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Abstract

The corpus callosum (CC) is the largest commissural white matter tract in mammalian brains, connecting homotopic and
heterotopic regions of the cerebral cortex. Knowledge of the distribution of callosal fibers projecting into specific cortical
regions has important implications for understanding the evolution of lateralized structures and functions of the cerebral
cortex. No comparisons of CC topography in humans and great apes have yet been conducted. We investigated the
topography of the CC in 21 chimpanzees using high-resolution magnetic resonance imaging (MRI) and diffusion tensor
imaging (DTI). Tractography was conducted based on fiber assignment by continuous tracking (FACT) algorithm. We
expected chimpanzees to display topographical organization similar to humans, especially concerning projections into the
frontal cortical regions. Similar to recent studies in humans, tractography identified five clusters of CC fibers projecting into
defined cortical regions: prefrontal; premotor and supplementary motor; motor; sensory; parietal, temporal and occipital.
Significant differences in fractional anisotropy (FA) were found in callosal regions, with highest FA values in regions
projecting to higher-association areas of posterior cortical (including parietal, temporal and occipital cortices) and prefrontal
cortical regions (p,0.001). The lowest FA values were seen in regions projecting into motor and sensory cortical areas. Our
results indicate chimpanzees display similar topography of the CC as humans, in terms of distribution of callosal projections
and microstructure of fibers as determined by anisotropy measures.
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Introduction

The corpus callosum (CC) is the largest commissural white

matter tract in placental mammalian brains, connecting both

homotopic and heterotopic regions of the cerebral cortex [1].

More than 200 million fibers connect the two cerebral

hemispheres. Analysis of human post-mortem brain tissue reveals

small diameter (,2 mm), lightly myelinated fibers are found

mainly in the foremost anterior and posterior regions connecting

higher-association areas, whereas large diameter fibers (.2 mm)

are predominant in the middle regions connecting primarily motor

and somatosensory areas [2,3]. Furthermore, increased density of

axons is found toward the posterior middle and posterior portion

of the CC [4].

Knowledge of the origination and distribution of callosal fibers

projecting into specific cortical regions is important for several

reasons. The CC may be critical to the development and evolution

of lateralized structures and functions of the cerebral cortex

[5,6,7,8,9]. In comparative studies of the CC in relation to brain

size in mammals, it has been shown that as brain size increases the

CC does not keep pace, such that mammals more closely related

to humans have a relatively smaller CC after adjusting for brain

size than species that are more distantly related [10]. Similar

associations have been reported within the primate Order. After

adjusting for brain size differences, the primates most closely

related to humans, the great apes, have a relatively smaller CC

compared to more distantly related primate taxa including Old

and New World monkeys [11].It is important to further

understand how the organization of the CC in humans differs

(or is similar) from other primates. Such knowledge can also be

useful for clinical and cognitive studies of CC function, as

structural integrity of specific callosal regions is associated with

bimanual movements and interhemispheric transfer [12] and

neuropsychological performance [13].

Partitioning of the CC has long been geometrically based and

not necessarily based upon underlying axonal distribution [14,15].

Recently, diffusion tensor imaging (DTI) and functional magnetic

resonance imaging (fMRI) have been used to identify topograph-

ical organization of the CC [16,17,18,19]. DTI provides for the in

vivo study of fiber tractography through measurement of the

displacement of water molecules [20]. In white matter, water

displacement is anisotropic, with water diffusion faster along white

matter fibers that are parallel rather than perpendicular to these

fibers [21,22,23,24]. Diffusion anisotropy measures the difference

between these two directions of water motion. One of the most

commonly reported measures of this is fractional anisotropy (FA),

the normalized standard deviation of the diffusivities [24]. FA

values range from 0 to a theoretical maximum of 1; white matter

FA values are high, indicating fast diffusivity along the fibers.

