody. Intracellular ROS
levels were detected with CM-H2DCFDA. Shown are representative microscopic scans and the quantitative analysis of fluorescent intensity from
three experiments. Data represent the means � SE. *P < 0.05, **P < 0.01, ***P < 0.001. Knockdown of Trx by siRNA increased basal ROS levels,
enhanced palmitic acid–induced ROS levels, and prevented the AICAR-induced reduction in ROS levels. (A high-quality digital representation of
this figure is available in the online issue.)
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levels of DNA were normalized to the input DNA and expressed as the
percentage of the nontreatment control. The PCR products were also sepa-
rated on a 1.5% agarose gel. The following primers were used for the FOXO
binding site in the 5�-flanking region of the human Trx gene: for site 6 forward
primer 5�-CCGCACTAAACCGCTGTGTC-3� and reverse primer 5�-CTCCG-
GAATTTACCGTGACC-3�.
Immunoprecipitation. Immunoprecipitation was conducted as described
previously (21). Treated cells were lysed for 60 min in ice-cold extraction
buffer containing 50 mmol/l Tris-Cl (pH 7.5), 100 mmol/l NaCl, 1% Triton X-100,
1 mmol/l dithiothreitol, 1 mmol/l EDTA, 1 mmol/l EGTA, 2 mmol/l Na3VO4, 50
mmol/l �-glycerophosphate, and a protease inhibitor mixture (Amersham
Biosciences). Cleared cell lysates were incubated with the appropriate
antibody precoupled to protein A/G-agarose beads (Santa Cruz Biotechnol-
ogy) at 4°C overnight. The beads were washed twice with extraction buffer
and then twice with extraction buffer containing 0.5 mol/l LiCl. Proteins were
eluted either in kinase buffer for the kinase assay or in SDS sample buffer for
Western blot analysis.
Kinase assays. AMPK was precipitated from cell lysates with an anti-AMPK
antibody. AMPK-containing beads were incubated with recombinant FOXO3
in kinase assay buffer supplemented with 100 �mol/l ATP for 20 min at 30°C.
Samples were separated on a 10% SDS-PAGE and transferred to PVDF
membranes. Anti-serine and anti-threonine antibodies were used to detect
phosphorylated serines and threonines incorporated into FOXO3.
Trx activity assay. Trx activity was measured with the insulin disulfide
reduction assay as described elsewhere (22). Total cellular protein was

extracted with lysis buffer (20 mmol/l HEPES pH 7.9, 100 mmol/l KCl, 300
mmol/l NaCl, 10 mmol/l EDTA, 0.1% Triton X-100, 1 mg/ml Protease Inhibitor
Cocktail III). Cellular protein extracts were incubated with buffer (50 mmol/l
HEPES pH 7.6, 1 mmol/l EDTA, 1 mg/ml BSA, 2 mmol/l DTT) at 37°C for 15
min before they were incubated with Trx reductase (Sigma, St. Louis, MO) in
the reaction buffer (0.3 mmol/l insulin, 200 �mol/l NADPH, 1 mmol/l EDTA,
and 20 mmol/l HEPES pH 7.6) at 37°C for 20 min. The reaction was terminated
by adding stop mix (6 mol/l guanidine HCl and 1 mmol/l DTNB in 0.2M
Tris-HCl, pH 8.0), and the absorption at 412 nm was measured. Relative Trx
activities were quantified after normalization with total protein and expressed
as the percentage of the nontreatment control subjects.
Animal study. Four-week-old apolipoprotein-E knockout (ApoE�/�) male
mice (The Jackson Laboratory, Bar Harbor, ME) were fed a high-fat diet
(Research Diets, New Brunswick, NJ) for 4 weeks and then subcutaneously
injected with AICAR (0.5 mg/g body weight per day) or an equivalent
volume of normal saline for 2 days. Mice were killed 24 h later. The aortas
were irrigated with PBS, collected, and preserved at �80°C until used;
alternatively, the aortas were fixed in 4% paraformaldehyde for the
immunochemistry assay or optimal cutting temperature compound for
ROS detection. All experiments were approved by the Animal Care
Research at Baylor College of Medicine.
Statistical analysis. All quantitative variables are presented as the means �
SE from three separate experiments. We compared the differences of three or
more groups with one-way ANOVA. Two-tailed P � 0.05 was considered
statistically significant.
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FIG. 4. AMPK induced Trx expression at the transcriptional level. A: AICAR induced a significant dose-dependent increase in Trx mRNA. HAECs
were treated with AICAR in the presence of palmitic acid (PA) for 24 h. Trx mRNA levels were examined by RT-PCR and normalized with �-actin
mRNA. The relative levels of mRNA were compared and expressed as the percentage of the control. Data represent the means � SE (N � 3). *P <
0.05, **P < 0.01, ***P < 0.001 versus palmitic acid treatment. B: Involvement of the AMPK pathway in basal and AICAR-regulated Trx expression.
HAECs were transfected with AMPK siRNAs and then treated with AICAR in the absence or the presence of palmitic acid for 24 h. Trx mRNA
levels were examined by RT-PCR. Data represent the means � SE (N � 3). **P < 0.01, ***P < 0.001. The basal and AICAR-upregulated Trx mRNA
were reversed by AMPK siRNA.
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RESULTS

