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The onset of the 2019 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pandemic necessitated the identification of approved drugs to treat the disease, before the
development, approval and widespread administration of suitable vaccines. To identify
such a drug, we used a visual analytics workflow where computational tools applied over
an AI-enhanced biomedical knowledge graph were combined with human expertise. The
workflow comprised rapid augmentation of knowledge graph information from recent
literature using machine learning (ML) based extraction, with human-guided iterative
queries of the graph. Using this workflow, we identified the rheumatoid arthritis drug
baricitinib as both an antiviral and anti-inflammatory therapy. The effectiveness of baricitinib
was substantiated by the recent publication of the data from the ACTT-2 randomised
Phase 3 trial, followed by emergency approval for use by the FDA, and a report from the
CoV-BARRIER trial confirming significant reductions in mortality with baricitinib compared
to standard of care. Such methods that iteratively combine computational tools with
human expertise hold promise for the identification of treatments for rare and neglected
diseases and, beyond drug repurposing, in areas of biological research where relevant
data may be lacking or hidden in the mass of available biomedical literature.
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INTRODUCTION

In late 2019 and early 2020 the new coronavirus SARS-CoV-2 spread rapidly from China to the rest
of the world, with over 3 million deaths recorded as of April 2021. There was little time to identify
effective therapeutics and certainly no time to develop new therapeutics and have them authorised by
the regulators. Although little was known about the virus SARS-CoV-2 and its resultant disease
COVID-19 at the turn of 2020, the experience of the SARS epidemic in 2003 offered some insights as
to the characteristics of a suitable treatment. Both viruses resulted in protracted respiratory illness
over several weeks, with resulting Acute Respiratory Distress Syndrome (ARDS), a major cause of
death. It was thought (Xu et al., 2020; Zhao et al., 2020) that, as for SARS, the cell-surface protein
Angiotensin Converting Enzyme 2 (ACE-2) could serve as a receptor for the new virus.

Recently, computer-enhanced methods for repurposing approved drugs have been developed
(Zhou et al., 2020a; Jarada et al., 2020). These include AI approaches (Nadeau et al., 2020; Zhou et al.,
2020b), and unbiased laboratory methods to identify the protein-protein interaction (PPI) networks
operating between the virus and the host (Gordon et al., 2020). In another approach, Zeng et al.
(2020) compiled a knowledge graph integrating scientific literature and drug properties in order to
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identify 41 approved drugs which could be used to treat COVID-
19. Of these, the anti-inflammatory steroids have shown some
efficacy (e.g. RECOVERY trial, Horby et al., 2021),
hydroxychloroquine has generally not, and the remainder have
not been tested in randomised clinical trials in this disease to our
knowledge. The antiviral drugs that were available had been
developed for the treatment of other viruses (e.g. lopinavir/
ritonavir for HIV and remdesivir for Ebola), so there was a
distinct possibility that they would not be effective against SARS-
CoV-2.

We describe here how, in early 2020, we used a visual analytics
approach using interactive computational tools in multiple
iterations to identify promising potential treatments. We used
BenevolentAI’s drug discovery knowledge graph (KG) of
biomedical data (Paliwal et al., 2020) which comprises
contents from dozens of biomedical databases, enhanced by
information from machine-read scientific literature, covering
the enormous amount of biomedical knowledge available
(approximately 30 M papers are cataloged in PubMed).
Although built for de-novo drug discovery, the inclusion of
approved drugs, treatments and other information made it a
suitable resource for drug repurposing. The KG includes
information on drugs, genes and proteins alongside
representations of mechanisms, processes and pathways. This
representation of biology was a key enabler to specifically target
host mechanisms subverted by the virus which could be safely
targeted.

We searched for approved drugs with anti-inflammatory
activity, to counter the overactive immune response that
characterises severe COVID-19 (Huang et al., 2020), along
with evidence of hitherto-unexplored antiviral properties. We
describe here the identification of the mechanisms and pathways
exploited by the virus in its infection of human cells, and the
subsequent identification of putative drug targets and drugs. The
outcome of the process was the identification of baricitinib, at the
time approved as a treatment for Rheumatoid Arthritis, as a
compelling candidate for treating patients with COVID-19.

MATERIALS AND METHODS

Knowledge Graph Construction
The BenevolentAI KG is a compendium of numerous data
sources represented as nodes and connecting relationships in a
graph structure, designed specifically for use in de-novo drug
discovery. Graph nodes are chiefly biomedical entities, such as
diseases, disease processes, pathways, proteins and compounds,
with directed relationships scoring various types of connection or
association between entities. The KG includes data from both
curated databases and literature sources, with its construction
described in Paliwal et al. (2020). Importantly, the graph is
enhanced for disease processes, mechanisms and pathways,
which allow exploration of novel diseases through an
understanding of the underlying biology.