Diffusion tensor tractography uses the principal diffusion direction

to compute the pathways of white matter tracts within regions of

interest [25].
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No comparisons of CC topography in humans and great apes

have been conducted. Here, we used high-resolution structural

MRI and DTI to study the topography of the chimpanzee CC. We

expected chimpanzees to display topographical organization

similar to humans, especially concerning the proportion of callosal

projections into the frontal cortical regions.

Methods

Subjects
Twenty-one adult chimpanzees (Pan troglodytes, 14 male, 7 female),

all captive born and housed at the Yerkes National Primate Research

Center (YNPRC), were used in this study. The subjects ranged in age

from 10 to 39 years (Mean = 20.95 years, SD = 6.68 years).

Ethics statement
We confirm that steps were taken to ameliorate suffering in

accordance with the 93 recommendations of the Weatherall

Report. This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health and were

approved by the Institutional Animal Care and Use Committee of

Emory University (approval YER-2000090-080313). In order to

obtain the noninvasive MRI and DTI images required for this

study, the subject’s head needed to be immobile during the scan.

Therefore, the chimpanzees were anesthetized for the procedure

and the collection of MRI and DTI scans was coordinated with

the annual physical exam given to the subjects. Anesthesia was

used only for the purpose of restraint and to keep the subject

immobilized during their physical exam and collection of the brain

images. Subjects remained anaesthetized throughout the MRI

procedure and respiration rate, heart rate, and oxygen consump-

tion were continually monitored by a veterinarian.

Image Acquisition
Subjects were initially immobilized using ketamine (10 mg/kg),

and subsequently anesthetized with propofol (40–60 mg (kg/h))

following standard procedures at the YNPRC. Subjects were then

transported to the MRI facility. Subjects remained anesthetized

for the duration of the scan as well as transport time to and from

the imaging facility.

Subjects were scanned on a Siemens 3.0 T Trio at the YNPRC.

T1-weighted images were acquired using a 3D gradient echo

sequence (pulse repetition = 2300 ms, echo time = 4.4 ms, number

of signals averaged = 3, matrix size = 3206320, with .6 mm isotropic

resolution). The DTI images were acquired following the general

procedure employed with chimpanzees previously described by Li et

al. [26]. Diffusion-weighted data were acquired with a multishot (4

segments) echo planar sequence with a b value of 1000 s/mm2 with

60 diffusion directions. DTI data were acquired transaxially

(FOV = 2306230) using 41 contiguous slices with no gap that

covered the entire brain with resolution of 1.961.961.9 mm.

Averages of two sets diffusion-weighted data were collected per

subject with phase-encoding directions of opposite polarity (left–

right) to correct for susceptibility distortion. Acquisition time for both

the MRI and DTI scans was approximately 1 hour. After

completing the DTI and MRI procedures the subjects were returned

to the YNPRC and temporarily housed in a single cage for 6–

12 hours, to allow for the effects of anesthesia to wear off, after which

they were returned to their home cage and social group.

