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A Multi-Trait Approach Identified 
Genetic Variants Including a Rare 
Mutation in RGS3 with Impact on 
Abnormalities of Cardiac Structure/
Function
Akram Yazdani1,2, Azam Yazdani3, Raúl Méndez Giráldez   4, David Aguilar5 & Luca Sartore6

Heart failure is a major cause for premature death. Given the heterogeneity of the heart failure 
syndrome, identifying genetic determinants of cardiac function and structure may provide greater 
insights into heart failure. Despite progress in understanding the genetic basis of heart failure through 
genome wide association studies, the heritability of heart failure is not well understood. Gaining 
further insights into mechanisms that contribute to heart failure requires systematic approaches 
that go beyond single trait analysis. We integrated a Bayesian multi-trait approach and a Bayesian 
networks for the analysis of 10 correlated traits of cardiac structure and function measured across 3387 
individuals with whole exome sequence data. While using single-trait based approaches did not find 
any significant genetic variant, applying the integrative Bayesian multi-trait approach, we identified 3 
novel variants located in genes, RGS3, CHD3, and MRPL38 with significant impact on the cardiac traits 
such as left ventricular volume index, parasternal long axis interventricular septum thickness, and 
mean left ventricular wall thickness. Among these, the rare variant NC_000009.11:g.116346115C > A 
(rs144636307) in RGS3 showed pleiotropic effect on left ventricular mass index, left ventricular volume 
index and maximal left atrial anterior-posterior diameter while RGS3 can inhibit TGF-beta signaling 
associated with left ventricle dilation and systolic dysfunction.

Heart failure (HF) is a complex clinical syndrome characterized by abnormal cardiac structure and function 
that leads to reduced cardiac output and elevated filling pressures at rest or with exertion1. Although, there is 
increasing evidence that the risk and course of HF depend on genetic predispositions2, genome wide association 
studies (GWAS) have identified only a handful of genetic variants associated with it. For instance, the chro-
mosome region 9p21 includes several highly replicated genetic variants associated with HF risk factors (e.g. 
NC_000009.11:g.22096055A > G and NC_000009.11:g.22124477A > G)3.

For better understanding heritability of HF, some studies combine results of multiple cohorts and involve 
more samples in the analysis through meta-analysis4,5. One of the largest studies on African-American popula-
tion identified four variants associated with left ventricular mass and left ventricular internal diastolic diameter 
respectively using Echocardiography6. A meta-analysis on 5 cohorts of individuals with European ancestry iden-
tified five genetic loci harboring common variants associated with left ventricular diastolic dimensions and aortic 
root size7. More recently, a meta-analysis of a large set of samples including 73,518 individuals identified 32 novel 
loci associated with electrocardiographic markers of hypertrophy as an important and independent risk factor for 
the development of heart failure8.

Taking advantage of dozens-to-hundreds of traits measured on each study participant creates opportunities 
to obtain insights into the biology of HF, and consequently reduces morbidity, and economic burden of HF. 
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Multi-trait analysis is toward this aim and increases the statistical power9–12. Although there are many studies on 
multi-trait approaches, applications of those methods have recently received increased attention e.g.13–15. A limi-
tation of those methods is their complexity due to the large number of parameters in the model.

To reduce the complexity of the multi-trait approaches due to the number of parameters, we integrated 
a Bayesian network16 with a Bayesian multi-trait polygenic mixed model while setting G-Wishart prior17 on 
inverse of relatedness matrix and called it Integrative Bayesian Multi-Trait (IBMT) approach. Using IBMT 
approach, we conducted an analysis to identify genomic variants influencing 10 echocardiographic traits related 
to cardiac structure and function from Atherosclerosis Risk in Communities (ARIC) study18. We have genotype 
data of 7810 European American individuals from baseline measurement while 3387 of these individuals have 
phenotype records in Visit 5. The phenotype data are also recorded for 1265 new participants at visit 5 who do 
not have baseline genotype. Thus, we had three sets of data, including (i) individuals with only genotype data, (ii) 
individuals with only phenotype data, and (iii) individuals with both genotype and phenotype data. We incorpo-
rated information from all these three sets into the analysis to improve the statistical power, prevent overfitting, 
and avoid using data multiple times. The details are provided in the Methods section. These steps ultimately 
improve reliability and generalizability of the results.