Information extraction by Natural Language Processing
(NLP) algorithms cover gaps in established curated data. This
allows updates to the KG from the scientific literature on a regular

basis resulting in nearly 20% of the KG relationships being
derived from literature alone. The NLP pipeline that produces
these relationships allows for the quick inclusion of new data
permitting rapid augmentation of novel concepts, such as those
pertaining to COVID-19 and SARS-CoV-2. The relationships
between entities in the KG reflect the rich complexity of
biomedical information including causal relationships,
pathways, processes, group memberships, ontologies and
hierarchies.

A knowledge graph representation of biomedical information
(both curated and literature-derived) provides a unified and
common structure for retrieving information. This facilitates
the development and use of algorithms and computational
tools capable of carrying out knowledge discovery and data
mining (KDD) (Fayyad et al., 1996) within a drug discovery
context. The particular workflow described here consisted of a
combination of KDD and HCI methods (HCI-KDD) described
by Holzinger (2013); the KDD methods of automated data
mining and modeling of large data repositories, and the HCI
methods of expert-driven, interactive and visual analysis;
providing an effective iterative human-machine partnership
that led to the identification of baricitinib as a potential
treatment for COVID-19.

Analysis Tools
Two interactive exploration tools were used during the initial
stages of our COVID-19 research, a graph pattern querying tool
and a protein-protein interaction (PPI) network analysis tool.

Graph Pattern Querying
The graph pattern querying tool is used for purposeful querying
of the knowledge graph when the user has a specific question (e.g.
is mechanism/pathway X involved in disease Y?) and, as in this
case, to retrieve drug candidates which target specific
mechanisms. Users sketch complex questions in the form of
visual graph patterns consisting of known or unknown
information, requiring the system to satisfy gaps using
matching concepts, relationships and properties present in the
knowledge graph.

To enable non-technical domain experts to successfully
interrogate a large biomedical knowledge graph, an interactive
and visual pattern-building interface provides an intuitive means
for users to encode their questions and thoughts fluidly,
demonstrated by Blau et al. (2002), Chau et al. (2008) and
Pienta et al. (2016). The visual pattern being created also
provides a common language between experts from different
backgrounds - particularly biology and technology - resulting in a
collaborative environment that helps fuse drug discovery
expertise with data modeling expertise, to maximise retrieval
of the most promising results.

In almost all scenarios, the question or graph pattern that is
being built, is a product of multiple iterations of asking and
elaborating on an initial question. Often, but not always, starting
broad, and progressively getting narrower and more specific, the
process of graph pattern querying is a dialogue between an expert
user and the system, where the user explores what exists, what
does not exist, and what is possible given the graph data model.
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Executing patterns incrementally helps users to assess whether
graph pattern results are leading to relevant biological directions,
and whether or not to backtrack or change strategy–resulting in a
tree-like (or road map) journey of pattern creation, illustrated in
Figure 1. The flexibility and complexity that are inherent in the
construction of graph patterns are often representative of the
complexity of biology itself, as well as the informational
complexity required to model biomedical data in a graph
structure, and for this reason, iterative pattern creation with
fast feedback loops are important success factors in this workflow.

Network Analysis
The protein-protein interaction (PPI) network analysis tool is
designed to make sense of genes, proteins and their interactions,
and the emergent pathways involved in particular biological
mechanisms. The network analysis carried out using this tool
led to the identification of host pathways and processes likely to
be subverted by the virus. The tool permits user manipulation of
high-level biomedical concepts, such as diseases, biological

processes and biological pathways, in the form of their
protein-based representations and their interactions, which
result in PPI networks.

This approach, in combination with a heterogenous
knowledge graph data source, has been demonstrated to
provide an effective means of analysing and reasoning over
disease pathology at a high level (Goh et al., 2007; Lysenko
et al., 2016). A useful feature set surrounds the network
visualisation, which supports flexible importing of data from
the knowledge graph, manual importing of data, as well as
real-time importing from a literature database, enabling rapid
exploration and sensemaking of different biological narratives,
and importantly the assessment of hypotheses. The tool allows
users to import gene sets from a number of sources, visualise
them as networks via their PPIs, view and explore the biological
relationships in those networks, and identify targets of
therapeutic interest for a given indication. Representing
diseases and biomedical concepts behind the pathology of
diseases using gene sets is a fundamental approach to

