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Abstract: Non-coding RNA (ncRNA) has recently emerged as a vital component of the DNA damage
response (DDR), which was previously believed to be solely regulated by proteins. Many species of
ncRNA can directly or indirectly influence DDR and enhance DNA repair, particularly in response to
double-strand DNA breaks, which may hold therapeutic potential in the context of cancer. These
include long non-coding RNA (lncRNA), microRNA, damage-induced lncRNA, DNA damage
response small RNA, and DNA:RNA hybrid structures, which can be categorised as cis or trans based
on the location of their synthesis relative to DNA damage sites. Mechanisms of RNA-dependent
DDR include the recruitment or scaffolding of repair factors at DNA break sites, the regulation of
repair factor expression, and the stabilisation of repair intermediates. DDR can also be communicated
intercellularly via exosomes, leading to bystander responses in healthy neighbour cells to generate
a population-wide response to damage. Many microRNA species have been directly implicated
in the propagation of bystander DNA damage, autophagy, and radioresistance, which may prove
significant for enhancing cancer treatment via radiotherapy. Here, we review recent developments
centred around ncRNA and their contributions to intracellular and intercellular DDR mechanisms.
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1. Introduction

Eukaryotic cells are frequently exposed to external and endogenous insults that cause
DNA damage and threaten genomic stability [1]. A sensitive signalling cascade called the
DNA damage response (DDR) therefore functions to sense and repair genetic lesions or to
induce apoptosis in cells with irreparable damage, thus protecting genome integrity [2,3].
Double-strand DNA breaks (DSBs) represent one of the most cytotoxic forms of DNA
damage, with a single unresolved DSB being capable of endangering overall cell health [3,4].
DSB repair is mediated by two major pathways: homologous recombination (HR) and
non-homologous end-joining (NHEJ). Briefly, NHEJ is a fast, error-prone repair mechanism
that does not require a homologous template. This means that it remains active throughout
the cell cycle but is preferential during G1 [5,6]. NHEJ is initiated by the rapid binding of
the Ku70-Ku80 heterodimers to the DNA ends at either side of the DSB, while end resection
is limited by 53BP1. This triggers the recruitment of DNA-PKcs to form the DNA-PK
holoenzyme, which tethers the ends together. The subsequent recruitment of downstream
NHEJ factors, such as Artemis, XRCC4, DNA ligase 4 (LIG4), and XLF, then enable either
the direct ligation of the blunt ends or end processing followed by ligation [7–10]. HR, on
the other hand, is a high-fidelity mechanism that predominates in the S and G2 phases of
the cell cycle, utilising the sister chromatid as a homologous template for repair. Initiated
by the DSB sensor MRE11-RAD50-NBS1 (MRN) complex and its accessory factor CtIP,
end resection is critical for commitment to HR. Short- and long-range end resection are
facilitated by MRN, CtIP, BRCA1, and EXO1/DNA2 to generate single-stranded DNA
(ssDNA) overhangs. These overhangs are protected by the immediate binding of RPA
until BRCA2 mediates RPA displacement by RAD51 to form a nucleoprotein filament. The
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nucleoprotein filament then invades the template DNA duplex at a region of sequence
homology, generating a D-loop intermediate and faithfully restoring the damaged strand
without information loss [4,6,8–10].

In recent years, many studies have suggested critical roles for non-coding RNA
(ncRNA) in DDR [11–15]. Within the cell, ncRNA species that contribute to DNA repair,
particularly to that of DSBs, can be transcribed both proximally and distally to the site of
DNA damage [1,5]. As both can influence activity at the break site, they have been desig-
nated as cis and trans mechanisms of RNA-dependent DDR, respectively. Nevertheless,
RNA and its associated structures, such as R-loops, are also implicated in the induction of
DNA damage, including DSBs, and genome instability [16]. Therefore, the tight regulation
of RNA activities is required to maintain genome integrity and to resolve insults. RNA can
additionally be exported into extracellular vesicles. Various species of messenger RNA
(mRNA), microRNA (miRNA), and other ncRNA have been identified as encapsulated
within a subset of extracellular vesicles that have a diameter of 40–100 nm, termed exo-
somes [17]. Following the discovery that exosome-mediated RNA transfer represents a
key mechanism of intercellular communication and functional regulation [18], a growing
body of evidence has implicated exosomal RNA in intercellular DDR mechanisms [19].
Intercellular DDR encompasses damage induction, genomic instability, and radioresistance
within bystander cells, which have not been exposed to radiation themselves but are in
the vicinity of directly irradiated cells [20]. Here, we review recent developments in the
rapidly growing field of RNA-dependent DDR, focusing on the contributions of cis and
trans ncRNA species to intracellular DNA repair mechanisms as well as the effects of
specific intercellular RNA transfer on DDR in both donor and recipient cells. It should
be noted that although there is some evidence for rRNA and tRNA involvement in DDR,
these are not covered in this review.

2. Intracellular RNA-Dependent DDR Mechanisms
2.1. RNA Acting in Trans
2.1.1. lncRNAs Contribute to DSB Repair

The activation of DNA repair by RNA transcripts synthesised in trans has been widely
studied and reviewed [4,8,21,22]. These RNA transcripts are commonly ncRNA species,
which can be further classified into long non-coding RNA (lncRNA) or small non-coding
microRNA (miRNA) [4]. lncRNAs are over 200 nucleotides in length, transcribed by RNA
polymerase II (RNAPII), and processed into mature RNA transcripts that can function in
the nucleus or cytoplasm [8]. A growing body of evidence has implicated many lncRNA
species in DDR and DNA repair mechanisms at various levels, including action as DSB
sensors, transducers, or effectors [22]. Here, we discuss a selection of recently reported
examples of lncRNA species with important functions in DDR, with emphasis on the DSB
repair pathways.