After data preparation, we applied the IBMT method over the whole exome sequence data to investigate 
genomic and cardiac trait relationships. We identified 3 genetic variants (NC_000009.11:g.116346115C> A, 
NC_000017.10:g.7802658C > T, NC_000017.10: g.73897977C > T) in genes RGS3, CHD3, and MRPL38 with sig-
nificant impact on the cardiac traits. The variant in RGS3 gene (NC_000009.11:g.116346115C> A) showed pleio-
tropic gene action on vertical mass index, left ventricular volume index and maximal left atrial anterior-posterior 
diameter). RGS3 can inhibit TGF-beta signaling associated with left ventricle dilation and systolic dysfunction and 
codes for GTPase-activating protein that inhibits G-protein-mediated signal transduction19,20. CHD3 encodes a 
protein with a chromatin organization modifier domain and a SNF2-related helicase/ATPase domain21. MRPL38 
produces a mitochondrial ribosomal protein, involved in the synthesis of proteins within the mitochondrion22,23.

Materials and Methods
Study population.  Echocardiographic and genomic data were collected on a subset of the ARIC study, 
a biracial longitudinal cohort of 15,792 middle-aged individuals who were randomly sampled from four US 
sites (Forsyth County, NC; Jackson, MS; suburbs of Minneapolis, MN; and Washington County, MD) and have 
been measured for risk factor traits related to health and chronic diseases. A detailed description of the ARIC 
study design and methods have been published elsewhere18,24. The data presented here includes 7810 European 
American individuals with baseline genotype available on dbGAP (https://www.ncbi.nlm.nih.gov/gap), accession 
number phs000090.v5.p1. A subset of individuals with genotype data, 3387 out of 7810 individuals, has pheno-
type records at visit 5. The phenotype data described in the following subsection are also recorded for 1265 new 
participants at visit 5 who do not have baseline genotype. Figure 1 visualized study population with phenotype 
and genotype records through Venn diagram.

Echocardiographic methods and measurements.  Echocardiograms were obtained from participants 
at visit 5 using a standardized protocol as recommended by the American Society of Echocardiography. Images 
were digitally transferred to the Cardiovascular Imaging Core Laboratory at Brigham and Women’s Hospital, 
Boston, MA, for offline analysis. The intra-observer variability (coefficient of variation and interclass correlation) 
for key echocardiographic measures has been previously published25. Images were obtained in the parasternal 
long- and short-axis and apical 2- and 4-chamber views. Primary measures of the traits such as left ventricular 
(LV) dimensions, volumes, and wall thickness; left atrial (LA) dimensions, volumes, and areas were made in 
triplicate from the 2-dimensional views in accordance with the recommendations of the American Society of 
Echocardiography26. This study includes 10 cardiac structure and function tabulated in Table 1. LV mass was 
calculated from LV linear dimension and indexed to body surface area. Relative wall thickness was calculated 
using the posterior wall thickness and LV end-diastolic dimension. LA volumes were measured by methods of 
disks using apical 4- and 3- chamber views. LV volumes were calculated from the apical 4- and 2- chamber views 
utilized the modified Simpson method.

Figure 1.  Venn diagram of study population with phenotype and genotype records.
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Whole exome sequencing.  Whole exome sequencing was performed on samples with the Illumina 
HiSeq platform. Mercury pipeline is applied for variant calling27. The reads are mapped into the Genome 
Reference Consortium Human Build 37 (GRCh37) sequence. Low-quality variants are filtered if they were out-
side the exon capture regions, belonged to multi-allelic sites, had missing rate >20% and had mean depth of 
coverage >500-fold. In addition, highly significant departures from race-specific Hardy-Weinberg equilibrium 
(P-value < 5e-6) are excluded from the data.

Statistical methods.  The IBMT as an integrative Bayesian approach takes into account the underlying rela-
tionship among multiple traits and seeks for their significant association with genetic variants through multi-trait 
polygenic mixed model as the following
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corresponding to each sample  where U~N(0, Ψ) and Ψ is a relatedness matrix. The inverse of relatedness matrix 
(Ψ−1) represents the conditional dependence of samples between and within traits.

In large scale settings, Ψ imposes numerous parameters into the model1 and slows down the analysis. To over-
come this limitation, we proposed to integrate the Bayesian network and the multi-trait polygenetic mixed model 
since Bayesian network represents the conditional dependence of the traits through graphical representation. 
Therefore, the IBMT first builds the Bayesian network among the traits of interest and then set the parameters in 
Ψ−1 to zero if their corresponding edges in Bayesian network are missing. To impose this sparsity to the model in 
posteriori, we set the G-Wishart prior on Ψ−1. The G-Wishart places no probability mass on zero entries of Ψ−1 
and accordingly it reduces the number of parameters of the model and optimizes the performance and compu-
tational time of Gibbs sampling scheme. Further details of the model and the Gibbs sampling scheme are pro-
vided in the Supplementary, statistical methods section, although in the following, we presented general guidline 
on the IBMT application.

