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Abstract: The biological impact of ionizing radiation (IR) on humans depends not only on the
physical properties and absorbed dose of radiation but also on the unique susceptibility of the
exposed individual. A critical target of IR is DNA, and the DNA damage response is a safeguard
mechanism for maintaining genomic integrity in response to the induced cellular stress. Unrepaired
DNA lesions lead to various mutations, contributing to adverse health effects. Cellular sensitivity to
IR is highly correlated with the ability of cells to repair DNA lesions, in particular coding sequences of
genes that affect that process and of others that contribute to preserving genomic integrity. However,
accurate profiling of the molecular events underlying individual sensitivity requires techniques with
sensitive readouts. Here we summarize recent studies that have used whole-genome analysis and
identified genes that impact individual radiosensitivity. Whereas microarray and RNA-seq provide a
snapshot of the transcriptome, RNA interference (RNAi) and CRISPR-Cas9 techniques are powerful
tools that enable modulation of gene expression and characterizing the function of specific genes
involved in radiosensitivity or radioresistance. Notably, CRISPR-Cas9 has altered the landscape
of genome-editing technology with its increased readiness, precision, and sensitivity. Identifying
critical regulators of cellular radiosensitivity would help tailor regimens that enhance the efficacy
of therapeutic treatments and fast-track prediction of clinical outcomes. It would also contribute
to occupational protection based on average individual sensitivity, as well as the formulation of
countermeasures to the harmful effects of radiation.

Keywords: radiosensitivity; radioresistance; genome editing; CRISPR-Cas9; ionizing radiation

1. Introduction

During their lifetime, humans are likely to be exposed to various sources and doses of
ionizing radiation (IR), whether from diagnostic examinations (e.g., computed tomography
and nuclear medicine scans), environmental and occupational exposures, or therapeutic
treatments of cancer and other diseases. Whether exposed to low-dose or high-dose ioniz-
ing radiation (LDIR, HDIR), DNA is the primary cellular target of IR. The DNA damage
response is a safeguard mechanism that maintains genomic integrity in response to various
forms of cellular stress, including IR [1]. If left unrepaired, DNA damage, particularly DNA
double-strand breaks (DSBs) induced by IR, may lead to genomic instability resulting in
homeostatic perturbations and detrimental consequences that are propagated to progeny
cells. Whereas radiation dose and dose rate, along with genetic susceptibility and environ-
mental factors, are known to determine the nature and magnitude of the cellular responses,
the role of signaling pathways (e.g., in DNA repair, oxidative metabolism, or immune
responses) remains unclear and is under investigation [2–7]. Identifying the molecular
events involved in these pathways will shed light on novel biomarkers in key pathways
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that determine radiosensitivity. This review summarizes current findings, using high-
throughput screening technologies, in identifying critical radiation resistance or sensitivity
regulators in both normal tissue and cancer cells that could be used as therapeutic targets
and also facilitate personalized treatment strategies.

2. The Radiation Response

Various responses to IR have been reported since Roentgen discovered X-rays in
1895. By 1906, the difference in radiosensitivities of the patients was noted as one of
the major factors in influencing the outcome of radiotherapeutic treatments with X-rays
medical application [8]. The definition of radiosensitivity, however, has been challenged
in recent years. The Independent Advisory Group on Ionizing Radiation has redefined
radiosensitivity as a measure of the degree of the cellular or organism response instead of a
measure of IR-induced cell death [9]. In addition, “radioresistance” is a complex process
in which multiple genes are involved in various mechanisms that prevent damage from
occurring or that repair or eliminate damaged cells. The induced radioresistance of cancer
cells or normal tissues also helps the cells to adapt to subsequent environmental challenges
(i.e., IR), as well as to counteract harmful effects from oxidative metabolism [10].