NHEJ offers a rapid but low fidelity means of repairing a DSB via the binding of the
Ku70-Ku80 heterodimer to the DNA ends at the break site, facilitating the recruitment of
end-processing factors such as LIG4, which can resolve the DSB by means of the direct
ligation of the DNA ends [2]. Many lncRNA species have recently been identified as en-
hancers of NHEJ efficiency, including LINP1 [23], LRIK [24], lnc-RI [25], and NIHCOLE [26],
discussed below. These and other examples have been summarised in Table 1 to convey
the diversity of lncRNA contributions to DDR.
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Table 1. lncRNA species and their roles in DDR.

lncRNA Species Function Reference

LINP1 Scaffolding of multiple Ku70-Ku80
dimers and DNA-PKcs at damage sites [23,27]

NIHCOLE Recruitment of Ku80 to damage sites and
phase separation to drive NHEJ [26]

LRIK Binds damaged DNA, allowing DSB
sensing and signalling to recruit Ku70 [24]

lnc-RI
Stabilises LIG4 and RAD51 expression by
acting as a ceRNA for miR4727-5p and

miR-193a-3p
[25,28]

HOTAIR Promotes radioresistance via regulation
of miR-454-3p, miR-218, and EZH2 [29–31]

HITT Binds ATM, preventing MRN complex
formation and restricting HR [32]

LIRR1 Reduces expression of Ku70, Ku80, and
RAD50 [33]

MEG3 Sequesters miR-182, enhancing
radiosensitivity [34]

BS-DRL1
Interacts with HMGB1 and facilitates its

assembly on chromatin upon DNA
damage in the brain

[35]

Aerrie Associates with YBX1 and is recruited to
damage sites to enhance DNA repair [36]

LINP1 was first identified in triple-negative breast cancer (MDA-MB-231) cells as an
interacting partner of Ku80 and DNA-PKcs by RNA pulldown and immunoprecipitation
experiments [23], and the same methods confirmed this observation in cervical cancer
(HeLa) cells [37]. It was initially proposed that LINP1 acted as a scaffold that was recruited
to stabilise Ku80 and DNA-PKcs complexes at the repair site [23]. More recent work from
Thapar et al. [27] aimed to investigate this interaction and its contribution to NHEJ. In-
deed, their use of size exclusion chromatography small-angle X-ray scattering (SEC-SAXS)
established that LINP1 promotes the association of multiple Ku heterodimers across the
break to prolong the lifetime of the synaptic complex (Figure 1). Interestingly, LINP1 was
found to act redundantly with the NHEJ accessory protein, PAXX. Single-molecule assays
utilising molecular forceps to imitate DSBs showed LINP1 to be even more effective than
PAXX at bridging DNA ends [27], thus highlighting the increasing importance of studying
RNA molecules as key drivers of DNA repair. A similar scaffolding role was suggested
for NIHCOLE, whereby its interaction with Ku80 promotes the formation of multimeric
NHEJ complexes to increase ligation efficiency [26]. However, in contrast to the role of
LINP1 in long-range synapsis [27], NIHCOLE is implicated in short-range synapsis [26].
While long-range synaptic complexes can provide the initial tethering of the DNA ends, it
is the short-range synaptic complex that catalyses their precise alignment and ligation [38],
distinguishing the functions of the two scaffolding lncRNAs. Furthermore, single-molecule
atomic force microscopy revealed hyper-stoichiometric clustering of NIHCOLE and Ku80,
such that around three molecules of NIHCOLE could recruit 14 Ku80 molecules, proposing
a potential role for NIHCOLE in promoting phase separation as a means to drive NHEJ via
“repair hubs” [26]. Another lncRNA, LRIK, was also found to interact with the Ku70-Ku80
heterodimer. However, its mechanism of NHEJ promotion differs from LINP1 and NIH-
COLE. Chromatin immunoprecipitation (ChIP) in combination with AsiSi-induced DSBs
in LRIK-knockdown cells revealed a dependence of Ku heterodimer accumulation at DSB
sites, as well as the recruitment of downstream DNA-PKcs and XRCC4, on LRIK expression.
LRIK was also found to directly bind damaged DNA, as shown by psoralen cross-linked
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chromatin isolation by RNA purification (ChIRP)-qPCR. In combination with the observa-
tions that LRIK loss downregulates γH2AX foci formation, these results implicate LRIK in
the sensing of DSBs and the subsequent signalling to promote NHEJ, which is mediated
by its interaction with Ku70 [24]. Finally, lnc-RI contributes to NHEJ by stabilising LIG4
expression, evidenced by reduced LIG4 at both the mRNA and protein level when lnc-RI
was knocked down [25]. Prior work has also suggested a role for lnc-RI in HR via its ability
to stabilise RAD51 mRNA [28], demonstrating that one lncRNA species can contribute
to DNA repair via multiple mechanisms. Interestingly, both studies suggest that lnc-RI
acts as a competitive endogenous RNA (ceRNA) for its respective target mRNAs [25,28].
ceRNAs have been described as non-coding RNA molecules that can be targeted by the
same miRNA species as a specific coding RNA, providing additional regulatory potential
via crosstalk between lncRNA and miRNA [39]. In this case, lnc-RI binds competitively
via its 3′UTR to miR-4727-5p to enhance LIG4 expression [25] and to miR-193a-3p to reg-
ulate RAD51 expression [28]. Taken together, these results highlight the complexity of
the non-coding RNA contribution to DNA repair mechanisms and demonstrate how their
co-operation can lead to the fine-tuning of this process.
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Figure 1. RNA contributions to intracellular mechanisms of DNA repair in cis and trans. Created
with BioRender.com.

2.1.2. miRNAs Can Modulate DNA Repair Mechanisms

miRNA represents another source of DNA repair modulation in trans. Transcribed by
RNAPII at intragenic and intergenic regions, they undergo multi-stage processing by Drosha,
DGCR8, and Dicer into mature miRNA duplexes with an average of 22 nucleotides [40,41].
The mature miRNA then associates with Argonaute (Ago) protein family members to
generate the RNA-induced silencing complex (RISC). Following the degradation of the non-
targeting miRNA strand, RISC mediates post-transcriptional gene silencing, termed RNA
interference (RNAi), based on sequence complementarity between the miRNA guide strand
and a target mRNA [42]. While perfect complementarity and Ago2 endonuclease activity
lead to the degradation of target mRNA, sequence mismatches result in translational
inhibition and are more common in animal cells [41].

Based on evidence that miRNA expression can both be regulated by DNA damage and
impact its repair through RNAi [42], the contribution of miRNA to DDR is well-studied. It
has been shown that certain DNA repair factors, BRCA1 and ATM, can enhance miRNA
biogenesis and processing via interaction with Drosha or Drosha-associated proteins [43,44].
This suggests that DNA damage is responsible for the upregulation of a subset of miRNAs
that may influence DDR and DNA repair mechanisms. Accordingly, many miRNA species
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that target DDR and HR factors were enriched following irradiation; however, many others
were downregulated (summarised in [45]). Examples of miRNA species that can contribute
to DNA repair modulation by means of the direct targeting of repair factors have been
summarised in Table 2.