AMPK reduced ROS levels induced by palmitic acid
in endothelial cells. We first tested whether activation
of the AMPK pathway could reduce FFA-induced ROS
production. HAECs were incubated with increasing
amounts of AICAR in the presence or absence of
palmitic acid; ROS levels were detected in the treated
cells. As shown in Fig. 1A, AICAR treatment alone had
minimal effects on basal ROS levels. Palmitic acid
significantly increased intracellular ROS levels, an ob-
servation consistent with previous reports (23). The
palmitic acid–induced increase in intracellular ROS

levels was reduced by AICAR in a dose-dependent
manner with up to a 60% reduction at the highest dose
(500 �mol/l). This result indicates that activation of
AMPK can reduce intracellular ROS levels. Additionally,
suppression of AMPK by specific siRNAs not only
increased basal ROS levels, but also augmented the
palmitic acid–induced increase in ROS levels (Fig. 1B).
Furthermore, the AICAR-induced reduction in ROS lev-
els was abolished by AMPK siRNA. These data suggest
that the AMPK pathway is capable of reducing intracel-
lular ROS levels under basal conditions and when
induced by palmitic acid.
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FIG. 5. FOXO3 mediated the AMPK-induced upregulation of Trx. A: Involvement of FOXO3 in basal and AICAR-regulated Trx protein expression.
HAECs were transfected with FOXO3 siRNA and then treated with AICAR in the absence or the presence of palmitic acid (PA) for 24 h. The
effectiveness of FOXO3 knockdown was examined by anti-FOXO3 antibody. Trx protein was measured by Western blot. Representative data and
quantitative analysis from three independent experiments are shown. *P < 0.05, ***P < 0.001. FOXO3 siRNA decreased basal Trx protein levels
and reversed the AICAR-mediated induction of Trx protein. B: Involvement of FOXO3 in basal and AICAR-regulated Trx mRNA expression.
HAECs were transfected with FOXO3 siRNA and then treated with AICAR in the absence or the presence of palmitic acid for 24 h. Trx mRNA was
examined by RT-PCR. Data represent the means � SE (N � 3). ***P < 0.001. FOXO3 siRNA decreased basal Trx mRNA levels and reversed the
AICAR-mediated induction of Trx mRNA. C: Overexpression of FOXO3 increased Trx protein levels. HSMCs were transfected with wild-type
(HA-FOXO3a WT), constitutively active (HA-FOXO3a CA), or dominant-negative (HA-FOXO3a DN) FOXO3a. The transfection effectiveness was
determined by anti-HA antibody. The expression of Trx, FOXO3, and �-actin was examined. Representative blots from three independent
experiments are shown.
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FIG. 6. AMPK promoted FOXO3 binding to the Trx promoter and formation of the FOXO3/p300 transcription complex in the Trx promoter. A:
Depiction of FOXO binding sites in the Trx promoter. B: AICAR increased binding of FOXO3 to the Trx promoter. HAECs were treated with
AICAR and palmitic acid (PA) for 24 h. FOXO3-DNA complexes were cross-linked by formaldehyde and immunoprecipitated with anti-FOXO3
antibody. Bound FOXO3 sites in the Trx promoter were detected by qPCR and normalized with input DNA. Relative DNA was compared and
expressed as the percentage of the nontreatment control subjects. Representative blots and quantitative analysis from three independent
experiments are shown. Data represent the means � SE. *P < 0.05, ***P < 0.001 versus palmitic acid treatment. C: AICAR increased recruitment
of p300 to the Trx promoter. HAECs were treated with AICAR and palmitic acid for 24 h. The protein-DNA complex was immunoprecipitated with
an anti-p300 antibody. The FOXO binding site in the DNA-protein complex was amplified by PCR. Representative blots and qPCR analysis from
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AMPK increases the expression of the antioxidant
Trx. We investigated whether the AMPK pathway could
reduce ROS levels through Trx. First, we examined