Adjusting covariates.  There is a broad consensus on analytic techniques for covariate adjustment to discover 
genomic variants associated with traits of interest independently of the correlated covariates, and to improve 
statistical power by gaining precision. The set of covariates typically include principal components of individual 
genotypes to account for population structure, and correlated environmental or demographic factors such as 
gender and age. However, some of those covariates may not have significant impact on the traits and adjusting for 
those covariates simply leads to a loss of power and cause variance inflation of the effects. Therefore, instead of 
adjusting each trait for all routine covariates, we first investigated the effect of covariates on the traits using 1265 
individuals with only phenotypic record. This not only prevents decreasing the statistical precision or contami-
nating data due to adjusting for unrelated covariates but also avoids using data twice which prevents overfitting.

Applying the Integrative Bayesian Multi-Trait approach (IBMT).  We first identified underlying relationships of 
the 10 cardiac functional and structural traits tabulated in Table 1 via application of Bayesian networks. We cal-
culated hamming distance to measure structural similarities of networks based on different statistical significant 
levels (0.005, 0.01, 0.05) and found 0.05 as the best significant level to construct the network in our analysis28–30. 
The identified network, which is also supported by clinical background knowledge, revealed the sparsity level of 
the relationships. Figure 2 displays the network, where the nodes are the traits and the edges represent a signif-
icant relationship between the two corresponding traits after excluding the effect of the other traits. Clustering 
approaches31–33 can be also applied for the same purpose, although they may estimate more connections among 
the traits. To avoid overfitting, we built the Bayesian network using the subset of individuals with only phenotype 
records.

Name Measurement

Phenotypes of Interest

Parasternal long axis interventricular septum thickness (PLAx-IST) Cm

Parasternal long axis posterior wall thickness (PLAx-PWT) Cm

End-diastolic volume (ED-V) Ml

End-systolic volume (ES-V) Ml

Ejection fraction (EF) %

LV mass index (LV-MI) G per m2

LV relative wall thickness (LV-RWT) Cm

Mean LV wall thickness (LV-WT) Cm

Maximal left atrial anterior-posterior diameter (Max-LA-APD) Ml per m2

LA volume index (LA-VI)

Table 1.  Cardiac structural and functional traits under study.
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Using the identified Bayesian network over the traits, we implemented the IBMT method and analyzed the 
whole exome sequencing data including 260,688 variants based on sliding window. Each window included 100 
variants with a step size of 25, such that each variant appears in 4 windows. If a variant is selected in all 4 win-
dows, we reported the variant as the most promising variant. The parameters of the model were updated at each 
iteration of Markov Chain Monte Carlo (MCMC) algorithm and estimated with posterior means, which calculate 
optimal point estimators under square error loss, after 200 burn-in period.

To identify genomic variants significantly associated with the traits, we calculated 98% credible interval34,35, 
(qL, qU), for the effects of all the variants to test a null hypothesis of no genomic effects. The endpoints of the inter-
vals correspond to quantile (q) of the empirical distribution of the MCMC drawn from the marginal posterior 
distribution of genetic effects. A desired degree of precision for the endpoints of intervals is achieved by running 
a number of iterations until

P q q P q q( ) & ( ) ,i
L

i
L

i
U

i
U

1 1ζ ζ| − | < | − | <− −

where qL and qU are lower and upper quantile respectively and i represents the number of iterations. We set ζ to 
0.01 as a small value.

Results
Since the IBMT method is based on a linear polygenic mixed model, we first tested the normality of the traits as 
the main assumption. Except the ejection fraction and the maximal left atrial anterior-posterior diameter that are 
normally distributed, the other traits were transformed to normal using log transformation. The histograms of 
the traits after winsorization, standardization, and log transformation are represented in Supplementary Figure 1.

We then investigated the effects of gender, age, ever-smoked, body mass index (BMI), hypertension, systolic 
and diastolic blood pressure on the traits. Among them gender and BMI showed highly significant relationships 
(P-value < 1e-8) with all traits except the mean LV Wall Thickness (LV-WT) and the ejection fraction, which 
they were relatively less significant with P-values 0.05 and 0.005 respectively. Hypertension also showed signif-
icant effects (P-value < 1e-6) with all traits except the ejection fraction. We obtained these results on the set of 
individuals without genotype data to avoid the use of data twice. To generalize the results to the set of interest 
(individuals with both genotype and phenotype records), we compared BMI distribution, gender ratio (Female/
Male), and ratio of (with/without) hypertension in the two sets. We observed that in both sets, the distribution 
of BMI is similar (Figure 3); gender ratios 1.302 and 1.387 showed almost the same proportion of female to male; 
and hypertension ratios 2.502 and 2.579 also showed almost the same proportion of individuals with and without 
hypertension. Therefore, we adjusted the traits for BMI, gender, and hypertension, in addition to the first 10 PCs 
from population stratification analysis.