FIGURE 1 | Example use-case of graph pattern querying: in search of targets regulating autoantibody production. Question mark symbols represent stages of
asking questions of the knowledge graph, which can result in undesirable results or a failed attempt at querying the knowledge graph (represented by red cross symbols),
or desirable results and successful attempts at querying the knowledge graph (represented by green check mark symbols). A diverging path represents the user
exploring possibilities down both routes, either as a result of a failed attempt, or as a result of there being two equally valuable options to pursue. A converging path
represents the user linking the results of two patterns together, in a new pattern.
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retrieving information from the knowledge graph, this is most
commonly encountered in bioinformatics via gene set enrichment
analysis (Subramanian et al., 2005), which provides higher-level
conceptual summaries of gene sets using biological pathways,
biological processes and other insightful conceptual terms.
Upon importing gene sets, networks are automatically
constructed using PPIs from a number of databases (Biogrid,
STRING, KEGG, SiGNoR, OmniPath) that exist within the
knowledge graph, and are spatially arranged using a force-
directed layout algorithm (Fruchterman and Reingold, 1991).
The accuracy and validity of PPIs exists on a spectrum—from
computationally inferred to human curated. PPIs also exist on a
spectrum of causality—from a non-directed, binary interaction, to
a directed interaction of a particular mechanism (e.g.
phosphorylation) and effect (e.g. activates). When retrieving
PPIs from the knowledge graph, it is possible to set criteria to
navigate these spectra in the tool, primarily to increase quality and
clarity of PPIs within networks–an example might be to increase
quality and causality if the network is overwhelmingly connected,
or to reduce quality and causality if the network has many
unconnected proteins. The criteria used in this workflow was
that all PPIs must have a regulatory effect - either up-regulating
or being up-regulated, or down-regulating/being down-regulated
by their interacting neighbor.

Complementary to the visual network structure that emerges
from the force-directed layout algorithm, topological communities
are also automatically identified and visualised to provide rough
topological modules of potential mechanistic roles. The community
detection algorithm used in this tool, and this research, is the
Louvain algorithm (Blondel et al., 2008), which leads other
community detection algorithms in terms of network size and
computational efficiency (Rahiminejad et al., 2019). The outputs
of community detection on these networks result in a visual and
interactive set of network modules that are often, but not always,
functionally distinct from one another. The advantages inherent in
such a visualised network structure include the identification of
pivotal proteins connecting different parts of the network
(Figure 2A), as well as the roles of specific pathways and
processes in and between the topological clusters (Figure 2B).

Further biological contextualisation of the network is supported
through mining literature where the top proteins associated in
paragraphs with a given text-based query, can be imported into
the network instantaneously, or if existing in the network already,
characterised based on their relevance to the search phrase. “Top” is
determined by two factors–the raw count of paragraphs in which they
co-occur (i.e. strength of association), and a normalised point-wise
mutual information score (Bouma 2009; Watford et al., 2018) that
captures how they occur independently of each other as well as
together (i.e. specificity of association). For biological concepts that are
most accurately described with nuanced phrases, and for mitigating a
lack of data coverage for particular biomedical entities, phrase
searching provides a flexible input (text-based, multi-part, word
inflections) and a high recall (paragraph-level granularity). These
combine to provide an effective literature extraction technique for
phrase-protein relationship extraction. In this way, the user can
explore and understand disease processes through PPIs, pathways,
biological processes, mechanisms and diseases simultaneously,

continuously adding and removing additional nuanced biological
concepts to test assumptions and follow their train of thought
fluidly, significantly enriching the exploration.

In this workflow, we focused on mechanisms related to viral
infection and the host inflammatory response to the virus, via the
creation and analysis of four networks illustrating the proteins,
pathways and processes which underlie these mechanisms.

Statistical Tests
Fisher’s exact test was used to determine the relevance of enriched
pathways and processes in specific gene sets. The SciPy
implementation in python, together with a contingency table
was used. The formula takes into account 3 variables: genes in the
network, genes in the pathway, and all genes in the KG. The
p-value is computed as follows:

p � ((a + b)
a

) p
((c+d)c )
( N
(a+c))

with the values as represented in the below contingency Table 1.

The p-value is adjusted for the false discovery rate using the
Benjamini and Hochberg procedure (Benjamini, 2010).

RESULTS

COVID-19 is a novel viral disease, and the graph did not
originally include significant amounts of pertinent
information as of January 2020. We therefore first
augmented the graph with coronavirus related information
from recent literature through our NLP pipeline. This
brought approximately 40,000 additional relationships into
the graph. New relationships consisted of disease, biological
process, tissue and compound entities, related together through
an unsupervised, rule-based model at the sentence level (“SVO,”
see Paliwal et al., 2020).

The repurposing workflow was then executed across three
stages: a graph pattern evaluation workflow for assessing the
quality of the customised knowledge graph, followed by a
network analytics workflow leading to the identification of
therapeutic mechanisms and druggable targets across those
mechanisms, and a final graph pattern querying workflow
identifying a number of approved drugs suitable for inhibiting
the target biology (Figure 3).