The human response to IR is influenced by various factors such as age, smoking,
diseases, and genotype [11,12]. For instance, an initial study in breast cancer patients evalu-
ated that 81% to 90% of the variation in radiotherapy (RT)-induced normal tissue damage is
due to patient-specific characteristics [13]. Such variation in radiosensitivity is partially in-
fluenced by an individual’s genetic or epigenetic profiles [12]. Although radiation-induced
DNA damage can have different forms (i.e., base modifications, single-strand breaks, and
DSB), radiosensitivity is the cellular capacity to perform specifically DNA DSB repair [14].
The two main pathways of DNA DSB repairs are error-prone non-homologous end joining
(NHEJ), which is activated through the cell cycle, and homologous recombination repair
(HRR), which occurs during the late S and G2 phases. The molecular events mediating
these pathways continue to be understood and offer opportunities for novel discover-
ies [15,16]. Individual differences in the cellular capability of DNA repair mechanisms
within human populations have been investigated mainly in the context of HDIR [11,14].
For instance, mutated BRCA1/2 gene carriers experience greater radiosensitivity in both
normal and tumor cells [17,18]. Moreover, frequent exposure to diagnostic radiation could
be problematic, especially for younger individuals with adverse health effects manifesting
at an older age. Exposure to cumulative doses of X-rays or CT scans enhances the risk
of leukemia or brain cancer in children significantly [19]. However, the exact molecular
basis of individual radiosensitivity, particularly in LDIR, remains poorly understood and
the biomarkers of radiation sensitivity are elusive. With the large number (more than 20k)
of genes in humans, low-throughput studies may not be efficient in screening all of the
regulators involved in radiosensitivity. In contrast, high-throughput analyses provide for
fast-tracking predictive testing and for tailoring therapeutic regimens or public policies for
high-risk people in the event of radiation exposure.

3. High-Throughput Screening Methods to Study Radiosensitivity and Resistance
3.1. Gene Expression Analysis (Microarray and RNA-Sequencing)

The question-driven (hypothesis-generating) high-throughput genetic screening stud-
ies, set to explore the unknown in an unbiased manner, have been more prominent with the
development of critical “omics”–related technologies such as RNA-sequencing, microarray,
RNAi, and CRISPR-Cas9. The high-throughput screening can identify novel genes or
regulators of specific phenotypes and generate novel hypotheses that can be validated in
low-throughput mechanistic and functional studies (Figure 1).
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Figure 1. Schematic representation of the studies on individual radiosensitivity.

Using high-throughput gene expression methods, several studies have identified
genes that influence the response to radiation. For instance, using DNA microarray analysis
in lung cancer cells, Guo et al. profiled global gene expression in response to IR [20]. A mi-
croarray contains thousands of engineered complementary DNA (cDNA) oligonucleotides
known as probes that hybridize with specific fluorescently labeled RNA molecules, and the
expression of different known transcripts can be detected simultaneously [21]. Guo et al.
focused their analyses on the expression of 143 genes in 2 lung cancer cell lines (NCI-H446
cells versus A549 cells) with different radiosensitivities in response to a single 5 Gy dose of
gamma rays [20]. Compared to radiosensitive NCI-H446 cells, the expression of XRCC5,
ERCC5, ERCC1, RAD9A, ERCC4, and MDM2, genes involved in DNA repair mechanism,
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was significantly increased in the radioresistant A549 cell line. The authors suggested this
list of genes may prove useful in attempts to sensitize radioresistant lung neoplasms [22].

Performing next-generation RNA-sequencing (RNA-seq), extensive studies have been
done on gene expression alterations in response to IR in a cell population as a whole. In
a search for a predictor of response to IR in cancer cells, Young et al. took an RNA-seq
approach to analyze the gene expression in radiosensitive LNCaP and radioresistant PC-3
prostate cancer cells [23]. They identified two canonical pathways with opposing responses
in both cell lines 24 h after irradiation with high energy X rays: the DNA repair pathway
(downregulation of BRCA1, RAD51, and FANCG in LNCaP and opposite pattern in PC-3
cell) and the cell cycle control of DNA replication pathway (downregulation of ORC1,
CDC6 and the MCM genes with contrasting pattern in PC-3 cell). In another study, the
global gene expression in human glioma cells was assayed after exposure to a dose of
gamma-rays leading to growth arrest. It was revealed that the inactivation of proapoptotic
signaling molecules and late activation of antiapoptotic genes might contribute to the
radioresistance of gliomas [24]. Deep sequencing was utilized to delineate different layers
in the transcriptional response to IR in human breast cancer cells. This study identified
protein-coding and previously unidentified non-coding genes that were responsive to
IR [25]. Thus, RNA-seq allows for the complete sequencing of the whole transcriptome
while microarray only profiles predefined transcripts through probe hybridization. In RNA-
seq, purified RNA from genes and gene variants (e.g., splicing isoforms) are sequenced
directly (without the help of the probes) [21]. Therefore, whereas both microarray and RNA-
seq can show large numbers of differentially expressed genes, RNA-seq reveals an unbiased
screening of a broader range of gene expression with higher specificity and sensitivity,
including novel, coding, and non-coding transcripts, compared to microarrays [26].