Applying IBMT, we first identified Bayesian network among 10 traits listed in Table 1. As shown in Figure 2, 
underlying relationships among the traits are sparse. Therefore, we do not need to consider all pairwise connec-
tivity in the analysis. Incorporating this result into multi-trait mixed model, we reduced the number of param-
eters in the model and consequently increased the power of genotype-phenotype association identification 
(Supplementary Statistical methods). We could identify 3 genetic variants with significant impact on 4 cardiac 
traits using a 98% credible interval (Table 2 and Figure 4). Minor allele frequencies (MAF) in Table 2 show the 
identified variants are rare. The estimated effects of the identified rare variants are reported in Table 3.

Figure 5 shows empirical distributions of LV-MI (red/blue) for individuals with reference/alternative allele 
of one of the identified variants (NC_000017.10:g.73897977C > T). The noticeable shift of the distribution for 

Figure 2.  The Bayesian network over the cardiac traits. The colors correspond to the degree of connectivity of 
each trait; darker color means greater connectivity.

https://doi.org/10.1038/s41598-019-41362-3
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Figure 3.  Histogram of BMI. Right: individuals without genotype data. Left: individuals with genotype data.

HGVS name refSNP ID CHR MAF% Gene name Related trait

Identified variants

NC_000009.11:g.116346115C > A rs144636307 9 0.38 RGS3

LV-MI

LA-VI

Max-LA-APD

NC_000017.10:g.7802658C > T rs200287864 17 0.25 CHD3 PLAx-IST

NC_000017.10:g.73897977C > T rs76054219 17 0.32 MRPL38 LV-MI

Table 2.  Selected genomic variants related to the traits, using a 98% Bayesian credible interval. HGVS name 
is description of sequence variation in genomic established by The Human Genome Variation Society; refSNP 
ID is a unique identifier provided by NCBI; CHR is the chromosome number; and MAF stands for minor allele 
frequency.

Figure 4.  Identified genetic pathway to cardiac and structure and function using IBMT.

HGVS name Trait Est-Eff SD-Eff

NC_000009.11:g.116346115C > A LV-MI 1.13 0.104

NC_000009.11:g.116346115C > A LA-VI 1.27 0.11

NC_000009.11:g.116346115C > A Max-LA-APD 1.29 0.102

NC_000017.10:g.7802658C > T PLAx-IST 1.48 0.186

NC_000017.10:g.73897977C > T LV-MI 1.28 0.153

Table 3.  Estimated effect (Est-Eff) and standard deviation (SD-Eff) of the identified genes with significant 
effect on the traits.

https://doi.org/10.1038/s41598-019-41362-3
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individuals with mutation is observable. Supplementary Figure 2 shows levels of the traits for individuals with 
identified rare mutation over distribution of the traits.

One of the identified variants located in chromosome 9 (NC_000009.11:g.116346115C > A) showed pleo-
tropic effect on LV-MI, LA-VI and Max-LA-APD. Among 14 individuals (5 Females and 9 Males) having rare 
mutation in RGS3 (NC_000009.11:g.116346115C > A) with pleiotropic action, two of the females and one male 
showed different patterns with other individuals, such that their level of LV-MI, LA-VI and Max-LA-APD are not 
greater than third quartiles (Supplementary Figure 2). This suggests that the rare mutation identified in RGS3 
may have higher impact on males. In addition, pleiotropic effect of this variant may represent different functions 
of the RGS3 gene.

According to the Variant Effect Predictor (VEP) analysis36, this variant is most likely a missense mutation in 
RGS3 (regulator of G protein signaling 3) gene  that could yield a codon change from ACC to AAC replacing the 
amino acid Threonine (Thr) by an Asparagine (Asn) in the protein sequence. RGS genes encode GTPase activat-
ing proteins (GAPs) and down-regulate G protein signaling. More details about the results from the VEP analysis 
is provided in Supplementary Table 1.

Another identified variant with impact on PLAx-IST is in chromosome 17 (NC_000017.10:g.7802658C > T). 
Individuals with T allele of this rare variant, including 2 Females and 8 Males, all have PLAx-IST level greater than 
third quartile of the trait (Supplementary Figure 2).