Evaluation of the Knowledge Graph with
Customised SARS-CoV-2 Relationships
Using the graph pattern querying tool, we performed a qualitative
assessment of the customised KG, which we had enriched with
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coronavirus related material. Three different queries were used to
identify the host proteins, pathways and processes impacted by
the virus. Table 2 lists the top ten host proteins, host pathways
and host biological processes identified as being closely related to
SARS-CoV-2 biology, identified using a relational graph pattern
query, created using the graph pattern query tool. They are
ranked according to the number of graph relationships with
the SARS-CoV-2 biology. The top ten host proteins included
the coronavirus receptors ACE2 and DPP4, the protease
TMPRSS2 (which is highly implicated in the activation of the
SARS-CoV-2 spike protein), and inflammatory cytokines most of
which were already implicated in COVID-19 disease. In the top
ten pathways implicated were angiotensin metabolism,
interferon alpha/beta signaling and cytokine signaling. The
top host biological processes associated with the virus
included viral entry into the cell and a host of inflammatory
processes. This exercise confirmed that the enriched graph
contained proteins, pathways and processes relevant to
coronavirus infection. After these three iterations of pattern
querying, a protein set representation of the SARS-/host
interactome (556 proteins) from the customised graph was
used to create the first network.

Network Construction, Analysis and
Iteration
After a qualitative graph evaluation, 556 host proteins were
exported from the graph as a result of the graph pattern query
“What are the proteins most associated with COVID-19 viral
processes?”. The initial network, created by importing the 556
host proteins into the network exploration tool, consisted of
2,286 protein-protein interactions and 16 modules (Figure 4).

Further context was then provided by a literature search for
terms relating to viral entry, in which the 500 proteins most
commonly co-occurring in the same paragraph with such terms

were identified. The top 250 proteins that were found in the initial
network, and in the co-occurrence results, yielded a second
network (Network 2) that had strong relevance to “viral
processes” in the SARS-CoV-2 customised knowledge graph, as
well as a strong “viral entry” association from literature.
Comparison of this network with the original showed that the
top 25 pathways were enriched in specific inflammatory response
pathways, (Supplementary Table 1). Similarly, the top 25
biological processes were enriched in viral and inflammation
specific processes (Supplementary Table 2). An assessment of
the functions of each module (or cluster of protein interactions)
revealed a small cluster of proteins containing clathrin, AP2M1 and
AAK1, which are associated with endocytosis and membrane
trafficking. This suggested that SARS-CoV-2 infection could be
mediated by clathrin mediated endocytosis (CME).

In order to include possible drug targets associated with CME,
the 10 proteins associated with clathrin in the network were
further enriched with the proteins and relationships of the CME
pathway. A literature paragraph co-occurrence search for
“clathrin-mediated viral endocytosis” was used to identify 250
proteins, 52 of which were already in Network 2. The 198 new
proteins were then added, resulting in Network 3, which included
clathrin associated pathways and “receptor-mediated
endocytosis” in the top 10 enriched biological processes
(Supplementary Table 3).

Finally, given the prominent role of cytokine-mediated
inflammation in COVID-19 disease, a third iteration was
performed to enrich for immune/inflammatory response
proteins related to endothelial and epithelial inflammation
with cytokine signaling. Adding the top 250 protein co-
occurrences from this search increased the network protein
count by 209 proteins and added metadata to 41 already
existing in the network.

The top biological processes and pathways of the final network
(Network 4) are summarised in Tables 2, 3 and Figure 5.

FIGURE 2 | (A) Pivotal proteins (represented by nodes A and B) are loosely defined as proteins that facilitate cross-talk between network modules. This has some
overlap with the notion of a node with high betweenness centrality (Freeman 1977), but there is emphasis on the node’s connectivity across network modules. Node A
represents a target belonging to the yellow network module and interacts with the highest number of targets in the blue module. Node B represents a target belonging to
the green network module and interacts with the highest number of targets in the yellowmodule. (B) Pathway membership, represented by nodes colored red, can
be scattered across different network modules. While the modules in the network may represent distinct GO processes, biological pathways serve multiple such
processes and are therefore seldom confined to one module.
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The major pathways represented in the final network are
summarised in Table 2. Multiple aspects of biology are reflected
in this network, summarising protein-protein interactions
implicated in virus induced inflammation, host response to the
virus, virus andmembrane trafficking as well as themajor signaling
pathways involved in these processes. One module of 31 proteins
was highly enriched in proteins associated with clathrin mediated
endocytosis and membrane trafficking (AAK1, ADRB2, AP1G1,
AP2A1, AP2B1, AP2M1, AP2S1, ARF1, ARF6, ARRB1, ARRB2,
ATG16L1, CLTA, CLTB, CLTC, CLTCL1, EPN1, EPN2, EPS15,
EPS15L1, FCHO1, FCHO2, FZD5, GAK, ITSN1, ITSN2, NECAP1,
NUMB, PICALM, RAB4A, SGIP1). We hypothesised that
inhibition of this process would reduce SARS-CoV-2 infection
and thus ameliorate the COVID-19 disease.