Bulk RNA-seq analysis described in the previous section conventionally measures
transcripts in a mixture of cells which allows the measurement of only the average transcript
expression in a cell population. Such traditional sequencing methods are unable to analyze
a small number of cells found in rare populations and also lose cellular heterogeneity
information. Single-cell RNA-sequencing (scRNA-seq) is an innovative NGS approach that
has enabled the measurement of the whole transcriptome at a single-cell resolution and
contributed to understanding changes in the transcriptional circuitry of individual cells
within their natural microenvironment. A scRNA-seq method was used in two different
studies to investigate the acquired radioresistance in esophageal squamous cell carcinoma
cells (ESCC). These studies revealed the cellular heterogeneity and dynamic gene expression
changes in irradiated ESCC cells along with the genes and signaling pathways related to
the development of radioresistance [27,28]. Similarly, scRNA-seq of breast cancer cell line
MDA-MB-231 with and without IR treatment using the barcoded Smart-seq2 technology
revealed a heterogeneous cellular response to DNA damage induced by IR. scRNA-seq
data analysis also identified potential biomarkers of radiation sensitivity including MCM3,
MCM4 and SLBP genes involved in DNA replication [29]. Thus, single-cell sequencing
technology has the power to delineate the heterogeneous response to IR in different cancer
types and thereby improve treatment options.

However, although these platforms have helped identify numerous genes involved
in radiosensitivity, the exact mechanism is still unclear. To understand the mechanism, a
first and foremost step would be detecting the exact genome variant in a population [30].
Knowing the exact location would allow exploration of the transcription factor binding
sites and affected regulatory factors [30]. However, this is challenging when the phenotype
is influenced by more than one gene (polygenic pattern), in contrast to the Mendelian
model where disease is caused by mutations in single genes on either the autosomes or sex
chromosomes [31]. Radiosensitivity is a quantitative polygenic trait that is the product of
interactions between cellular pathways [32]. For this reason, it would be appropriate to
use genome-wide association studies (GWAS) that have successfully mapped thousands of
loci and DNA sequence variations associated with complex traits underlying the risk of
disease [31].
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3.2. Genome-Wide Association Study (GWAS)

GWAS examines variations that are presented in the form of single nucleotide mu-
tation. When the frequency of these mutations is more than 1% of the population, they
are called single nucleotide polymorphisms (SNPs) [33]. In one of the first clinical studies
of SNPs, Kerns et al. used the GWAS method to investigate genetic variants associated
with erectile dysfunction as an indicator of normal tissue damage experienced after ra-
diation therapy (RT) in prostate cancer patients [34]. From the high-throughput analysis
of 512,497 SNPs, rs2268363, which is located in a gene whose encoded product affects
male gonad development and function (the FSHR gene), was strongly associated with
the development of long-term side effects of RT. This strongly supports the feasibility of
using the GWAS approach in exploring the association between genetic predisposition and
radiation injury in normal cells [34].

Moreover, although radiation-induced germline mutations or heritable genetic dis-
eases in children of irradiated parents are still not confirmed, strong evidence of the
heritability of the radiosensitivity trait in human somatic cells has been established [35,36].
In an attempt to discover genes and SNPs that affect radiosensitivity, Zyla et al. used
genomic analysis from human twin pairs with the GWAS method and showed that about
66% of CDKN1A (cyclin-dependent kinase inhibitor 1A) expression in response to radiation
is heritable [37]. CDKN1A encodes protein p21, a downstream effector of p53, and is one of
the key regulators in cell cycle regulation and arrest following DNA damage. CDKN1A
abnormal expression is associated with acute sensitivity to radiation. Moreover, GWAS
allowed identification of SNPs that are significantly associated with CDKN1A expression
(i.e., rs205543 (ETV6 gene), rs2287505, and rs1263612 (KLF7 gene) are involved in CDKN1A
transcription factors, rs6974232 (RPA3 gene), rs1133833 (AKIP1 gene), and rs17362588
(CCDC141 gene) are genes involved in DNA mismatch and RNA repair (summarized in
Table 1) [37].

Table 1. Summary of selected current research on radiation resistance.

Authors Method/Dose Type Model/Cell Type Findings

Wang et al. [38] Genome-wide RNAi screen/
Single dose 6 Gy, X-ray

Colorectal cancer cells
exposed to X-rays both

in vitro and in a mouse model

RFC4 protects colorectal cancer
cells from radiation-induced DSBs
and apoptosis both in vitro and

in vivo; RFC4 enhances
radioresistance.