The variant NC_000017.10:g.7802658C > T is intronic to Chromatin Helicase DNA Binding Protein 3 (CHD3) 
gene based on VEP analysis (Supplementary Table 2). CHD3 belongs to a family of genes coding for proteins that 
bear CHROMO (chromatin organization modifier) and SNF2-related helicase/ATPase domains. CHD3 protein 
is one of the components of the Mi-2/NuRD (histone deacetylase) complex that participates in the remodeling of 
chromatin structure via histone deacetylation.

The third identified genetic variant influencing LV-MI is located in chromosome 17, gene MRPL38 
(NC_000017.10:g.73897977C > T). All 8 male individuals with rare mutation in MRPL38 have LV-MI level 
greater than third quartiles of distribution (Supplementary Figure 2). However, the 2 female individuals do not 
show any different pattern.

The variant NC_000017.10:g.73897977C > T can be in a non-coding exon or be a missense mutation of 
MRPL38 gene depending on splicing. The missense mutation of CGG into CAG codon causes the substitution of 
amino acid Arginine (Arg) by a Glutamine (Gln) concluded. Gln is a non-charged amino acid and smaller than 
Arg with putatively less capacity to create hydrogen bonds and favorable electrostatic interactions than Arg (see 
Supplementary Table 3 for VEP results). MRPL38 encodes mitochondrial ribosomal proteins (MRP). The MRP 
family stabilizes mitochondrial ribosome (mitoribosome) and are responsible for the mitochondrial translation of 
13 protein components of the Oxidative Phosphorylation (OXPHOS) gene complex in the mitochondrial DNA23.

Discussion
Single trait analysis did not identify any genetic variants with significant impact on the 10 considered traits of 
cardiac structure and function in European American individuals from ARIC study. Therefore, we integrated 
Bayesian network and Bayesian multi-trait approach to improve the performance of the analysis. This Integrative 
Bayesian Multi-Trait (IBMT) approach provides a sparse relatedness matrix and, eventually, more precise esti-
mates of parameters in the model. Utilizing the IBMT method to increase the power of identification, in addition 
to carefully adjusting for covariates to avoid data contamination, and choosing the appropriate transformation 
function for each trait, we identified three significant genetic variants. These variants located in RGS3, CHD3, and 
MRLP38 genes are rare, hence a high statistical power is required to detect the association with the trait(s)37–40. 

Figure 5.  Empirical Distributions of log (LV-MI) for individuals with reference/alternate alleles in 
NC_000017.10:g.73897977C > T variant.

https://doi.org/10.1038/s41598-019-41362-3
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Among those, the variant NC_000009.11:g.116346115C > A in RGS3 showed pleiotropic action on vertical mass 
index, left vertical volume index,  maximal left atrial anterior-posterior diameter (Figure 4).

The variant NC_000009.11:g.116346115C > A is in the exon of gene RGS3 (Regulator of G protein sign-
aling 3) which belongs to RGS family. RGS family codes for proteins that act as GAPs and down-regulate G 
protein signaling. Many studies have proven that RGS gene expression is highly regulated in myocardium41–43. 
Quantitative messenger RNA (mRNA) analysis revealed that RGS3 is most highly expressed in human heart44–46. 
The N-terminus of RGS3 can inhibit TGFβ induced differentiation of pulmonary fibroblasts which is associated 
with left ventricular dilation and systolic dysfunction19,20,47. The identified variant in RGS3 was associated with 
pleotropic effect on LV mass (LV-MI) and measures of left atrial size (LA-VI and Max-LA-APD). The left atrial 
size may reflect the cumulative effects of increased LV filling pressure and diastolic function48 and is a predictor 
of heart failure, ischemic stroke, and death. Thus, genetic variants contributing to abnormalities of LV mass and 
worsened diastolic function would be expected to potentially be associated with LA size.

As missense mutation, NC_000009.11:g.116346115C > A could yield a codon change from ACC to AAC, 
which replaces a Threonine (Thr) to an Asparagine (Asn) in the protein amino acid sequence. The change from 
Thr to Asn does not alter side chain electrostatic charge because of both amino acids being electrostatically neu-
tral. This could eventually affect hydrogen bond pattern since Asn has an extra hydrogen bond donor group 
(NH2). However, it is difficult to evaluate the final effect in the protein three-dimensional structure since there 
may be alternative spliced transcripts. If this mutation happened at the interaction interface between RGS3 and 
Gα subunit, it could eventually affect GTPase activity.