In summary, the original network contained host protein
relationships associated with virus-host interactions including
those involved in viral infection of cells and inflammation. These
processes were then enriched in order to identify pathways and
proteins which could be targeted in order to treat these infections.
In total, three iterations of network creation and modification
were required to enhance the network (Figure 3) involving 1) the
addition of genes to the network, 2) a filtering out of genes from
the network, and/or 3) the addition of metadata to genes already
existing in the network.

Identification of Drugs Inhibiting
Endocytosis and Inflammation
The modules relevant to CME and cytokine signaling were then
examined to see whether there were approved drugs which
inhibited them.

The graph pattern query tool was employed a second time - to
create simple graph pattern consisting of three nodes and two
relationships is shown in Figure 6. The first node in the pattern is
a defined protein group, containing the “endocytosis” related
proteins listed above. The second node in the pattern is a defined
protein group containing all proteins from the “cytokine
signaling” module in the network- a total of 75 proteins.
Lastly, the third node in the pattern is an undefined

compound, which is constrained to be a clinically approved
compound. The two connecting relationships in the pattern
are drug interaction relationships, which possess information
as to the efficacy of the drug on the protein (usually an IC50 or Kd
value).

Executing the pattern returned 16 approved drugs (Table 4)
that were reported to inhibit endocytosis proteins, and cytokine
response proteins. Of these, drugs 8 to 16 had pKd values too low
to inhibit the NAK enzymes at therapeutic exposures.

The free therapeutic plasma concentration and the observed
reduction in potency seen in cell-based assays when acting on their
primary targets was then taken into account when prioritising these
agents. Baricitinib shows a small reduction in potency in cell-based
assays (as little as 2-fold depending on the assay, McInnes et al.,
2019) and an unbound Cmax indicating that therapeutic exposures
would be sufficient to inhibit AAK1 and the related NAK enzyme
BIKE or BMP2K. Although sunitinib was amongst the most potent
of the approved inhibitors, the unbound Cmax achieved on
therapeutic dosing (<10 nM) was deemed insufficient to inhibit
the cytokine signaling enzymes given the low pChembl value
(Table 4). The reduction in potency from cell-free to cell-based
assays for fedratinib was large (Wernig et al., 2008), indicating that
it was also unlikely to be an effective NAK inhibitor at therapeutic
doses in vivo. Using these criteria, it was clear that baricitinib had
the pharmacokinetic and pharmacodynamic properties required
for repurposing as a combined JAK/NAK inhibitor i.e. a combined
anti-viral anti-inflammatory agent. In addition, baricitinib is
cleared through the kidneys, suggesting that combination
therapy with directly acting and hepatically metabolised
antivirals such as remdesivir was a likely possibility (Stebbing
et al., 2020a), a hypothesis that was assessed in the ACTT-2
randomised clinical trial (Kalil et al., 2021).

Clinical Trials of Baricitinib in COVID-19
Multiple observational clinical trials have shown that baricitinib
was safe for administration in COVID-19 patients, with reduced
mortality rates and/or accelerated recovery from the infection.
Table 5 summarises some aspects of these disparate trials. The first
(Stebbing et al., 2020b) involved the treatment of 4 patients in

TABLE 1 | Top 10 host proteins, pathways and GO processes associated with SARS-CoV-2 infection.

Rank Protein Protein
relationships

Pathway Pathway
relationships

Process Process
relationships

1 ACE2 6,413 Immune system 12,237 Positive regulation of transcription by RNA polymerase II 5,287
2 CDSN 3,873 Cytokine signaling in immune system 9,004 Viral entry into host cell 4,513
3 TMPRSS2 1,279 Metabolism of proteins 8,201 Signal transduction 3,815
4 DPP4 1,132 Signal transduction 7,345 Positive regulation of gene expression 3,490
5 ANPEP 1,032 Disease 4,109 Positive regulation of cell population proliferation 3,212
6 CD8A 816 Gene expression (transcription) 3,095 Negative regulation of transcription by RNA polymerase II 3,150
7 IFNG 774 RNA polymerase II transcription 2,960 Positive regulation of transcription, DNA-templated 3,141
8 CLEC4M 747 Post-translational protein

modification
2,945 Negative regulation of cell population proliferation 2,895

9 CTSL 742 Generic transcription pathway 2,940 Positive regulation of NF-kappaB transcription factor
activity

2,390

10 IL6 726 Signaling by receptor tyrosine
kinases

2,802 MAPK cascade 2,361
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Milan, Italy, all of them recovered. This was soon followed by other
reports from Italy, Bronte et al. (2020) reported on the treatment of
consecutive groups of patients in Verona where baricitinib reduced
the mortality by 95%, while Cantini et al. (2020) reported that no
patients taking baricitinib died and there was a strong reduction in
time to recovery. Even in severely ill and critical patients baricitinib
was safe and well tolerated (Titanji et al., 2020). In both Spain and
Italy propensity matched cohorts of patients showed baricitinib
reduced mortality by between 40 and 60% (Stebbing et al., 2021).
The randomised ACTT-2 trial in which baricitinib was
administered with remdesivir confirmed its therapeutic efficacy
when compared to treatment with remdesivir alone (1,033 patients
randomised 1:1). In this study the combination of baricitinib and