Herr et al. [39]
Genome-wide RNAi screen/

Single dose 4 Gy
(1.96 Gy min−1, Cs137)

Human bone osteosarcoma
epithelial cells (U2OS line)

CDC73 is an important regulator
of HRR-mediated DNA repair

and genome stability.
CDC73 enhances radioresistance.

van Haaften et al. [40]
Genome-wide RNAi screen/

Single dose 60 Gy,
Gammacell 1000 (Cs-137)

C. elegans strains: wild-type
Bristol N2, NL1832 (pk732),
and TY1774 yIs2 [xol-1::lacZ

rol-6 (pRF4)] IV.

Genes involved in the cellular
response to DNA DSBs were

identified.

van Haaften et al. [41]
Genome-wide RNAi

screen/Single dose 140 Gy a
Gammacell 1000 (Cs-137)

C. elegans strains were used:
wild-type Bristol N2, atm-1
(gk186), lig-4 (ok716), and

cku-80 (rb964)

A total of 45 C. elegans genes were
identified that increased

sensitivity to ionizing radiation in
germ cells.

Kerns et al. [34]
GWAS/

39 to 42 fractions of 1.8 Gy
Xray

DNA isolated from
lymphocytes

The location of SNP that is
associated with erectile

dysfunction as a side effect of RT
was identified. These SNPs are
specific for only patients with

African ancestry.
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Table 1. Cont.

Authors Method/Dose Type Model/Cell Type Findings

Zyla et al. [37]
GWAS/

Single dose of 2 Gy of X-ray
(0.5 Gy/min)

Blood T lymphocytes SNPs influencing radiation
sensitivity were identified.

Vaisnav et al. [32]

GWAS/Continuous exposure
(4 h and 45 min) of gamma

rays, 4.85 Gy/min, resulting
in a total dose of 1382 Gy

Drosophila Genetic Reference
Panel (DGRP)

Novel genes associated with
variation in radiation resistance

were identified.

Zhu et al. [42]

Whole CRISPR-Cas9 screen
(positive screen)

Treated with dose rate of 12,
15 Gy/min with X-ray

Irradiator for three rounds

Glioblastoma cells
CARHSP1 enhances

radioresistance in glioblastoma
cancer cells.

Ziyan et al. [43]
Whole CRISPR-Cas9 screen

(negative screen)/
Single dose 2 Gy

Nasopharyngeal carcinoma
Nine genes involved in the

radiosensitivity or radioresistance
of NPC cells were identified.

Hayman et al. [44] Whole CRISPR-Cas9 screen
(positive screen)

Neck squamous carcinoma
cells (HNSCC)

Knockout of STING significantly
increases radiation survival in

both in vitro and in vivo models.

Yu et al. [45]

Whole CRISPR-Cas9 screen
(negative screen)

6 & 12 single doses of X rays;
dose rate: 5 Gy/min

Colorectal cancer cells

By inhibiting expression of cell
cycle regulatory protein CDK6

and promoting cell cycle arrest in
G1/S phase, microRNA-5197-5p

(miR-5197) was reported as a
radiosensitization factor.

Han et al. [46] Whole CRISPR-Cas9 screen
(positive screen)

Non-small-cell lung
carcinoma cell lines

Key differences between 2D
monolayer and 3D spheroid

cancer models in CRISPR screen
was demonstrated.

In addition, the Drosophila melanogaster Genetic Reference Panel (DGRP) is a valuable
platform that allows GWAS and mapping analyses of potential genes, polymorphisms, or
pathways influencing a particular quantitative trait [32]. Using this model, Vaisnav et al. dis-
covered nine Drosophila genes (listed below and summarized in Table 1) with homologs in
humans that are likely to be involved in radiation resistance [32]. Furthermore, the authors
found 32 SNPs associated with radiation resistance (at p < 10−5, with two SNPs at p < 10−6).
Among these novel candidates in radiation resistance, nine have human homologs with
functions that are not actually involved in repair of DNA damage, highlighting the poten-
tial of the other mechanisms underlying radioresistance trait: human homolog proteins
ATP5J (ATP synthesis), SLC family 35 member E1 (membrane transporter), coagulation
factor II (blood coagulation), E3 ubiquitin ligase/SMURF2 (ubiquitination), protein VPRBP
(cell cycle, telomerase regulation, and histone modification), transcription factor GATA-4
(embryogenesis, myocardial differentiation), dystonin/bullous pemphigoid antigen 1 (cell
adhesion), LTrpC3/melastatin-2 (calcium signaling and homeostasis), and 5’-nucleotidase
precursor (adenosine production) [32].