Fiber tractography
Each subject’s MRI image was spatially registered to their

respective DTI image using 3D voxel registration with a linear

transformation using Analyze 10.0 (Mayo Foundation for Medical

Education and Research). We then used DTI-based fiber

tractography to evaluate the projection of callosal fiber tracts

between the cerebral hemispheres. Tractography was conducted

using Analyze 10.0 MR Diffusion Tensor Imaging based on fiber

assignment by continuous tracking (FACT) algorithm [27] with a

fractional anisotropy threshold of 0.15 for initial seeding and

stopping and a principal eigenvector angle stopping threshold of

40u. These tracking thresholds are similar to those used in fiber

tracking studies of the human CC [28,29,30,31]. An ROI

approach was used to determine the fiber topography of the

CC. The entire CC was manually traced in the transverse plane.

Partitioning of the CC and Fractional Anisotropy
Measures

The CC was subdivided into regions based upon the results of

tractography. The CC was partitioned to identify transcallosal

projections into prefrontal, premotor, primary motor, primary

sensory, parietal, temporal and occipital cortical areas. Identifica-

tion of clusters of CC fibers projecting to defined cortical regions

was determined following Hofer et al. [32], Petrides and Pandya

[33], and Ramnani et al [34]. Landmarks used to define

projections into cortical areas were the arcuate sulcus (prefrontal

cortex); arcuate sulcus and central sulcus (premotor and

supplementary cortex; motor cortex; sensory cortex); postcentral

sulcus and parietooccipital sulcus (parietal cortex), lateral fissure

(temporal cortex); and inferior occipital sulcus and parietooccipital

sulcus (occipital cortex). From this, the CC was subdivided into 5

regions based on fiber projections into specific cortical areas and

defined as follows: I = prefrontal lobe, II = premotor and supple-

mentary motor cortices, III = motor cortex, IV = sensory cortex,

V = parietal, temporal, and occipital lobes. Fractional anisotropy

(FA) was evaluated in the midsagittal and two CC sections 1 mm

lateral to the midsagittal as a means of quantifying the measures of

diffusion anisotropy. Obtained values were averaged for each

subject for each callosal region. To test for regional differences in

FA, a within-subjects ANOVA was conducted, with Bonferroni

correction for post hoc comparisons with alpha set at 0.05.

Results

Topography of the CC
The topography of callosal fiber bundles is displayed in Figures 1

a, b, c. These figures, from all individual chimpanzee subjects,

illustrate from sagittal, oblique and dorsal views the projection of

callosal fibers into cortical regions. Regions I, II and III encompass

all cortical projections into the frontal lobe and accounted for,

across all chimpanzees subjects, approximately 64% of the length

of the CC.

Regional differences in FA
Quantitative measures of diffusion anisotropy were evaluated

for each subdivision of the CC. The mean FA map of the 21

chimpanzees used in the study can be seen in Figure 2. The

highest FA values were found in the posterior region (region V,

M = .61, SE = 0.01), followed by the premotor and supplementary

motor region (region II, M = .48, SE = .02) and prefrontal region

(region I, M = .48, SE = .01). The lowest FA values were found in

the middle regions of the CC, regions III and IV, which project to

primary motor and primary sensory cortical regions. FA values

were significantly different across partitions of the CC (F(4,

80) = 25.93, p,0.001; Figure 3). Bonferroni comparisons revealed

region I to have significantly higher FA value than region III

(p = 0.029); region II to have significantly higher FA value than
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region III (p = 0.020); and region V to have significantly higher FA

value as compared to all other regions (region I, p,0.001; region

II, p = 0.005; region III, p,0.001; region IV, p,0.001). There

were no significant effects of sex (F (1, 19) = .011, p = .919), or an

interaction between sex and callosal subdivision (F (4, 76) = 1.23,

p = .304).

Discussion

Based on this DTI study, chimpanzees display similar

topography of the CC as humans and rhesus monkeys, based

upon the percentage of callosal projections into the frontal

cortices. Chimpanzees were shown to have 64% of callosal

projections to frontal lobe. In humans, projections to the frontal

lobe account for approximately 67% of callosal projections [17].

Rhesus monkeys, the only other primate to date for which callosal

projections have been mapped, have 60% of callosal projections to

the frontal lobe [32]. Thus, considerable homology in the cortical

projections of fibers running through the CC is seen -among all

three species. -

Chimpanzees also showed similar FA patterns to humans in that

the lowest FA values were seen in cortical projection areas into

motor and sensory regions [17]. One difference between

chimpanzees and humans concerns which subdivisions had the

highest FA values. In chimpanzees the highest regional FA value in

the CC was in region V, followed by I and II. All of these regions

are comprised of fibers projecting into the higher-association areas

of prefrontal, premotor and supplementary motor cortical areas

and posterior cortical areas (including parietal, temporal and

occipital cortices). Region V connects areas of the parietal,

temporal and occipital lobes known to be involved in the visual

processing of complex spatial tasks [35]. As FA is an index that

reflects the degree of directionality and coherence of fiber tracts

[24], this indicates that the chimpanzee CC is characterized by

highest white matter organization in CC regions involved in

higher-association areas. These regions likely contain small

diameter, lightly myelinated fibers but histological examination

of the chimpanzee CC is necessary to confirm (but see [36,37]).