As seen in Table 2, some miRNAs can directly target more than one factor in a
particular repair pathway, increasing their influence over that pathway. For example, miR-
1255b, miR-148b*, and miR-193b* are all capable of controlling BRCA1, BRCA2, and RAD51
levels [11], thus providing multiple opportunities for miRNA-mediated control over HR.
It has been proposed that the downregulation of HR factors by these particular miRNAs,
shown in Figure 1, is responsible for NHEJ induction in the G1 phase of the cell cycle. As
the sister chromatid is absent in G1, this serves to protect genome integrity and prevent loss
of heterozygosity [11]. Some miRNA species, on the other hand, can exert their influence
over multiple pathways. This includes miR-101, which can modulate NHEJ and HR by
targeting DNA-PKcs or ATM, respectively [46]. As mentioned previously, miRNA can
also work antagonistically with ceRNA [39] to provide an additional layer of control over
DNA repair protein expression. Together, these findings demonstrate that miRNA directly
contributes to the fine-tuning of the DDR and DNA repair mechanisms via RNAi. More
recent work has additionally identified miRNA species acting indirectly to modulate DNA
repair. Zhang et al. [47] identified miR-129-3p as an indirect modulator of NHEJ. Rather
than directly downregulating the expression of a core DSB repair protein, miR-129-3p was
found to silence SUMO-activating enzyme subunit 1 (SAE1) expression. This inhibited
the sumoylation of XRCC4, preventing its nuclear localisation and subsequent DSB repair
via NHEJ [47]. Similarly, Ge et al. [48] characterised miR-27a as an enhancer of HR via its
downregulation of ZEB1, an ATM-interacting protein [48]. Overall, the studies reported
here outline the diverse contributions of various miRNA species to DNA repair, both direct
and indirect.

Table 2. miRNA species associated with DNA repair and the factors whose expression they alter.

miRNA Species DNA Repair Factor(s) Repair Pathway(s) Reference

miR-138
miR-24 H2AX HR, NHEJ [49,50]

miR-100
miR-101
miR-421

ATM HR [46,51,52]

miR-1255b
miR-148b *
miR-193b *

BRCA1, BRCA2, RAD51 HR [11]

miR-193a-3p
miR-96-5p RAD51 HR [28,53]

miR-335
miR-130b CtIP HR [54,55]

miR-101
miR-874-3p DNA-PKcs NHEJ [46,53,56]

miR-502 Ku70, XLF NHEJ [57]

miR-622 Ku70, Ku80 NHEJ [58]

miR-4727-5
pmir-1246 LIG4 NHEJ [25,59]

Table adapted from Thapar, 2018 [4]. The * is part of the species name given in the reference.

2.1.3. Emerging Role of snRNA in DDR

Another class of small ncRNA, small nuclear RNA (snRNA), have recently emerged
as novel players in DDR [60,61]. snRNAs are involved in pre-mRNA splicing, associating
with proteins to form the small nuclear ribonucleoprotein (snRNP) particle subunits of the
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spliceosome [62]. Employing qRT-PCR, it was shown that U1 snRNA levels were reduced
in response to UV irradiation. This reduction correlated with a transient increase in the
alternative cleavage and polyadenylation isoforms of DDR-associated genes, thus reducing
the number of full-length mRNA molecules [60]. Therefore, U1 snRNA plays an important
role in the regulation of RNA processing and gene expression during DDR. Moreover, U2
snRNP complexes were subsequently shown to promote genome stability. This is achieved
by a combination of two mechanisms. First, U2 snRNP maintains the transcription of
essential repair proteins, including RAD51 and ATM, and aids in BRCA1 recruitment to
damage sites, thus acting as a novel HR factor itself. The second mechanism acts to inhibit
R-loop formation (discussed in Section 2.2.2), preventing R-loop-induced DNA damage
and genome instability [61]. However, the contribution of U2 snRNA to these mechanisms
is not indicated, meaning that further clarification would be useful to determine if these
effects are more dependent on the RNA or protein content of the spliceosome. Nevertheless,
interesting links between splicing and DDR clearly exist, which should be explored further
in future studies.

Interestingly, another study reported a new class of small ncRNA that were asso-
ciated with single strand DNA damage repair (sdRNA). These molecules appear to be
BRCA1/RNAi multi-protein complex dependent and to activate the PalB2/Rad52 complex,
in order to promote repair at R-loop rich transcription termination sites. It is not clear
whether these sdRNAs are actually derived from R-loops or their vicinity, or if they act
in cis or trans. However, this mechanism serves to prevent the genome instability that is
associated with R-loop formation [63].

2.2. RNA Acting in Cis
2.2.1. Damage-Induced Transcripts Can Modulate DNA DSB Repair

It is well reported that transcription can be transiently activated at DSB sites, contribut-
ing to efficient DNA repair [64]. A key development in the field was the discovery of de
novo RNA transcripts generated in close proximity to break sites, which appears to be spe-
cific to DSBs and conserved between yeast, plants, insects, and mammalian cells [12–14,65].
These small ncRNAs were designated as DSB-induced RNAs (diRNAs) and DNA damage
response small RNAs (DDRNAs) [12,13]. DDRNAs are characterised as being 20-35 nu-
cleotides in length and as sharing sequence homology with the damaged locus [13]. They
have been shown to be processed in a Dicer-dependent manner from RNAPII-transcribed
precursors, which are called damage-induced long non-coding RNAs (dilncRNAs) [13,15].
This is supported by reports of phosphorylated Dicer (p-Dicer), which accumulates in dam-
aged nuclei and promotes the turnover of nuclear damage-induced RNA [66]. dilncRNA
transcription has been attributed to the canonical activation of RNAPII via phosphorylation
at Ser-2 or Ser-5 of its C-terminal domain (CTD) [15] and its recruitment to DNA ends by
the pre-initiation complex, generating a functional promoter at the break site [67]. However,
it was recently reported that the tyrosine kinase c-Abl could phosphorylate Tyr-1 (Y1P) of
the RNAPII CTD and catalyse its activation at promoter-associated DSBs. RNAPII Y1P
was proposed to generate damage-responsive transcripts (DARTs), which could then be
converted to dsRNA via a mechanism involving DNA–RNA hybrid intermediates serving
as antisense promoters [68]. Similar to dilncRNA, these dsRNA could subsequently be
processed by p-Dicer with consequences for DDR signalling and DNA repair, which will
be discussed below [15,68].

diRNAs are similar small ncRNA species of 21-24 nucleotides in length, which have
largely been identified and characterised in Arabidopsis thaliana but have also been observed
in mammalian cells. Also dependent on Dicer or Dicer-like proteins for their biogenesis [12],
they exert their influence on DNA repair via Ago2 effector molecules [12,69,70]. Briefly,
diRNA-associated Ago2 facilitates the recruitment of RAD51 [69] as well as the chromatin
remodelling enzymes MMSET and Tip60 [71] to DSB sites. The resulting chromatin relax-
ation allows enhanced access of RAD51 and BRCA1 to the damage site, thus facilitating
repair via HR [71]. This activity is an example of the in cis regulation of DSB repair by a
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small RNA species. Curiously, there appear to be discrepancies in the literature such that it
is unclear whether diRNA in mammalian cells are distinct from DDRNA, as some studies
seemingly combine observations and discuss the two interchangeably. To avoid confusion,
we will continue to examine DDRNA only.