To construct a more precise and efficient polygenic risk model, Oh et al. used hun-
dreds of SNPs and developed a machine learning algorithm called pre-conditioned random
forest regression that signals even for small differential risks [47]. By applying this novel
method to the GWAS cohort dataset of 368 prostate cancer patients treated with RT at
a single institution, the team was able to identify the false positive SNPs and evaluated
the importance of each SNP (the key biological function of each SNP) in inducing the
radiotoxic outcomes [47]. However, the GWAS method comes with drawbacks that have
been clearly discussed by Cano-Gamez et al. [31]. One major setback might be the lack of
understanding of the roles of disease-associated loci in non-coding regions of the genome.
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As their role in gene expression regulation in different cell types or physiological contexts is
still unclear, translating GWAS findings into clinical interventions might not be efficient [31].
Furthermore, the candidates found in GWAS or other methods discussed above need to be
functionally validated. To achieve that, functional genomics techniques such as RNAi and
CRISPR-Cas9 are powerful tools for analyzing gene function.

3.3. Genome-Wide RNAi Screening Method

RNA interference is a powerful method for loss-of-function genetic screens for key
regulators and critical pathways involved in a particular phenotype [48]. This method has
been used to knock down specific genes to investigate radiosensitivity of cancer cells [49].
For instance, using genome-wide RNAi screening to search for radioresistance genes in
colorectal cancer cells (HCT116 and HCT15 cells), Wang et al. found that RFC4 knockdown
significantly mitigates X-ray-induced DNA damage repair and enhances apoptosis [38].
The protein encoded by the RFC4 gene facilitates cellular DNA DSB repair via a non-
homologous end joining (NHEJ)-mediated pathway in colorectal cancer cells, and therefore
RFC4 upregulation is associated with tumor progression (summarized in Table 1) [38].
In addition, five more genes, including NCAPH (regulatory subunit of the condensin
complex), SYNE3 (transmission of mechanical forces across the nuclear envelope and in
nuclear movement and positioning), LDLRAD2 (receptor-mediated endocytosis), NHP2
(required for ribosome biogenesis and telomere maintenance), and FICD (ATP binding
activity) were also identified as potential candidate radioresistance genes.

Herr et al. used the same method to find homologous recombination repair (HRR)-
specific factors in response to IR [39]. Since an intact sister chromatid template would
be used in the HRR process, this pathway offers more accurate and error-free repair
for DSBs (in comparison to the NHEJ pathway) [50]. The authors identified CDC73, a
protein encoded by the HRPT2 tumor suppressor gene, as a new regulator of HRR. By
interacting with core histones of H2B and H3, CDC73 optimizes chromatin remodeling
around DSBs and supports the accessibility of the DNA for downstream repair elements and
events (summarized in Table 1) [39]. Van Haaften et al. exposed nematode Caenorhabditis
elegans to 60 Gy of radiation and used a genome-wide RNAi technique to identify eight
genes necessary to protect the germline against DNA DSB. Intriguingly, most of these
newly identified genes with known human orthologs (i.e., Y65B4BR.4A (human: WWP2),
H19NO7.2a (human: USP7, HAUSP), Y41C4a.10 (human: TCEB2), Y67D8C.5 (human:
UREB1, LASU1), and C52D10.9 (human: SKP1A)) are expected to play a role in the targeted
degradation of proteins via the ubiquitination function. RAD51, histones, CDC25A, and p53,
all of which play a role in DSB response, are regulated by ubiquitination. This observation
supports the idea that certain proteins activate or regulate the DSB response pathway by
undergoing proteasomal activity (summarized in Table 1) [40]. Knockdown of these genes
improved sensitivity to ionizing radiation and amplified chromosomal nondisjunction [40].
In another study, van Haaften et al. expanded their data by identifying more genes that are
active agents in DNA damage response and RNA processing and trafficking that contribute
to increased radiosensitivity of germ cells in C. elegans. In addition, the novel genes were
found to be strongly conserved throughout animal evolution. Among genes with human
homolog, ATM, ITGA6, NIPBL, NOB1, CAND1/TIP120, WWP2, and TopBP1 have been
observed (summarized in Table 1) [41].