whether the AMPK pathway could regulate Trx expres-
sion. As shown in Fig. 2A, activation of the AMPK pathway
by AICAR significantly upregulated expression of Trx in

three independent experiments are shown. Data represent the means � SE (N � 3). **P < 0.01, ***P < 0.001. D: AICAR increased FOXO3 and
p300 association. The FOXO3 and p300 complex was coimmunoprecipitated with an anti-FOXO3 antibody, and p300 was detected by an anti-p300
antibody. Alternatively, the complex was immunoprecipitated with an anti-p300 antibody, and FOXO was detected by an anti-FOXO3 antibody.
Representative blots and quantitative analysis from three independent experiments are shown. *P < 0.05, **P < 0.01, ***P < 0.001. E: AICAR
increased binding of the FOXO3 and p300 complex in the Trx promoter. HAECs were treated with AICAR and palmitic acid for 24 h. The
protein-DNA complex cross-linked by formaldehyde was first immunoprecipitated with an anti-FOXO3 antibody and then with an anti-p300
antibody. The FOXO site on the Trx promoter was detected by PCR. Representative blots and quantitative RT-PCR analysis from three
independent experiments are shown. Data represent the means � SE (N � 3). ***P < 0.001.
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the absence and presence of palmitic acid. Although
palmitic acid itself transiently increased Trx expression
(data not shown), prolonged palmitic acid exposure de-
creased Trx expression. Importantly, knockdown of
AMPK� by its specific siRNA inhibited both basal and
AICAR-induced Trx expression (Fig. 2B), implicating that
the AMPK pathway is involved in upregulating Trx. Con-
sistent with this expression pattern, AICAR significantly
increased total cellular Trx activity in the absence and
presence of palmitic acid (Fig. 2C). Taken together, these
data suggest that activation of AMPK increases Trx
expression.
Trx silencing prevents the AICAR-induced reduction
in ROS levels. We determined whether Trx is involved in
the AMPK-induced reduction in ROS levels. Trx expres-
sion was silenced by Trx siRNA, and the effect of AMPK on
ROS levels in Trx knockdown cells was examined. As
shown in Fig. 3, Trx siRNA not only increased basal ROS
levels, but also amplified the palmitic acid–induced in-
crease in ROS levels. Furthermore, Trx siRNA prevented
the AICAR-induced reduction in ROS levels. These data
suggest that Trx is capable of reducing intracellular ROS
levels and is involved in the APMK-mediated reduction in
ROS levels.
AMPK regulates Trx expression at the mRNA level.
To further explore the mechanisms of AMPK-induced
upregulation of Trx expression, we examined whether

AICAR could affect Trx transcription. Using qRT-PCR, we
found that AICAR significantly increased Trx mRNA in a
dose-dependent manner (Fig. 4A). Knockdown of AMPK�
by its specific siRNA reduced basal Trx expression (Fig.
4B). Moreover, AICAR-induced Trx mRNA was reduced in
the presence of AMPK siRNA. These results indicate that
AMPK increases Trx expression at the mRNA level.
FOXO3 is required for the AMPK-induced upregula-

tion of Trx. We investigated the mechanisms responsible
for the AMPK-mediated upregulation of Trx. The 5� flank-
ing region of the human Trx gene contains consensus-
binding sites for many transcription factors. We identified
FOXO3 as one of these transcriptional factors that may
mediate AMPK-induced Trx transcription. Silencing
FOXO3 with siRNA significantly prevented the AICAR-
induced expression of Trx at both the protein (Fig. 5A)
and mRNA level (Fig. 5B), indicating that FOXO3a is
involved in the AMPK-induced upregulation of Trx. Fur-
thermore, overexpression of constitutively active FOXO3a
(FOXO3a CA) significantly increased Trx expression in the
absence or presence of AICAR, but domain-negative
FOXO3a (FOXO3a DN) dramatically decreased Trx ex-
pression (Fig. 5C), further suggesting that FOXO3a is
capable of upregulating Trx expression. Together, these
data support the critical role of FOXO3 in the AMPK-
induced upregulation of Trx.
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FOXO3 binds directly to the Trx promoter, recruits