DDRNAs were identified based on their ability to restore the formation of specific
DDR foci that had been abrogated by RNase A treatment, and their action was found to
be dependent on the MRN complex [13]. Therefore, DDRNAs clearly play an important
role in the activation of repair at damage sites. To investigate whether this was a primary
role in lesion recognition or whether they were involved in secondary recruitment of
DDR factors, Francia et al. [72] employed laser micro-irradiation in combination with
Dicer/Drosha knockdown. While the recruitment of the primary repair factor and MRN
complex component, NBS1, to DNA damage sites was unaffected by the loss of Dicer or
Drosha, that of secondary MDC1 and 53BP1 were significantly reduced. Alongside evidence
that RNase A-sensitive MDC1 and 53BP1 foci can be restored by synthetic DDRNAs in
a sequence specific-manner, this demonstrates that DDRNA are dispensable for primary
recognition and DDR activation but that DDRNA is required for secondary repair factor
recruitment and signal amplification [72]. This conclusion is strengthened by findings
that the MRN complex is necessary and sufficient for active RNAPII localisation to DSBs
and subsequent dilncRNAs synthesis [15,73], thus suggesting that DDRNAs function
downstream of MRN. It was further shown that 53BP1 foci could be restored by the
specific localisation of fluorescently labelled DDRNA to the break site, suggesting that
its function in DDR activation is mediated from the break itself [15]. Interestingly, RNA
pull-down assays identified this sequence-specific localisation as mediated by dilncRNA–
DDRNA interactions, demonstrating that dilncRNA functions as more than a DDRNA
precursor [15]. Both species were then shown by RNA immunoprecipitation to bind 53BP1
via its Tudor domain [15], suggesting that DDRNA–dilncRNA complexes are responsible
for 53BP1 recruitment and accumulation at DSB sites, and for DDR foci formation (Figure 1).
Accordingly, the disruption of DDRNA–dilncRNA interaction by antisense oligonucleotides
significantly reduced 53BP1 localisation to DSB sites, while γH2AX was unaffected [15].
dilncRNA was further implicated in driving the liquid–liquid phase separation of 53BP1,
leading to foci formation [67]. DDRNA and dilncRNAs therefore represent RNA species
that are both generated from and act at damage sites to mediate DDR, exemplifying RNA-
dependent DDR in cis. Interestingly, subsequent work from Gioia et al. [74] recapitulated
the influence of DDRNA on 53BP1 action and NHEJ, adding the novel finding that it
can be modulated by the pharmacological agent, enoxacin, to enhance DNA repair and
to promote the survival of damaged cells [74]. Enoxacin is an antibiotic that has been
shown to enhance Dicer-dependent miRNA processing and that has been proposed as
an anti-cancer drug [75], highlighting the interplay between cis and trans ncRNA species.
Overall, the work discussed here supports direct roles for damage-induced transcripts in
DDR. In particular, dilncRNA and DDRNA appear critical for DSB repair.

Finally, many reports have examined a novel role for antisense transcript RNA as
a template for DSB repair via HR in yeast cells [76–78]. This was reportedly driven by
Rad52-mediated strand exchange [77] and translesion DNA polymerase ζ activity [78],
preferentially occurring in cis [76]. Similarly, nascent pre-mRNA was identified in com-
plex with classical NHEJ components upon DSB induction in human cells. Therefore, a
mechanism of RNA-templated repair was proposed in which nascent transcripts generated
from transcriptionally active DSB sites could serve as templates for error-free NHEJ [79].
While both mechanisms occur in cis and involve DNA:RNA hybrid intermediates, they
are distinct from one another. This was made clear by Meers et al. [78], who showed
Rad52-driven RNA-templated repair to be enhanced upon the loss of NHEJ components.
Although further investigation is necessary to determine whether these mechanisms can
act with complementarity in human cells, it is clear that the nascent RNA generated from
transcriptionally active damage sites can play an important role in maintaining sequence
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fidelity during DSB repair. Therefore, endogenous transcripts may hold equal relevance to
de novo transcripts during RNA-dependent DDR in cis.

2.2.2. DNA:RNA Hybrids/R-Loops Contribute to HR

dilncRNA pairing with single stranded DNA after resection has been shown to fa-
cilitate DNA:RNA hybrid formation [80], which is consistent with earlier suggestions
that RNAPII-generated transcripts would hybridise with template DNA [14]. DNA:RNA
hybrids and the associated R-loops, which are formed by the displacement of one DNA
strand to generate a triple-stranded structure [81], have been well-studied in recent years.
Many studies have detailed their positive contributions to DNA repair [14,80,82–85], mean-
while others focus on their detrimental effects, including their potential to induce genome
instability and how their resolution is critical for DNA repair [86–90]. For example, it
was recently shown that the DEAD box RNA helicase DDX5 is a critical regulator of R-
loop resolution and its depletion induced HR defects [90]. This activity was enhanced by
BRCA2 [91] and implies that the BRCA2/DDX5-dependent removal of R-loops is critical
for allowing HR to proceed.

Here, we will focus on the recently reported contribution of DNA:RNA hybrid pres-
ence to DSB repair via HR. It was previously shown that DNA:RNA hybrids accumu-
late preferentially in the S/G2 phase of the cell cycle and downstream of DNA end-
resection, hence pointing towards a role in HR [80]. Accordingly, BRCA1 was shown to
bind DNA:RNA hybrids with a similar affinity to dsDNA, and BRCA1 foci formation
could be downregulated by RNase H1 overexpression [80]. Recent work from Ouyang
et al. [84] recapitulated the enhancement of HR stimulation by local transcription, using a
tetracycline-inducible direct repeat GFP reporter assay. They then extended this assay to
include a fusion RNA species that could be tethered to I-SceI-induced DSBs by dCas9 target-
ing, which led to the finding that RNA tethering to a site 5′ of the DSB could promote HR
in the absence of transcriptional activity. Due to this effect being dependent on the length,
sequence, and orientation of the RNA transcript, they concluded that the stimulation of HR
relies on DNA:RNA hybrid formation at DSB sites [84]. DNA–RNA immunoprecipitation
(DRIP)-ddPCR was also employed to demonstrate the important role of the RAD51-binding
protein, RAD51AP1, in generating DNA:RNA hybrids both at the DSB and in donor DNA.
This led to the discovery of DR-loops, a novel structure containing both DNA:DNA and
DNA:RNA hybrids. It was thus proposed that RAD51AP1-dependent R-loop formation
aided in RAD51-dependent D-loop generation [84], contributing to HR because D-loops
represent bona fide HR intermediates that facilitate template-based repair [92].