Regional differences in signal intensity obtained via structural

MRI scans have been used as a means of quantifying the degree of

myelination [38,39]. Regions with greater myelination are

expressed with higher voxel intensities than regions with less

myelination, such as grey matter. Within the chimpanzee CC, the

most anterior and posterior region, the genu and splenium, had

the highest signal intensity values; the lowest signal intensity was

reported in the middle portion of the CC [39]. These results reveal

a similar pattern to regional FA obtained in the present study,

indicating that signal intensity from MRI does potentially provide

reliable information concerning myelination.

When comparing the partitioning of the CC based on the results

of tractography to the geometric schemes typically used with

structural MRI or on post-mortem material, a greater proportion

of the CC includes areas that project to the frontal lobe. Using

Witelson’s scheme, a widely used method for subdividing the CC,

the most anterior half of the CC is considered to project to the

frontal lobe. The results of our analysis indicate that in the

chimpanzee approximately 64% of the fibers of the CC have

projections to the frontal lobe. Our method confirms recent studies

by Hofer and colleagues [17,32] that using fiber tractography

results in a refinement of the parcellation of the CC and more

precisely accounts for projections to the frontal lobe. This

observation is by no means trivial because much has been written

regarding sex and handedness effects in relation to variation in the

size of different CC regions in human and nonhuman primates

[40,41,42,43,44]. Whether these dimorphisms in the CC are

related to the number or distribution of axons traversing callosal

subdivisions, or differences in myelination of these axons, is

unknown. Data concerning the relationship between handedness

and anisotropy are inconsistent in humans, likely due to confounds

such as age [29], pathology [45], and musical training [46].

Similar inconsistent results regarding the relationships between

CC morphology, sex and handedness have been reported for

chimpanzees. While Dunham and Hopkins [43] did not detect sex

differences in CC morphology in chimpanzees, Phillips et al. [39]

reported sex differences in both CC size and signal intensity (in

MRI, higher voxel intensity reflects the level of myelinated axons).

We did not find sex differences in FA values of callosal subdivisions

in the present study. However, this may be due to the unbalanced

distribution of males and females (male n = 14; female n = 7). We

were unable to investigate the effects of sex and handedness in the

present study as hand preference data on bimanual tasks in these

subjects is not complete. However, given the importance of such

data to further our understanding of the relationships between CC

morphology, sex and handedness, and the role of the CC in

hemispheric specialization, such data are needed. Many have

employed the CC divisions proposed by Witelson as a foundation

for interpreting sex and handedness differences, which have often

been inconsistent across studies.

As shown in this study, the topographical organization of the

chimpanzee CC is similar to humans. Chimpanzees and humans

also display marked similarity in the development of the CC and

callosal subdivisions [47], as well as the prefrontal cortex [48].

Comparative analyses of primate neuroanatomy are essential to

reveal the neurobiological specializations of humans and apes, and

provide insight as to the functional consequences of such

specializations.

Figure 2. Mean fractional anisotropy map from 21 chimpan-
zees.
doi:10.1371/journal.pone.0031941.g002

Figure 1. Callosal fiber projections from all 21 chimpanzees, displayed from a) dorsal, b) sagittal and c) oblique views. Color
distinguishes fibers projecting into cortical regions and are as follows: prefrontal (red), premotor and supplementary motor (green), motor (yellow),
sensory (blue), and parietal, temporal and occipital (violet). For ‘a’ and ‘c’, the right side of the brain is on the left side of the image.
doi:10.1371/journal.pone.0031941.g001
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Collectively, these data indicate that the chimpanzee CC is

characterized by highest white matter organization in callosal

regions involved in higher-associated areas. Findings, such as those

provided here, provide a more empirical functional connectivity

framework for dividing the CC into quantifiable anatomical

regions that can potentially be correlated with aspects of functional

lateralization.
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