Although RNAi is a robust tool for genome-wide screening through the downregu-
lation of gene expression at the mRNA level regardless of the target gene copy numbers,
its off-target effects are also inevitable [51]. In fact, suppression of gene expression by
RNAi might not be efficient, which may result in only a partial knockdown [51]. Many
of these shortcomings of RNAi are effectively addressed by CRISPR-mediated gene
editing technology.
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3.4. Genome-Wide CRISPR-Cas9 Screening Method

Adopted from the bacterial immune system, Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR)-Cas-associated protein 9, known as CRISPR-Cas9, is a novel
technology that has revolutionized genome editing and gene therapy [52]. The CRISPR-
Cas9 system comprises two biological components: the RNA-guided DNA endonuclease,
Cas9, and the chimeric single-guide RNA (sgRNA) [53,54]. The sgRNA is loaded onto
Cas9 and directed to a 20 bp region on the DNA target via base pairing. For functional
gene editing, the target DNA must immediately precede a 5’ NGG sequence (N is any
nucleotide), referred to as a protospacer adjacent motif (PAM). Cas9 promotes genome
editing by inducing a DSB at the target genomic locus by re-direction to its target region.
The cellular machinery then repairs the DNA DSB via NHEJ or HRR pathways [54].

This technique has been applied to investigate the effect of several genes (e.g., Hsp70,
osteopontin, and HIF-1/2α) as critical regulators in radioresistance or radiosensitivity traits
in different cell lines [55–57]. To develop a comprehensive approach and investigate radiore-
sistance regulatory factors in the colorectal cancer (CRC) cell (RKO, HCT116, and SW620),
Yu et al. applied genome-scale CRISPR sgRNA library in negative selection screens to iden-
tify radioresistance candidate genes. They found that DNA polymerase alpha 2 (POLA2),
radical S-adenosyl methionine domain containing 2 (RSAD2), and microRNA5197-5p
(miR-5197) had the most significant fold changes after IR exposure [45]. However, fur-
ther investigation showed that overexpression of miR-5197 impaired radioresistance to a
more considerable extent compared to other gene candidates. By inhibiting the expres-
sion of cell cycle regulatory protein CDK6 and promoting cell cycle arrest in the G1/S
phase, miR-5197 contributes to IR-induced apoptosis in CRC (summarized in Table 1) [45].
The authors, however, emphasized the need for further studies with an in vivo model
to prove their findings [45]. Using a genome-wide CRISPR-Cas9 sgRNA library for the
first time in nasopharyngeal carcinoma (NPC) cells and performing high-throughput se-
quencing on sgRNAs obtained in a negative screen, Ziyan et al. found nine genes involved
in the radiosensitivity or radioresistance of NPC cells [43]. Five genes (BLN5, FAM3C,
MUS81, DNAJC17, and CALD1) were suggested as radiosensitivity modulators, whereas
four genes (CDKN2AIP, SP1, TOMM20, and SNX22) seemed to be potentially radioresis-
tant genes (summarized in Table 1). Additionally, an enrichment analysis of the KEGG
database showed that these genes contribute to radiosensitivity or radioresistance in NPC
via the Fanconi anemia pathway and TGF-beta signaling pathway. Through CRISPR/Cas9
high-throughput screening and negative selection of crucial genes that might be linked
to radioresistance in NPC, Shen et al. also demonstrated that overexpression of LUC7L2
contributes to radioresistance via the autophagy process. LUC7L2 is an RNA binding
protein that has not been fully studied and only has been characterized in recent years [58].