The variant NC_000017.10:g.7802658C > T that is significantly associated with parasternal long axis interven-
tricular septum thickness (PLAx-IST) is in an intron of the CHD3 gene, which codes for the Chromatin Helicase 
DNA Binding Protein 3 as a part of the chromatin structure remodeling complex. This is a potential splicing 
variant that could affect the rate of mature mRNA synthesis, and ultimately impact gene transcription.

The other identified variant NC_000017.10:g.73897977C > T is within MRPL38 gene, a member of 
Mitochondrial ribosomal proteins (MRP) family that are part of the large subunit of the mitochondrial ribosome. 
As missense mutation, the change of CGG into CAG codon causes the substitution of amino acid Arginine (Arg) 
by a Glutamine (Gln). Gln is a non-charged amino acid and smaller than Arg with putatively less capacity to 
create hydrogen bonds and favorable electrostatic interactions than Arg. If the amino acid mutation takes place 
at the interface between MRPL38 and mitochondrial ribosome, it could decrease binding affinity and destabilize 
mitochondrial ribosome. This in turn may reduce ribosomal protein synthesis levels and affect the oxidative 
phosphorylation pathway.

Overall, this study suggests that rare mutation might provide a better understanding of genetic impact on 
cardiovascular structure and resulting in remodeling cardiovascular disease and/or heart failure, although further 
studies are required.

Data Availability
The genotype data is available on dbGAP (https://www.ncbi.nlm.nih.gov/gap) with accession number phs000090.
v5.p1. The phenotype data is available upon request through https://www2.cscc.unc.edu/aric/.

References
	 1.	 McMurray, J. J. & Pfeffer, M. A. Heart failure. Lancet. 365(9474), 1877–89 (2005).
	 2.	 MacRae, C. A. The Genetics of Congestive Heart Failure. Heart Failure. Clinics 6(2), 223–30 (2010).
	 3.	 Yamagishi, K., Folsom, A. R., Rosamond, W. D. & Boerwinkle, E. A genetic variant on chromosome 9p21 and incident heart failure 

in the ARIC study. Eur Heart J 30(10), 1222–8 (2009).
	 4.	 Harismendy, O. et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature. 

470, 264 (2011).
	 5.	 Méndez-Giráldez, R. et al. GWAS of the electrocardiographic QT interval in Hispanics/Latinos generalizes previously identified loci 

and identifies population-specific signals. Sci Rep. 7(1), 17075 (2017).
	 6.	 Lieb, W. et al. Genome-wide meta-analyses of plasma renin activity and concentration reveal association with the kininogen 1 and 

prekallikrein genes. Circ Cardiovasc Genet 8(1), 131–40 (2015).
	 7.	 Vasan, R. S. et al. Genetic variants associated with cardiac structure and function. JAMA J Am Med Assoc 302(2), 168 (2009).
	 8.	 van der Harst, P. et al. 52 Genetic Loci Influencing Myocardial Mass. J Am Coll Cardiol 68(13), 1435–48 (2016).
	 9.	 Korte, A. et al. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat 

Genet. 44(9), 1066–71 (2012).
	10.	 Galesloot, T. E., Van Steen, K., Kiemeney, L. A., Janss, L. L. & Vermeulen, S. H. A comparison of multivariate genome-wide 

association methods. PLoS One. 9(4) (2014).
	11.	 Kwak, I. Y. & Pan, W. Gene- and pathway-based association tests for multiple traits with GWAS summary statistics. Bioinformatics. 

33(1), 64–71 (2017).
	12.	 Yazdani, A., Yazdani, A., Samiei, A. & Boerwinkle, E. Generating a robust statistical causal structure over 13 cardiovascular disease 

risk factors using genomics data. J Biomed Inform 60, 114–9 (2016).
	13.	 Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. & Wray, N. R. Estimation of pleiotropy between complex diseases using 

singlenucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics. 28(19), 2540–2 
(2012).