Novel findings recently reported by Liu et al. [93] support the accumulating evidence
that transient DNA:RNA hybrids represent an essential intermediate for DNA repair via
HR. Their model proposes that DNA:RNA hybrids function to promote the displacement
of the 5′-strand and to ultimately protect the exposed 3′-ssDNA overhangs during end
resection [93]. They demonstrated that the CRISPR-Cas9-mediated knockout of CtIP
inhibited DNA:RNA hybrid fluorescence signals at laser micro-irradiation sites, as did
MRE11 inhibition using mirin [93]. This is consistent with earlier studies that employed
DRIP-qPCR to establish that the knockdown of EXO1 and CtIP impedes DNA:RNA hy-
brid formation [80]. Taken together, these results show that DNA:RNA hybrid formation
occurs after the initiation of end resection by MRN-CtIP. Nevertheless, Liu et al. [93]
sparked controversy by proposing RNA polymerase III (RNAPIII) as the primary medi-
ator of transcription at break sites and DNA:RNA hybrid formation, as opposed to the
widely accepted RNAPII [13,15,67,68,70,73,94]. Evidence provided by mass spectrome-
try, laser micro-irradiation, and ChIP-qPCR appears to show that RNAPIII is the only
RNA polymerase recruited to DSBs, and that transcription of the RNA participating in
DNA:RNA hybrid formation is catalysed by RNAPIII [93]. This calls into question the
existing model of dilncRNA synthesis and RNAPII-dependent DNA repair that has been
discussed above, suggesting that further work is required to investigate these opposing
models of transcription-related DNA repair. Despite the evidence that DDRNAs are pro-
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duced at the break by RNAPII [13], Liu et al. [93] attempt to assimilate their presence at
DSBs into their model by suggesting that they result from the degradation of the RNA
component of the hybrid, which then allows access of RAD51 to the ssDNA to complete end
resection [93]. Interestingly, both RNAPII and RNAPIII are reportedly recruited to DSBs in
an MRN-dependent manner [15,73,93]. Therefore, it may be possible that the two models
are not mutually exclusive and that they represent two complementary mechanisms that
can both be utilised by the cell. This is endorsed by the previously mentioned finding that it
is the RNA molecule itself and its presence at the break rather than transcriptional activity
that contributes to HR promotion [84]; therefore, it should not matter which polymerase
catalyses the transcription. Nonetheless, the observation that RNAPIII subunit knockdown
impairs RAD51 and RPA32 foci formation [93] corresponds with the conclusion of the afore-
mentioned study: DNA:RNA hybrids function upstream of RAD51 and may contribute
to repair via D-loops [84]. Overall, there have been interesting developments in the study
of DNA:RNA hybrid contribution to DSB repair via HR, but further work is needed to
consolidate the exact mechanism.

The source of RNA engaging in hybrid formation is also still under debate. Using
DRIP-qPCR to assess the formation of DNA:RNA hybrids induced by I-PpoI nuclease
cleavage in both intragenic and intergenic regions, D’Alessandro et al. [80] propose that
dilncRNAs are responsible for hybrid formation. Alongside further genome-wide analysis
of AsiSi-induced DSBs [86], they showed DNA:RNA hybrid formation to be independent
of the transcriptional status of the location prior to DSB induction [80]. However, this
was disputed by a more recent report from Bader et al. [95]. Using the same previously
published AsiSi DRIP-seq dataset [86], they re-performed the analyses with sites grouped
according to their transcriptional efficiency. This was to address reports that intergenic
sites can contain AsiSi recognition sites with high transcriptional activity, meaning that
“intergenic” does not necessarily equate to low transcriptional activity [95]. Interestingly,
their analyses showed a significant enrichment of R-loops at highly transcribed loci, im-
plying a dependence of R-loop formation on pre-existing transcription at the damage
site. They therefore conclude that the RNA participating in hybrids is transcribed prior to
damage induction, as opposed to being damage-induced transcripts [95]. This supports the
proposed mechanisms of RNA-templated DNA repair (discussed in Section 2.2.1), which
utilise nascent RNA transcripts in cis and generate DNA:RNA hybrids. Another relevant
study used single strand annealing assays to demonstrate in Saccharomyces cerevisiae that
hybrids generated from mRNA in cis, but not in trans, had the potential to influence HR by
acting as a source of recombinogenic damage to promote further repair [89]. While this
does not necessarily distinguish the possibilities of de novo or pre-existing transcription
providing the R-loop-participating RNA, it does highlight DNA:RNA hybrid/R-loop for-
mation and its possible influence on mechanisms of DNA repair as another example of
RNA-dependent DDR regulation occurring in cis. This contrasts with previous suggestions
that homologous transcripts were synthesised in trans and then complex with RAD52 to
facilitate a sequence-specific search for homologous DSB target sites. However, it was noted
that a cis mechanism would enhance the efficiency of repair via hybrid formation in this
experimental setup [96]. Whether the RNA transcripts contributing to DNA:RNA hybrids
are the result of de novo or pre-existing transcription remains to be seen. Nonetheless,
the existing evidence appears to support hybrid formation as another vital contribution
to DNA repair in cis, whose presence must be tightly regulated to ensure that genome
stability is maintained.

Overall, the dependence of intracellular DDR mechanisms on RNA transcripts pro-
duced both in cis and trans has become increasingly clear. Many species of non-coding
RNA, including various lncRNAs and miRNAs, dilncRNA, and DDRNA/diRNA, directly
contribute to the repair of DNA lesions. Their mechanisms are diverse and encompass
scaffolding functions, the modulation of repair factor expression, and secondary structure
formation. Key examples have been summarised in Figure 1. Nevertheless, further studies
are still required to consolidate these mechanisms and to address the controversial findings
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that have been recently described. In particular, it remains to be seen whether a unified
model for damage-induced transcription and subsequent DNA:RNA hybrid formation can
be elucidated, which would prove influential to the field of RNA-dependent DDR.