remdesivir resulted in a statistically significant reduction in
hospital stay and a reduction in mortality of 35% in all
hospitalised patients, and of approximately 50% in those
patients requiring oxygen supplementation on admission. In the
same patient group, the time to recovery was shortened from
18 days (remdesivir alone) to 10 days (combination) (Kalil et al.,
2021). Partly as a result of this trial and the data from observational
trials, the FDA granted an Emergency-Use-Authorisation in
November 2020. The CoV-BARRIER trial of baricitinib with
standard of care vs standard of care with baricitinib also
showed a 38% reduction in hospitalised patient mortality
(Marconi et al., 2021), despite the fact that 79% of the patients
were also treated with corticosteroids.

FIGURE 3 | The full drug repurposing workflow consisted of three stages. The first stage incorporated the evaluation of a customised knowledge graph via graph
pattern querying as a means of rapid qualitative evaluation. The second was a mechanistic analysis of viral and host processes, via the creation of an initial network using
a gene set representation of COVID19-related processes extracted from the customised knowledge graph. This was iterated three more times to achieve a final network
containing a clear hypothesis and therapeutic targets. The third stage resulted in a hypothesis as a partially defined graph pattern, from which targets and drug
candidates were retrieved, producing a final set of candidate treatments for COVID-19.
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DISCUSSION

We have described here how we enriched our biomedical
knowledge graph (Paliwal et al., 2020) using NLP, using it to
identify host biological processes and pathways that are
impacted by SARS-CoV-2 infection. Through workflow
iterations of graph pattern querying and protein-protein
interaction network exploration, a final network was found
to be significantly enriched for multiple disease mechanisms of
interest, in particular - viral infection and cytokine-mediated
inflammation, two processes involved in COVID-19. Finally,
we identified approved drugs capable of inhibiting these
processes and, after consideration of dosage and
pharmacokinetics, we selected baricitinib as an inhibitor of

both viral entry (through inhibition of AAK1 and BMP2K and
so CME) as well as cytokine mediated inflammation through
JAK1/2 inhibition.

A strength of this approach lies in the human-machine
interaction which enabled scientists to identify relevant
biological contexts through interactive and visual presentations
of data, combined with tooling that enabled them to augment
system-derived biological representations with their own
knowledge. This augmentation guided the workflow in
productive directions within hourly timeframes. Thus, we had
enriched our initial observations of viral process-associated
targets with clathrin-mediated endocytosis pathways, while
also enriching for the required anti-inflammatory properties of
the repurposed drug. The result of these iterations led scientists

FIGURE 4 | Initial network - the 556 imported genes from the graph. The different colored modules reflect clusters of protein interactions which reflect specific
pathways and processes. The modules 1 and 2 reflect inflammatory processes, module 3 signaling pathways, module 4 cholesterol metabolism and modules 5 and 6
coagulation cascades. The three processes most strongly associated with each module are listed in Table 6.

TABLE 2 | Top 20 enriched biological pathways (Reactome) in the final network.

Rank Name p value Matched Gene set

1 Immune system 1.32E-102 343 2,129
2 Cytokine signaling in immune system 6.36E-82 222 875
3 Signaling by interleukins 2.02E-66 155 458
4 Clathrin-mediated endocytosis 3.47E-40 75 145
5 Innate immune system 1.65E-27 150 1,044
6 Interleukin-10 signaling 3.91E-25 37 45
7 Cargo recognition for clathrin-mediated endocytosis 8.56E-25 49 105
8 Toll-like receptor cascades 3.97E-24 56 153
9 Vesicle-mediated transport 3.10E-23 111 669
10 Membrane trafficking 1.83E-21 104 630
11 Interleukin-4 and Interleukin-13 signaling 1.58E-20 44 108
12 Toll like receptor 4 (TLR4) cascade 8.76E-20 46 127
13 Interleukin-2 family signaling 3.31E-17 28 44
14 Interferon alpha/beta signaling 4.17E-17 33 70
15 Chemokine receptors bind chemokines 1.19E-16 30 57
16 Signal transduction 4.79E-16 217 2,786
17 Interferon signaling 2.30E-14 47 197
18 Diseases associated with the TLR signaling cascade 3.40E-14 20 24
19 Diseases of immune system 3.40E-14 20 24
20 Adaptive immune system 9.90E-14 96 745
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toward searching for appropriate drugs which could inhibit both
the virus and the inflammation associated with COVID-19.