	14.	 Schaid, D. J. et al. Statistical Methods for Testing Genetic Pleiotropy. Genetics. 204(2), 483–97 (2016).
	15.	 Yazdani, A., Yazdani, A. & Boerwinkle, E. A Causal Network Analysis of the Fatty Acid Metabolome in African-Americans Reveals 

a Critical Role for Palmitoleate and Margarate. Omi A. J Integr Biol 20(8), 480–4 (2016).
	16.	 Pearl, J. Probabalistic Reasoning in Intelligent Systems. Probabalistic Reason Intell Syst. 552 (1988).
	17.	 Roverato, A. Hyper Inverse Wishart Distribution for Non-decomposable Graphs and its Application to Bayesian Inference for 

Gaussian Graphical Models. Scand J Stat 29(1993), 391–411 (2002).
	18.	 The ARIC Investigators. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am 

J Epidemiol 129(4), 687–702 (1989).

https://doi.org/10.1038/s41598-019-41362-3
https://www.ncbi.nlm.nih.gov/gap
https://www2.cscc.unc.edu/aric/


8Scientific Reports |          (2019) 9:5845  | https://doi.org/10.1038/s41598-019-41362-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

	19.	 Lucas, J. A. et al. Inhibition of transforming growth factor- signaling induces left ventricular dilation and dysfunction in the 
pressure-overloaded heart. AJP Hear Circ Physiol 298(2), 424–32; Available from: http://ajpheart.physiology.org/cgi/doi/10.1152/
ajpheart.00529.2009 (2010).

	20.	 Dobaczewski, M., Chen, W. & Frangogiannis, N. G. Transforming growth factor (TGF)-β signaling in cardiac remodeling. Journal 
of Molecular and Cellular Cardiology 51, 600–6 (2011).

	21.	 [provided by RefSeq, Jul 2008].
	22.	 Owen, V. J. et al. Expression of RGS3, RGS4 and Gi alpha 2 in acutely failing donor hearts and end-stage heart failure. Eur Heart J 

22(12), 1015–20 (2001).
	23.	 Galmiche, L. et al. Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum Mutat. 32(11), 1225–31 

(2011).
	24.	 Bello, N. A. et al. Association of weight and body composition on cardiac structure and function in the ARIC study (Atherosclerosis 

Risk in Communities). Circ Hear Fail. 9(8) (2016).
	25.	 Shah, A. M. et al. Rationale and design of a multicenter echocardiographic study to assess the relationship between cardiac structure 

and function and heart failure risk in a biracial cohort of community-dwelling elderly persons: The atherosclerosis risk in 
communities stud. Circ Cardiovasc Imaging 7(1), 173–81 (2017).

	26.	 Lang, R. M. et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s 
guidelines and standards committee and the Chamber Quantification Writing Group, developed in conjunction with the European 
Association of Echocardiograph. Journal of the American Society of Echocardiography 18, 1440–63 (2005).

	27.	 Reid, J. G. et al. Launching genomics into the cloud: Deployment of Mercury, a next generation sequence analysis pipeline. BMC 
Bioinformatics. 15(1) (2014).

	28.	 Tsamardinos, I., Brown, L. E. & Aliferis, C. F. The max-min hill-climbing Bayesian network structure learning algorithm. Mach 
Learn. 65(1), 31–78 (2006).

	29.	 Norouzi, M., Fleet, D. J., Salakhutdinov, R. & Blei, D. M. Hamming distance metric learning. Adv Neural Inf Process Syst. 1–9 (2012).
	30.	 Schuster, P., Fontana, W., Stadler, P. F. & Hofacker, I. L. From Sequences to Shapes and Back: A Case Study in RNA Secondary 

Structures. Proc R Soc B Biol Sci 255(1344), 279–84 (1994).
	31.	 Yazdani, H., Ortiz-Arroyo, D., Choroś, K. & Kwasnicka, H. On High Dimensional Searching Spaces and Learning Methods. Data Sci 

big data An Environ Comput Intell. 29–48 (2017).
	32.	 Broumand, A., Esfahani, M. S., Yoon, B. J. & Dougherty, E. R. Discrete optimal Bayesian classification with error-conditioned 

sequential sampling. Pattern Recognit. 48(11), 3766–82 (2015).
	33.	 Knight, J. M., Ivanov, I. & Dougherty, E. R. MCMC implementation of the optimal Bayesian classifier for non-Gaussian models: 

model-based RNA-Seq classification. BMC bioinformatics. 15(1), 401 (2014).
	34.	 Tseng, G. C. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of 

gene effects. Nucleic Acids Res 29(12), 2549–57 (2001).
	35.	 Chiara, S. Empirical Bayes Estimation of a Sparse Vector of Gene Expression Changes. Statistical Applications in Genetics and 

Molecular Biology. 4(1) (2005).
	36.	 McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17(1) (2016).
	37.	 Yousri, N. A. et al. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population. 