Hayman et al. performed a whole-genome CRISPR-Cas9 screen in an HNSCC cell line
using treatment with ionizing radiation as a positive selection pressure to identify regula-
tors of radiation sensitivity. Positive screening and NGS of sgRNAs enriched after multiple
rounds of irradiation showed that activation of stimulator or interferon genes (known as
STING, a signaling molecule associated with the endoplasmic reticulum) influences radia-
tion response in HNSCC cells [44]. They further show that pharmacological activation of
STING enhances the effects of ionizing radiation in vivo and might be a promising approach
to enhance radiotherapeutic response in patients suffering from HNSCC (summarized in
Table 1). In an interesting study, Zhu et al. performed genome-wide CRISPR activation
screening and identified calcium-regulated heat-stable protein 1 (CARHSP1) as an essential
element involved in radioresistance traits in human glioblastoma cells (summarized in
Table 1) [42]. Because of its cold-shock domain, CARHSP1 has the capacity to bind to
polypyrimidine regions of single-stranded RNA, single-stranded DNA, or double-stranded
DNA [59]. Hence, CARHSP1 can bind to DNA and regulate the rate of transcription
termination, but also it has the potential to regulate RNA stability, mRNA degradation,
and ribosomal translation [60]. Intriguingly, CARHSP1 enhances mRNA stability of tumor
necrosis factor-alpha (TNF-α), a crucial pleiotropic cytokine and a critical inflammatory
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molecule [60]. With this information, Zhu et al. showed that an elevated level of CARHSP1
is associated with radioresistance of glioblastoma cells via CARHSP1/TNF-α pathway sig-
naling [42]. Cheng et al. used an unbiased genome-wide CRISPR/Cas9 knockout strategy
in A549 lung cancer cells and identified plakophilin 2 (PKP2) as a critical driver of radiation
resistance in lung cancer cells [61]. Cheng et al. have shown for the first time that methy-
lated PKP2 protein promotes NHEJ and increases lung cancer radioresistance. Arginine
methylation of PKP2 is mediated by protein arginine methyltransferase-1 (PRMT1). Hence,
PRMT1 inhibition may also be an attractive approach to radiosensitize lung cancer [61].

Altogether, these studies show that the application of the CRISPR/Cas technique
offers an unbiased global screen and a comprehensive map of the genes and pathways that
are involved in IR-induced response.

4. Discussion

Gene expression profiling describes the simultaneous measurement of the expression
of many genes or the entire genome. It can be accomplished by assessing mRNA levels
with two major platforms: microarray and RNA-seq. Tracing transcripts profiles that
are differentially expressed in different cell types maintained in different contexts (e.g.,
environments or stress factors) gives a map of the association between genotype and a
particular phenotype. In contrast to microarray, where the expression of only known gene
sequences can be assessed, RNA-seq offers a “de novo” readout where prior knowledge of
the reference genome or sequence of interest is not available. However, for the phenotypes
whose genome has a polygenic pattern, GWAS has zoomed into the nucleotide variation and
SNPs to offer a precise readout of the DNA sequence associated with complex traits. Further,
powerful genomic tools such as RNAi and CRISPR-Cas9 have enabled comprehensive
analyses of gene function.

RNAi silences genes by knocking down the mRNA of a gene, whereas CRISPR gener-
ates gene knockouts by targeting the DNA sequence. Although RNAi-based screening has
been helpful in deciphering the elements directing radiosensitivity of the cells, the utility of
RNAi has been hindered by imperfect mRNA knockdown, confounding off-target effects
(introducing noises); this makes interpretation of phenotypic changes difficult and limits the
method to transcribed genes. Additionally, the introduction of RNAs may trigger immune
responses. CRISPR-Cas9 technology has changed the landscape of gene-editing technology
by effectively addressing many of these limitations by enabling targeted modification
of DNA to achieve complete gene knockout. In addition, it provides an opportunity to
introduce nucleotide variation and to compare and measure the chromosome damage after
IR treatment in such edited cells, thereby identifying the nucleotide variation of interest
that influences the radiosensitivity.

Both positive and negative screens in the genetic perturbation studies have been used
in radiation research; however, the purposes and outcomes of the screens are different.
Negative screens are used to find genes that cause radiation resistance, and positive screens
are used to find genes that cause radiation sensitivity. In the negative screening approach,
the CRISPR-edited cancer cells are treated with a sublethal dose of radiation (which may
kill ~20% of cells). Compared to the control (CRISPR-edited but not treated with radiation)
cells, sgRNAs targeting genes involved in mediating radiation resistance are depleted from
the population over time. In the positive screens, CRISPR-edited cells are treated with a
lethal dose of radiation such that sgRNAs targeting genes involved in mediating radiation
sensitivity are enriched in the population over time and can be identified upon sequencing.
Positive and negative screening can be performed simultaneously to identify regulators
of radioresistance and radiosensitivity, respectively, with the use of a specific radiation
dose. Moreover, CRISPR is a versatile tool and can perform not only loss-of-function but
also gain-of-function screening. The gain-of-function application of CRISPR-Cas9 based
on using a nuclease-null Cas9 protein (dCas9) fused to transcriptional activators enables
a quick and efficient increase in target endogenous gene expression. Similarly, CRISPR
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inhibition can be performed by fusing the dCas9 to a transcriptional repressor. Both CRISPR
inhibition and CRISPR activation libraries have been used in the radiation research field.