This work was carried out in January 2020 and the
recommendation to use this drug was published in February
(Richardson et al., 2020). Partly as a result of these predictions
multiple observational trials ensued (Table 5), all showing that
baricitinib was safe to be administered to COVID-19 patients and
reducing mortality rates or accelerating recovery from the virus.
These results were consistent with the predicted antiviral and anti-
inflammatory action of baricitinib. The predicted antiviral efficacy
of baricitinib has also been demonstrated in human liver spheroids
and organoids (Stebbing et al., 2020b; Stebbing et al., 2021) while

the anti-inflammatory effects of this drug are well known and
underpin its approved use in rheumatoid arthritis.

The therapeutic efficacy of baricitinib in COVID-19 was
finally proven in the randomised ACTT-II trial in which
baricitinib in combination with remdesivir reduced time to
recovery and hospitalised patient mortality (Kalil et al., 2021).
Partly as a result of the ACTT-II trial and the data from
observational trials, the FDA granted an EUA in November
2020. Since then Eli Lilly and Co have reported a 38%
reduction in mortality with baricitinib in the CoV BARRIER
trial, despite the fact that 79% of the patients were taking
corticosteroids. In contrast NIAID have terminated (due to

FIGURE 5 | Third iteration, fourth and final network - 657 genes in 20 network modules identified via Louvain-based community detection using protein-protein
interactions. The largest 7 modules are annotated.

TABLE 3 | Top 20 enriched biological processes (Gene Ontology) in the final network.

Rank Name p value Matched Gene set

1 Cytokine-mediated signaling pathway 1.04E-71 116 279
2 Inflammatory response 1.49E-46 100 381
3 Membrane organisation 4.63E-44 66 133
4 Immune response 9.65E-42 85 297
5 Viral entry into host cell 1.83E-36 51 89
6 Innate immune response 2.40E-36 94 457
7 Positive regulation of interleukin-6 production 1.71E-30 45 89
8 Cellular response to lipopolysaccharide 6.86E-29 53 157
9 Defense response to virus 1.04E-28 58 200
10 Positive regulation of NF-kappaB transcription factor activity 7.07E-27 51 160
11 Response to virus 1.67E-25 42 104
12 Positive regulation of interleukin-8 production 1.40E-22 31 54
13 Endocytosis 3.11E-22 48 184
14 Positive regulation of I-kappaB kinase/NF-kappaB signaling 3.78E-22 48 185
15 Signal transduction 2.14E-21 108 1,006
16 Positive regulation of tyrosine phosphorylation of STAT protein 2.92E-21 32 68
17 Type I interferon signaling pathway 8.02E-20 30 65
18 I-kappaB kinase/NF-kappaB signaling 1.12E-19 30 66
19 Chemokine-mediated signaling pathway 1.57E-19 30 67
20 Positive regulation of tumor necrosis factor production 1.78E-19 27 49
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futility) the ACTT-IV trial comparing baricitinib to
dexamethasone, both in the presence of remdesivir. This
suggests that, in the presence of the anti-viral remdesivir,
corticosteroids and baricitinib have equivalent beneficial
effects, but in its absence baricitinib improves the response to
standard of care including corticosteroids. It is tempting to
speculate that this is due to the intrinsic anti-viral effect of
baricitinib identified in this report. One other Phase 3 trial
testing baricitinib is currently underway (NCT04390464,
TACTIC-R), which is due to report later in 2021.

The selection of baricitinib as the best possible approved drug for
inhibiting both viral entry and cytokine signaling was based mainly
onwhether the free exposure of the drug on therapeutic dosing could

be sufficient to inhibit both processes. Due to the lack of cell-based
assay data for the NAK enzymes we estimated the likely potency of
the drugs in cell assays using the reduction in drug potency seen at
their primary targets. Although this method is not very accurate it
gave an estimation of drug potency in vivowhich served to prioritise
the drugs in the light of the approaching pandemic.

The pKd values of sunitinib for the JAKs were seen to be too
low for it to have a significant effect on cytokine signaling. The
very high protein binding of midostaurin and pazopanib makes it
difficult to estimate their likely therapeutic exposures, but the
pKd values for the NAK enzymes suggested these compounds
were unlikely to inhibit CME. Similarly, the low pKd values of the
remaining drugs in Table 4 for the NAK enzymes, especially

TABLE 4 | Approved drugs associated with both endocytosis and cytokine signaling. The drugs approved by the FDA or EMA are indicated with their reported pKd values for
AAK1, BMP2K and GAK, and the targets in the cytokine signaling module (Figure 5) which they are reported to inhibit are listed. The highest pChembl value is that
reported for the first listed target (i.e. for baricitinib the pChembl value is for JAK2). The drugs are listed in order of affinity for AAK1.