3. Intercellular DDR Mechanisms
3.1. The Radiation-Induced Bystander Effect

In addition to the intracellular mechanisms of RNA-dependent DDR, accumulating
evidence has suggested that RNA plays vital roles in intercellular communication and
subsequent DDR. Exposure to ionising radiation (IR) poses a threat to genome integrity by
inducing various forms of DNA damage, including single-strand breaks (SSBs), DSBs, and
DNA crosslinks. Cells therefore utilise DDR in response to IR, inducing cell cycle arrest
and allowing DNA repair, e.g., via HR or NHEJ in the case of highly cytotoxic DSBs [97,98].
The radiation-induced bystander effect (RIBE) is an interesting, if not somewhat perplexing,
phenomenon in which the neighbouring cells of those targeted by radiation can exhibit
signs of radiation-induced damage themselves [99]. Despite not being directly traversed
by radiation, these so-called bystander cells can display signs of DNA damage, genomic
instability, apoptosis, or decreased survival, termed RIBE endpoints [100] (Figure 2). First
reported in 1992 [101], RIBE has been shown to occur over a remarkably long distance,
with apoptosis and micronuclei induction observed in bystander cells up to 1 mm (ap-
proximately 50–75 cell diameters) away from the irradiation site in a 3D human tissue
model [99]. The underlying mechanisms remain elusive while being widely studied; how-
ever, it is evident that exosomes play an important role in transmitting RIBE-inducing
signals [19,102–105]. It also appears to be a combination of the RNA and protein content of
exosomes contributing to this effect [102], which will be discussed henceforth. Interestingly,
RIBE has also been described as a long-term phenomenon, with bystander damage even
observed in cells treated with exosomes from the progeny of both irradiated and bystander
cells [102]. Therefore, its influence is wide-reaching and warrants further study.
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3.1.1. Exosomes and Their Composition Are Influenced by Ionising Radiation

Many studies have reported alterations in exosome cargo upon the irradiation of the
cells from which they are secreted [106–110]. For example, mass spectrometric analysis of
exosomes from head and neck carcinoma (FaDu) cells revealed 236 and 69 proteins that
were up and downregulated upon 2 Gy (IR) treatment, respectively [107]. Among the
proteins whose presence in exosomes were affected by IR, the most enriched biological
processes from gene ontology (GO) analysis included RNA metabolism, gene expression,
cell division regulation, and cell signalling [107]. The authors suggest that this can be
attributed to the removal of these factors from cells no longer requiring these processes
due to IR-induced cell cycle arrest [107]. While this is a valid point, it does overlook
evidence that exosomes also act as vehicles for intercellular communication and that
they can influence the activities of recipient cells [111]. Further studies in head and neck
cancer cells also identified associations between IR-upregulated proteins and processes of
migration [109], DNA repair, and reactive oxygen species (ROS) metabolism [108]. Due
to the well documented connection between exosomes and RIBE, Abramowicz et al. [108]
also searched their data for GO terms that could be hypothetically linked to RIBE, such
as regulators of stress response or apoptosis. Despite IR-modulated proteins not being
generally overrepresented in these processes, many proteins with roles in stress-induced
transcription, MAPK cascade, apoptosis, or autophagy were identified as upregulated in
exosomes upon IR treatment [108]. Therefore, this supports the notion that the protein
content of exosomes may be a contributing factor to RIBE.

Other studies have focused on the RNA content of exosomes upon IR-treatment,
particularly miRNA [109,110]. Interestingly, the exosomal presence of miRNA species
associated with apoptosis and cell proliferation [109], as well as DDR [110], were also
regulated in response to IR. Similarly, exosomes from cells that were irradiated with non-
ionising ultraviolet B exhibited the upregulation of miRNA whose target genes are involved
in autophagy, DNA damage, and DNA repair [112]. A comparison of IR-treated parental
cells and their released exosomes also showed differences in miRNA content, including
miR-3168, whose expression was increased in exosomes but downregulated in cells [110].
This is significant as miR-3168 targets include members of the ErbB signalling pathway,
meaning that its upregulation in exosomes may lead to apoptosis in non-targeted recipient
cells in patients treated with cisplatin [113]. Additionally, it suggests a mechanism for the
active sorting of miRNAs into exosomes upon damage induction [110]. This is supported
by findings that the RNA-binding protein YBX1 is involved in the loading of miRNA,
such as miR-122, into exosomes [114], as well as in the specific packaging of many other
abundant small ncRNA species, including tRNA, Y RNA, and Vault RNA [115]. Although
this was not investigated under damage conditions, it is still relevant to the study of RIBE,
as it implies active cellular control over the RNA composition of exosomes, which is likely
to undergo changes upon alterations to cellular conditions. Taken together, these studies
support a combinatorial role of proteins and miRNA in transmitting RIBE-inducing signals
via exosomes, possibly including apoptotic mediators.

3.1.2. Roles of Exosomal Protein and RNA in RIBE Induction

While experiments involving RNase treatment and the denaturation of exosomal
proteins have concluded that RNA and protein work synergistically to transmit RIBE to
bystander cells via exosomes [102], a dependence of this phenomenon on named exosome-
packaged proteins has not yet been reported. That is not to say that proteins are not
involved in RIBE; one example is soluble TNFα in conditioned medium, which was shown
to mediate high-dose RIBEs in lung adenocarcinoma cells [116]. However, for the purposes
of this review, we focus on recent advances that mainly implicate exosomal contents in this
process. Most of these studies identify key roles for RNA species, particularly miRNA, in
mediating RIBE. Examples are summarised in Table 3.
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Table 3. RNA species with dysregulated expression in exosomes or bystander cells upon irradiation
and their contribution to RIBE.

RNA Species Gene(s) Regulated Cellular Outcome References

↑ miR-1246 LIG4 Decreased NHEJ
efficiency [59]

↑ miR-7-5p EGFR Increased autophagy [117]

↑ miR-7 BCL2 Increased autophagy [118]

↑ miR-663 TGFB1 RIBE suppression [119]

↑ miR-34c - ROS induction [120]

↑ miR-21 SOD2, TGFB1 ROS induction [121,122]

↑ mir-6823-5p SOD1 ROS induction [123]

↑ mir-769-5p TGFBR1

Reduced
proliferation,

increased oxidative
damage

[124,125]

↑ mir-208a P21

Increased
proliferation,

decreased apoptosis,
increased

radioresistance

[126]

↑ mir-96 - Increased
radioresistance [127]

↑ miR-889 DAB2IP
Increased

proliferation,
radioresistance

[128]

↓ miR-365 BCL2, CCND1,
PIK3CA

Increased
proliferation,

radioresistance
[110,128]

↓ miR-146a-5p
↓ miR-34a-5p NFKB1, BRCA1 - [110]

↑: upregulate; ↓: downregular.