Genome-wide studies of radioresistance and radiosensitivity are all performed in
two-dimensional (2D) cell cultures, which is different from the microenvironment of either
tumor or normal tissues. For example, the 2D cancer cell culture model lacks critical
features of tumor cells such as partial oxygen pressure, altered cell–cell contact, cell base
membrane adhesion, and reprogrammed metabolism. Although functional genomics in
2D cell culture has produced a wealth of information and has uncovered novel regulators,
they often failed to reflect the critical aspects in vivo. For example, in DepMap, a project
to discover cancer drivers using genome-scale CRISPR screens in hundreds of cell lines,
<1% of the top 1000 hits show a positive growth effect [62]. Moreover, even the inactivation
of known tumor suppressor genes in cancer cells maintained in 2D architecture often
leads to negative phenotypes. Therefore, genome-wide screening of cells grown in three-
dimensional (3D) culture systems closely mimics the in vivo tumor microenvironment
and is highly desirable. Han et al. investigated the genome-wide CRISPR screen in a 3D
lung cancer spheroid model and discovered cancer cell sensitivities different from those
of the monolayer 2D culture. Since the 3D spheroid model more accurately recapitulates
the microenvironment of in vivo tumors, Han et al. took advantage of this model while
using the CRISPR screen (summarized in Table 1) [46]. Moreover, taking advantage of the
combination of CRISPR-Cas9 and 3D cell spheroid culture, Lan et al. detected DYRK1A as
a sensitive target for radiotherapy in pancreatic cancer cells [63]. Alternately, genome-wide
screening to identify essential genes can be done under different oxygen and metabolic
conditions (such as hypoxia or low glucose) that match physiological conditions.

Furthermore, in order to obtain a comprehensive map of radiosensitizing and ra-
dioresistance genes, integration of the genetic, transcription, and translational datasets in
response to various radiation doses have to be integrated. Whereas some researchers have
shown that radiation-induced gene expression is highly dependent on the individual cell
genotype [64,65], evidence shows that when evaluated at the level of translation, radiation-
induced gene expression is significantly associated with tissue-type dependency [66]. Stack-
house et al. generated glioblastoma (GBM) patient-derived xenograft (PDX) models and
applied a novel bioinformatics pipeline to analyze phenotypic, transcriptomic, and global
kinomic (functional proteomic) profiles [67]. Conducting whole-exome sequencing (WES)
and deep RNA-seq, the authors suggested that phenotypic changes such as radiotherapy
resistance are not mediated only at the genomic level, but instead, largely at the epigenetic,
post-transcriptomic, and post-translational level [67].

Moreover, genetic screening studies conducted so far have been using HDIR to con-
tribute to enhancing radiation therapy effectiveness, for example, how to increase the
radiosensitivity of cancer tissue. This is in contrast to the radiosensitivity to LDIR to which
one is often exposed. Also, LDIR does not have the selection pressure that HDIR does, and
the exact cellular stress-induced mechanisms and pathways in response to LDIR are not
well understood. To find a precise reporter (e.g., DNA repair reporter) in the context of
LDIR, CRISPR-Cas9 can also be a powerful tool that enables comprehensive analyses of
critical molecules and pathways activated following LDIR exposures.

Recent advances in genome editing have enabled editing SNPs without breaking DNA,
opening new avenues to study genetic variants associated with particular phenotypes or
diseases. For instance, the new generation of base editors, adenine base editors (ABEs),
enable the direct mutation at target loci in living cells without activating DSB damage
response [68]. This method has optimized the conversion of unwanted alleles into nan-
pathogenic alleles and enabled phenotypic rescue with minimum genotoxic effects [69].
With prime editor systems, such as prime editing guides (pegRNAs), any local mutation
and desired edit (up to dozens of base pairs) can be performed at the target site [70]. Some
pitfalls of CRISPR’s genetic scissors technique, including uncontrolled mixtures of editing
outcomes, p53 activation, and larger DNA rearrangement, can be avoided with these
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methods, making them safe and precise approaches in the context of radioprotection and
radiosensitivity studies.

Taken all together, by expanding our understanding of radiogenetics and the mecha-
nism involved in cellular radiosensitivity, we can identify genes that can predict clinical
outcomes. With such prediction, alternate treatments could be considered for patients prone
to hyper-radiosensitivity [71]. Moreover, if a considerable variation of risk is identified in
a particular population subgroup, a more tailored protection system can be proposed to
protect specific individuals.
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