p300, and forms a transcription activator complex on

the Trx promoter. To examine whether FOXO3 directly
induces Trx transcription, we examined whether FOXO3
binds to the Trx promoter in vivo. FOXO binds to the
consensus site 5�-(C/G)(A/T)AAA(C/T)A-3� (24). The pro-
moter region in the Trx gene contains six putative FOXO
binding sites (tgAAAGAgtga at �1346/�1342, tgAAA
GAagga at �1339/�1335, gaAAACAcaga at �1236/�1232,
caAAATAccgc at �859/�855, ggAAACActga at �807/
�803, and tgAAAGAacag at �613/�609) (Fig. 6A). Results
of the ChIP assay performed with a FOXO3 antibody
showed that FOXO3 strongly bound to site 6 (Fig. 6B).
Importantly, the binding of FOXO3 to the Trx promoter
was significantly increased by AICAR treatment (Fig. 6B,
P � 0.001), further suggesting that FOXO3 may mediate
AMPK-induced Trx transcription.

We examined how the transcription factor FOXO3 binds
to the Trx promoter and induces gene expression. One
possible mechanism is chromatin remodeling in which
transcription factors bind to a promoter and recruit his-
tone acetylases (e.g., p300) that acetylate histones, unwind
chromatin, and induce gene transcription. To test whether
this mechanism applied to the FOXO3-mediated transcrip-
tion activation of the Trx gene, we first examined whether
p300 could bind to the Trx promoter. By using the ChIP
assay, we found that AICAR treatment significantly in-
creased p300 binding to the Trx promoter (Fig. 6C). We
then examined whether FOXO3 was associated with p300
in vivo. By using a coimmunoprecipitation assay, we
observed that FOXO3 was associated with p300 and that
this association was increased by AICAR treatment (Fig.
6D), indicating that p300 recruitment to the Trx promoter
may be mediated at least in part by FOXO3. Furthermore,
the double-ChIP assay (Fig. 6E) showed that FOXO and
p300 were in the same transcription complex in the Trx

promoter, and this association was increased by AICAR
treatment. Together, these results suggest that activated
FOXO3 may recruit p300 and form a transcription activa-
tion complex in the Trx promoter, a process that can be
promoted by the AMPK pathway.
AMPK increases FOXO3 nuclear translocation. We
investigated the potential mechanisms by which AMPK
regulates FOXO3. The immunostaining assay (Fig. 7A) and
Western blot (Fig. 7B) showed that AICAR significantly
increased the translocation of FOXO3 from the cytoplasm
to the nucleus, which was prevented by AMPK� siRNA.
We also examined whether AMPK could directly phos-
phorylate FOXO3. The in vitro kinase assay, with purified
AMPK as the kinase and recombinant FOXO3 as the
substrate, showed that AMPK directly phosphorylated
FOXO3 at serine and threonine sites and that AICAR
increased threonine phosphorylation of FOXO3 (Fig. 7C).
These results indicate that FOXO3 may be phosphorylated
by AMPK and subsequently translocate into the nucleus
where it binds the Trx promoter and increases Trx
transcription.
AICAR increases Trx expression and decreases ROS
levels in vivo. Finally, we examined whether AMPK
activation could affect the expression of Trx and, thus,
reduce ROS levels in vivo. We used ApoE�/� mice fed a
high-fat diet, a model that can produce metabolic distur-
bances, ROS overproduction, and vascular changes similar to
those seen in metabolic syndrome. These mice were injected
with either saline or AICAR (0.5 mg/g body weight per day)

for 2 days; ROS levels and Trx expression in the aorta were
compared. As shown in Fig. 8, the AICAR injection decreased
ROS levels (Fig. 8A) and increased expression of Trx in the
aortic wall (Fig. 8B), suggesting that activation of the AMPK
pathway may enhance Trx expression and subsequently
reduce ROS levels in the vascular wall.

DISCUSSION

In the present study, we showed that activation of AMPK
reduces ROS levels by inducing expression of the antiox-
idant Trx. The transcriptional factor FOXO3 mediated the
induction of transcription. AMPK activates FOXO3 by
promoting its nuclear translocation, Trx promoter binding,
and subsequently transcription complex formation. Based
on these findings, we propose a pathway of the AMPK-
mediated reduction of intracellular ROS (Fig. 8C).

Fatty acids are fuels that are used to efficiently generate
ATP primarily through �-oxidation. However, when fatty
acids are present in excessive amounts, along with increased
oxidation and energy generation, they produce increased
ROS, which contribute significantly to the pathogenesis of
microvascular and macrovascular complications in diabetes
(25,26). Strategies to decrease intracellular ROS levels and
oxidative damage may have therapeutic potential in treating
diabetes and its complications.