MicroRNA-21 (miR-21) is a well-reported example of a specific miRNA species func-
tioning as a RIBE mediator [121,122,129,130]. Its increased expression in bystander cells
was confirmed to be the result of uptake from the extracellular medium, evidenced by no
change in pre-miR-21 levels in bystander cells [129], thus advocating intercellular commu-
nication as the key to RIBE transmission. Although it is not explicitly stated that this uptake
occurs via exosomes, it would be a fair assumption based on independent evidence that
many RNA species are enclosed within exosomes [115]. Decreased clonogenic survival,
increased 53BP1 foci formation, and increased micronuclei induction are well-reported
RIBE endpoints. These effects were observed upon the transfection of unirradiated MRC-5
fibroblast cells with a miR-21 mimic [129], thus simulating RIBE and demonstrating its
dependence on miR-21. Similar results were observed in non-small cell lung carcinoma
cells treated with a miR-21 mimic, showing that miR-21 upregulation is involved in in-
creased ROS and associated DNA damage induction [121]. Interestingly, this study also
observed a reduction in cell proliferation upon miR-21 inhibition [121]. They conclude
that miR-21 upregulation in bystander cells, likely through endocytic uptake of exosomes,
occurs rapidly to cause immediate DNA damage and then becomes downregulated at a
later time point to inhibit proliferation [121]. The regulation of ROS can be attributed to
miR-21-mediated control of SOD2 expression [122] and the TGF-β1 pathway [121], with
the latter also being involved in micronuclei induction and the bidirectional control of
miR-21 expression [130]. The TGF-β1 pathway has also been identified as the target of
another miRNA in the context of RIBE: miRNA-663 (miR-663) [119]. While miR-21 is an
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activator of RIBE, miR-663 acts as a negative regulator to limit RIBE by suppressing TGF-β1
expression in a negative feedback loop, thus contributing to the distance-dependence of
RIBE [119]. Taken together with Table 3, these studies exemplify the complex and critical
roles of specific miRNA species in transmitting and controlling RIBE.

Interestingly, these studies contradict prior work from Dickey et al. [131]. Using
medium transfer and co-culture methods in Dicer knockdown cell lines, they still observed
bystander effects in the form of γH2AX foci when the total mature miRNA was depleted.
They therefore concluded that miRNAs were not critical mediators of RIBE [131], which
is in direct contrast to the more recent studies discussed above. However, it was later
observed that a small number of canonical 5p miRNAs can still be synthesised in Dicer
knockout cells, instead utilising direct Ago2 loading for their maturation [132]. As a result,
this work does not necessarily rule out miRNA as direct contributors to RIBE. Overall,
further investigation is still needed to unravel the specific contributions of miRNA and
other species of ncRNA to RIBE. Understanding their influence over this phenomenon
could have important implications for radiotherapy treatment, for example, in controlling
the off-target effects of cancer treatment on healthy tissues.

3.2. Radiation-Induced Rescue Effect

Although bystander signalling in the context of RIBE appears to have largely negative
impacts on recipient cells (e.g., DNA damage and apoptosis), it has also been shown to gen-
erate positive outcomes: radiation-induced rescue effects (RIRE) [133] and radioprotective
effects [134] (Figure 2). RIRE is a phenomenon related to RIBE, in which feedback signals
from non-irradiated bystander cells or their culture medium can limit the negative effects
of irradiation and can “rescue” target cells [135]. This has been observed in both normal
and human cancer cell lines as significant decreases in 53BP1 [133] and γH2AX [136] foci,
micronuclei induction, and apoptosis [133] when irradiated and bystander cells were co-
cultured. As these effects were statistically significant within 24 h [133,136], it implies that
intercellular signalling may be responsible for enhanced DSB repair and reduced levels
of apoptosis upon co-culture. Indeed, Lam et al. [137] identified the nuclear factor κB
(NF-κB) as a major contributor to RIRE; they recapitulated the RIRE phenotype via 53BP1
foci measurement in HeLa cells, finding it to be abrogated by the NF-κB activation inhibitor,
BAY-11-7082 [137]. The same group later confirmed the increased nuclear expression of
active, phosphorylated NF-κB in irradiated HeLa cells when treated with the conditioned
medium of bystander cells [138]. Together, these findings propose the activation of the
NF-κB pathway in target cells as a key driver of RIRE.

A possible explanation for this increase in activity may be the reported downregulation
of NF-κB-associated miR-34a-5p and miR-146a-5p in radiation-derived exosomes compared
to unirradiated (Table 3) [110], leading to a slight reduction in NF-κB inhibition. However,
recent findings have suggested that NF-κB activation is due to interleukin-6 (IL-6) secretion
from bystander cells, resulting from the induction of autophagy by RIBE signalling [139].
The authors compare this to metabolic cooperation, a process in which cancer cell survival
is supported by nutrients provided by normal cells [139]. This links back to Section 3.1.1,
in which we mentioned the protein and miRNA species associated with autophagy being
differentially regulated in radiation-derived exosomes. In particular, exosomal miR-7-5p
was identified as a critical inducer of autophagy in bystander bronchial epithelial (BEP2D)
cells [117]. This highlights the complex interplay between irradiation, exosomal contents,
and the induction of both RIBE and RIRE. Interestingly, it was further shown that while
the induction of autophagy in bystander cells can enhance RIRE, it is also able to reduce
the damaging effects of RIBE [139]. This suggests a disconnect between RIBE and RIRE,
questioning the idea that RIBE-induced damage is necessary to propagate RIRE. In addition
to IL-6, a positive feedback loop involving the DDR factor, poly(ADP-ribose) polymerase 1
(PARP1), has been proposed to regulate NF-κB activation [140]. Media transfer experiments
and the use of the PARP1 inhibitor, Olaparib, confirmed PARP1 involvement in RIRE in
various carcinoma cell lines (HeLa, MCF7, CNE-2 and HCT116) [140]. Due to previously
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reported links between PARP1 activity and NF-κB-mediated transcription [141], the authors
then investigated the reciprocal effects of PARP1 and NF-κB inhibition. They found
NF-κB expression to be both transcriptionally and translationally reduced by PARP1
inhibition, and vice versa, advocating a positive feedback loop between them with the
potential to influence RIRE induction [140]. This finding offers an attractive opportunity for
cancer therapy. As RIRE can occur between bystander healthy cells and irradiated cancer
cells [136,142], it has the potential to reduce the effectiveness of radiotherapy. Therefore, by
employing PARP inhibitors in combination with radiotherapy, RIRE could be mitigated
to enhance the radiosensitivity of cancer cells and to improve therapeutic outcomes. In
summary, RIRE provide justification for the apparent negative effects of RIBE, including
autophagy. This phenomenon also highlights the interplay between miRNA, DDR, and the
immune response in controlling a single pathway to influence radiation response.

3.3. Radioprotective Effect

A similar but distinct radioprotective response has also been reported, which refers to
the apparent reduction in damage induction upon the subsequent irradiation of bystander
cells [134,143]. Although this is sometimes referred to as a radioadaptive bystander re-
sponse, the term “radioprotective” will be used for the purposes of this review. This is to
avoid confusion with the separate radioadaptive response, which refers to the reduced
radiosensitivity that is observed following a low dose of priming radiation being admin-
istered to target cells (reviewed in ref. [144]). Early work has alluded to this protective
effect by interrogating the proteome of bystander rainbow trout gills [145]. Although
radioprotection was only hypothesised in this study, it was later observed in vivo within
naive zebrafish embryos who were challenged with α particles after sharing media with
irradiated embryos [146]. This was then recapitulated in vitro by Pereira et al. [147], who
reported a reduction in γH2AX foci, thus radioprotection, in bystander embryonic zebrafish
(ZF4) cells that were themselves subjected to low doses of γ irradiation [147]. Despite
efforts to identify a secreted protein factor that may be responsible for these effects, the
authors were unsuccessful and concluded that due to the short duration of their experiment,
a factor other than protein may be involved in this so-called “early” bystander effect [147].