Nat Commun. 9(1) (2018).
	38.	 Yazdani, A., Yazdani, A., Liu, X. & Boerwinkle, E. Identification of Rare Variants in Metabolites of the Carnitine Pathway by Whole 

Genome Sequencing Analysis. Genet Epidemiol. 40(6), 486–91 (2016).
	39.	 Yazdani, A., Yazdani, A. & Boerwinkle, E. Rare variants analysis using penalization methods for whole genome sequence data. BMC 

Bioinformatics. 16(1), 405 (2015).
	40.	 Graham, E. et al. Integration of genomics and metabolomics for prioritization of rare disease variants: a 2018 literature review. 

Journal of Inherited Metabolic Disease 14, 435–45 (2018).
	41.	 Scheschonka, A. et al. RGS3 is a GTPase-activating protein for g(ialpha) and g(qalpha) and a potent inhibitor of signaling by 

GTPase-deficient forms of g(qalpha) and g(11alpha). Mol Pharmacol. 58(4), 719–28 (2000).
	42.	 Liu, Y. et al. Regulator of G protein signaling 3 protects against cardiac hypertrophy in mice. J Cell Biochem 115(5), 977–86 (2014).
	43.	 Zhang, S. et al. RGS3 and RGS4 are GTPase activating proteins in the heart. J Mol Cell Cardiol 30(2), 269–76 (1998).
	44.	 Zhang, P. & Mende, U. Regulators of g-protein signaling in the heart and their potential as therapeutic targets. Circulation Research. 

109, 320–33 (2001).
	45.	 Larminie, C. et al. Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. Mol Brain 

Res 122(1), 24–34 (2004).
	46.	 Wieland, T. & Mittmann, C. Regulators of G-protein signalling: Multifunctional proteins with impact on signalling in the 

cardiovascular system. Pharmacology and Therapeutics 97(2), 95–115 (2003).
	47.	 Talasaz, A. H. et al. N-Acetylcysteine Effects on Transforming Growth Factor-β and Tumor Necrosis Factor-α Serum Levels as Pro-

Fibrotic and Inflammatory Biomarkers in Patients Following ST-Segment Elevation Myocardial Infarction. Drugs R D 13(3), 
199–205 (2013).

	48.	 Douglas, P. S. The left atrium: A biomarker of chronic diastolic dysfunction and cardiovascular disease risk. Journal of the American 
College of Cardiology 42, 1206–7 (2003).

Acknowledgements
Thanks go to Dr. Boerwinkle for providing the data. Thanks also go to the staff and participants of the 
Atherosclerosis Risk in Communities (ARIC) Study for gathering the data. The ARIC Study is a collaborative 
study supported by the National Heart, Lung, and Blood Institute, National Institutes of Health, Contracts 
HHSN268201100005C, HHSN268201100006C and HHSN26-82011-00008C.

Author Contributions
Akram Yazdani defined the project, implemented the method, carried out the analysis and wrote the manuscript. 
Azam Yazdani collaborated on defining the approach and writing the manuscript. Raúl Méndez Giráldez 
collaborated on interpretating the results and writing the manuscript. David Aguilar contributed on interpretating 
the results and commented on the mauscript. Luca Sartore collaborated on implementating the algorithm.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-41362-3.
Competing Interests: The authors declare no competing interests.

https://doi.org/10.1038/s41598-019-41362-3
http://ajpheart.physiology.org/cgi/doi/10.1152/ajpheart.00529.2009
http://ajpheart.physiology.org/cgi/doi/10.1152/ajpheart.00529.2009
https://doi.org/10.1038/s41598-019-41362-3


9Scientific Reports |          (2019) 9:5845  | https://doi.org/10.1038/s41598-019-41362-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-41362-3
http://creativecommons.org/licenses/by/4.0/

	A Multi-Trait Approach Identified Genetic Variants Including a Rare Mutation in RGS3 with Impact on Abnormalities of Cardia ...
	Materials and Methods

	Study population. 
	Echocardiographic methods and measurements. 
	Whole exome sequencing. 
	Statistical methods. 
	Adjusting covariates. 
	Applying the Integrative Bayesian Multi-Trait approach (IBMT). 


	Results

	Discussion

	Acknowledgements

	﻿Figure 1 Venn diagram of study population with phenotype and genotype records.
	Figure 2 The Bayesian network over the cardiac traits.
	Figure 3 Histogram of BMI.
	﻿Figure 4 Identified genetic pathway to cardiac and structure and function using IBMT.
	Figure 5 Empirical Distributions of log (LV-MI) for individuals with reference/alternate alleles in NC_000017.
	Table 1 Cardiac structural and functional traits under study.
	Table 2 Selected genomic variants related to the traits, using a 98% Bayesian credible interval.
	Table 3 Estimated effect (Est-Eff) and standard deviation (SD-Eff) of the identified genes with significant effect on the traits.