Our finding that activation of the AMPK pathway re-
duced intracellular ROS levels is consistent with previous
reports (7–10). The AMPK pathway acts as a fuel gauge by
switching on catabolic pathways for ATP generation when
energy is depleted, a process coupled to the increase in
ROS production. It has been shown that ROS can activate
the AMPK pathway (5–7). The ability of AMPK to reduce
ROS levels counterbalances the overproduction of ROS
during fatty acid consumption. Reducing fatty acid–
induced increases in ROS levels in endothelial cells may be
an important mechanism in AMPK-mediated cardiovascu-
lar protection. Additionally, AMPK regulates endothelial
function (2), angiogenesis (27), and the cell cycle (28).
Moreover, AMPK also inhibits vascular inflammation (3),
prevents endothelial injury induced by hyperglycemia and
FFAs (4), and reduces myocardial infarction (29). Thus,
upregulating this pathway may provide therapeutic bene-
fits by not only reducing lipid storage and insulin resis-
tance, but also preventing cardiovascular complications in
metabolic syndrome.

We studied the mechanisms involved in the AMPK-
mediated reduction in ROS. Decreasing intravascular ROS
levels can be achieved by preventing the generation of or
removing excess reactive species. Previous studies sug-
gest that activation of the AMPK pathway normalizes
hyperglycemia-induced ROS production by inducing man-
ganese superoxide dismutase (8,30). We have shown for
the first time that the AMPK pathway can decrease fatty
acid–induced increases in intracellular ROS levels by
upregulating Trx, a novel additional mechanism that ex-
plains AMPK’s effects on reducing intracellular ROS. Trx is
ubiquitously expressed in endothelial cells and protects
the cells from ROS-induced cytotoxicity (15). Trx can also
bind and inhibit apoptosis signal-regulating kinase 1 (31),
an upstream kinase in the cellular stress–sensitive path-
ways (i.e., JNK and p38 pathways). Thus, upregulation of
the Trx system by the AMPK pathway may be an important
protective mechanism against excessive oxidative stress
and the activation of stress-signaling pathways in the
body.
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Regarding how the AMPK pathway induces Trx expres-
sion, our study suggests that FOXO3 may be a target
transcription factor that mediates AMPK’s effects on Trx
expression and ROS reduction. FOXO transcription fac-
tors are important regulators of metabolism, cell-cycle
progression, apoptosis, and oxidative stress resistance.
Recent findings suggest that ROS can activate FOXO
(33–37). Although FOXOs mediate ROS-induced apoptosis
(37,38) under lethal conditions, they can increase cell
survival in response to physiologic oxidative stress
(32,39–42), a function that is required for long-term regen-
erative potential and cell longevity (41,43).

The mechanisms whereby FOXO3 reduces ROS levels
are not well defined. It has been shown that FOXO3 may
be involved in the induction of catalase (44). Our study
shows that FOXO3 reduces intracellular ROS levels by
directly inducing the antioxidant Trx. When activated
by AMPK, FOXO3 directly binds to the Trx promoter and
forms a transcriptional complex on the Trx promoter,
which may lead to activation of Trx transcription. How-
ever, further site-directed mutagenesis studies are needed
to determine whether FOXO3 indeed targets site 6 and
induces the transcriptional complex formation in the Trx

promoter and whether this site is important for FOXO3-
mediated Trx promoter transactivation. Together, these
findings indicate the importance of FOXO3 in reducing
ROS levels and protecting cells.

Increasing evidence suggests that AMPK can directly
phosphorylate FOXO3, which mediates AMPKs ability to
reduce cell stress and increase cell survival (45,46). Greer
and colleagues have recently shown that AMPK directly
phosphorylates at least six residues in the C-terminal
domain of FOXO3, which activates the FOXO3 transcrip-
tion factor (45). Our results support their findings. We
showed that activation of AMPK by AICAR induced the
nuclear translocation of FOXO3 and the binding of FOXO3
to the Trx promoter. Further studies will be necessary to
define the detailed mechanisms of FOXO3 regulation by
the AMPK pathway in response to metabolic stress.

In summary, using both in vitro and in vivo experiments
we have shown that activation of the AMPK pathway
significantly reduced palmitic acid–induced intracellular
ROS levels by increasing the expression of the antioxidant
Trx. The transcriptional factor FOXO3 mediated AMPK’s
effect on Trx expression. AMPK upregulated Trx transcrip-
tion by increasing the nuclear translocation of FOXO3 and
by promoting its binding to the Trx promoter. The AMPK-
FOXO pathway has protective effects against cellular
superoxide levels induced by metabolic stress and could
be a therapeutic target when treating cardiovascular dis-
eases in metabolic syndrome.
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