Many recent studies have used human cancer cell lines to investigate the role of
exosomes in the radioprotective response [128,148]. Using head and neck cancer (BHY
and FaDu) cell lines, Mutschelknaus et al. [148] demonstrated that the uptake of exosomes,
regardless of whether the donor cells were irradiated or not, increased recipient cell
proliferation [148]. On the other hand, Mrowczynski et al. [128] determined that the
exosomes from donor cells treated with 3 Gy or 12 Gy radiation induced significantly
higher rates of proliferation in recipient nervous system cancer cells (U87 glioblastoma
cells, STS26T malignant peripheral nerve sheath tumour cells and SH-SY5Y neuroblastoma
cells), compared to exosomes from unirradiated donor cells. They suggest that this increase
in proliferation allows for improved survival upon subsequent exposure of these recipient
cells to radiation [128]. Indeed, both studies reported significant radioresistance in the
recipient cells of radiation-derived exosomes, which were measured via clonogenic survival
assay [148] or apoptosis assay [128]. Mutschelknaus et al. [148] then investigated whether
this could be attributed to enhanced DNA repair mechanisms. While they observed no
effect on 53BP1 foci formation within one hour of irradiation and exosome treatment, there
were significant reductions in 53BP1 foci within 6 and 12 h of irradiation and radiation-
derived exosome treatment, compared to control exosome treatment [148]. Consequently,
one mechanism underlying bystander radiation resistance may be the enhancement of DNA
repair, albeit in a slightly delayed manner. Furthermore, the high-concentration RNase A
treatment of exosomes abrogated their ability to impact DNA repair [148], thus suggesting
an important role for exosomal RNA in communicating this phenotype. This is supported
by previously mentioned findings that the miRNA content of exosomes is modulated
by exposure to IR [109,110]. As shown in Table 3, IR-induced dysregulation of specific
miRNA species can enhance the radioresistance of recipient cells. In particular, miR-365
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was found to be downregulated in radiation-derived exosomes from both FaDu [110] and
U87 cells [128]. As this miRNA usually inhibits the expression of Bcl-2, Cyclin D1, and PI3K,
its downregulation leads to increases in recipient cell proliferation that could help increase
their survival following radiation treatment [128]. Another example is miR-889, whose
upregulation in radiation-derived exosomes leads to reduced DAB2IP expression [128].
This, in turn, enhances the radioresistance in recipient cells due to increased DSB repair
kinetics [149].

A very similar protective effect, also mediated by exosomes, was observed in breast
cancer (MCF7) cells under heat shock conditions [150]. Therefore, this phenomenon
likely represents a broader stress response that is not confined to just radiation-induced
stress, and serves to maximise the survival of the entire cell population to recurring
stress signals [150]. However, a very recent study reported contradictory findings that
show exosomal miRNA to be responsible for the radiosensitisation of recipient pancreatic
cancer (MIAPaCa-2) cells [123]. In line with the previously stated role of miRNA species
in transmitting RIBE via exosomes, miR-6823-5p was identified as a candidate that is
responsible for increased ROS and DNA damage in recipient cells as a result of SOD1
inhibition [123]. Nevertheless, in contrast to the work discussed above [128,148], these
phenotypes appeared to be enhanced when 5 Gy irradiation and radiation-derived exosome
treatment were combined, as opposed to being mitigated [123]. Again, this highlights the
complexity of RIBE and its associated influence on radiosensitivity.

While miRNA species clearly play a role in intercellular damage responses, the high
diversity of cell lines, radiation types, and doses being used to study these effects have
prevented a single model from being elucidated thus far. Nonetheless, the described
exosome-mediated RIRE and radioprotective response represent cooperative cellular re-
sponses to radiation-induced stress, providing a population-wide mitigation of DNA
damage upon recurring insult. While this would generally provide positive outcomes
(such as enhanced survival) within normal tissues, the presence of these mechanisms
within tumours may hinder treatment by radiotherapy. This could be mitigated by further
pharmacological intervention, including PARP inhibitor combination therapy, warranting
further investigation into the underlying basis of these mechanisms.

4. Conclusions

Non-coding RNA plays critical roles in both intracellular and intercellular DDR
mechanisms. Within the cell, small and long non-coding RNA species generated both in
trans (miRNA, snRNA and lncRNA) and cis (DDRNA, diRNA, dilncRNA, and nascent pre-
mRNA) have distinct regulatory functions over DNA repair mechanisms. In particular, the
DSB repair pathways HR and NHEJ are modulated by a combination of RNA-dependent
mechanisms whose crosstalk can ultimately fine-tune these processes. These include
controlling the expression or localisation of DNA repair proteins, the stabilisation of
DNA ends for resection, and the scaffolding of multiple factors to promote repair. The
current understanding of these mechanisms provides ample potential for pharmacological
exploitation, exemplified by use of enoxacin to enhance DNA repair and cell survival [74].
Nevertheless, controversial findings have been discussed, which must be addressed to
consolidate the opposing models of in cis transcription and DNA:RNA hybrid formation.
In addition to cellular RNA levels, exosomal RNA content is influenced by radiation-
induced damage. This leads to bystander effects in recipient cells, which can have positive
or negative cellular outcomes. Canonical RIBE leads to DNA damage and cell death,
whereas RIRE and the radioprotective response mitigate the damage caused by subsequent
radiation insult. It remains to be seen whether these bystander effects are widespread or cell
line-specific, as well as the exact interplay between the various mechanisms discussed here.
However, their cellular context is important. The majority of the studies discussed here
used cancer cell lines, particularly those of head and neck cancer, which is primarily treated
using radiotherapy [148]. In this case, canonical RIBE within the tumour could lead to
positive therapeutic outcomes while RIRE/radioprotective effects would be detrimental to
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the individual. Therefore, insight into the mechanisms of intercellular DDR could uncover
novel treatment opportunities to overcome issues of radioresistance and tumour recurrence
by enhancing RIBE or by alleviating RIRE/radioprotection. Nevertheless, the possibility of
off-target effects in healthy cells should be carefully considered and highlights the need for
further understanding of the mechanisms underlying RIBE and RIRE. In summary, RNA is
a multifaceted DDR factor that can function in a variety of locations, and its study offers
new insight into DDR and promise for therapeutic applications.
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