Drug AAK1 GAK BMP2K Cell
based/
Cell
free

Cmax
free
(nM)

Cytokine
signaling
targets

Highest
pChemblpKd pKd pKd

1 SUNITINIB 7.96 7.7 8.26 1–5 8 [LCK, MAP2K2, JAK2, TYK2, JAK1, PTK2B] 6.6
2 BARICITINIB 7.88 5.33 7.4 2–5 68 [JAK2, JAK1, JAK3, TYK2] 9.1
3 FEDRATINIB 7.46 7.33 7.51 30–100 170 [JAK2, LCK, TYK2, JAK1, JAK3, BTK, PTK2B] 9.0
4 MIDOSTAURIN 6.38 <4.48 6.6 1 <17 [LCK, JAK2, TYK2, SYK, JAK1, JAK3, PTK2B] 6.6
5 RUXOLITINIB 5.45 <4.48 6.68 7 45 [JAK2, JAK1, TYK2, JAK3] 10.4
6 BOSUTINIB 5.32 7.38 6.46 25 18 [MAP2K2, LCK, EPHA2, SYK, BTK, PTK2B] 8.0
7 PALBOCICLIB 5.38 <4.48 — 23 35 [JAK3] 7.2
8 ERLOTINIB <4.48 6.29 5.51 180 [LCK, JAK3] 6.6
9 DASATINIB <4.48 6.8 — 7 [LCK] 9.7
10 DACOMITINIB <4.48 6.77 — 4 [BTK, LCK, EPHA2, TYK2, JAK3, SYK] 6.2
11 AFATINIB <4.48 5.75 — 8 [LCK] 7.0
12 FOSTAMATINIB <4.48 <4.48 — 15 [SYK] 7.8
13 PAZOPANIB <4.48 <4.48 — <1,000 [LCK] 6.3
14 TRAMETINIB <4.48 <4.48 — 1 [MAP2K2] 8.8
15 GEFITINIB <4.48 6.02 — 19 [LCK] 6.4
16 ALPELISIB <4.48 5.3 — 560 [PIK3CG] 6.6

FIGURE 6 | Graph pattern for finding approved drugs that are selective and effective against the two hypothesised driving mechanisms behind SARS-CoV-2
induced COVID-19.
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when considered in the light of their therapeutic exposures,
suggested that they also would be unlikely to inhibit CME.

It is perhaps no surprise that the antiviral targets of
baricitinib (AAK1, BMP2K and GAK) are kinases,
particularly as ATP competitive kinase inhibitors are
notoriously unselective. There was however a potential
drawback to using a JAK1/2 inhibitor such as baricitinib for
the treatment of viral diseases in that the Type I IFN antiviral
response also utilises JAK/STAT signaling pathways. Therefore,
it is possible that blockade of this response could worsen the
disease by weakening the antiviral IFN-mediated response.

There were reasons to doubt that this would be a significant
effect since IFN therapy has had inconsistent effects in antiviral
trials (Channappanavar et al., 2019), and in the SARS epidemic
patients with severe disease who were discharged from hospital
had low levels of Type 1 IFN stimulated gene expression,
whereas those who died had prominent Type 1 IFN activity
(Cameron et al., 2007). Although the hyper-inflammatory
severe phase of the COVID-19 illness occurs when the viral
load is already decreasing, viral shedding can occur up to
6 weeks after disease onset in patients experiencing severe
disease, (Chen et al., 2020; Wang et al., 2020), showing that
antiviral treatment is still required during the later phases of the
illness.

There are some important aspects to this KG and the tools
used to query it which enabled the identification of baricitinib in
48 h. These include the rapid NLP enrichment of a knowledge
graph, rapid feedback loops of questioning, answering and
workflow iteration, flexible and malleable starting points
(biological processes, diseases, pathways, phrases and gene set
representations of these) and the ability to rapidly contextualise
biological networks through literature mining. The successful
application of this combination of machine and human drug
repurposing in the pandemic suggests that the same approach
could be used to find treatments for other diseases, including
those which are rare or neglected.

Accordingly, our investigation included considerable guidance
of machine enriched data by human intuition and knowledge. A
lack of high-quality data, and gaps in the available data, can limit
the capabilities of machine trained systems. These limitations can
be compensated for by pragmatic approaches centered around
human guidance. The combined HCI-KDD method of a
machine, capable of reading a repository of knowledge at
scale, directed by an expert is, in theory, a powerful
partnership, provided certain capabilities are in-place–such as
building the system to be flexible enough to allow the user to

TABLE 5 | Summary of clinical efficacy of baricitinib. Stebbing et al., 2020a, No
controls, 4 patients; Bronte et al., 2020, with hydroxychloroquine, 8 mg/day
baricitinib for 2 days, followed by 4 mg/day for 7 days, consecutive patients
admitted with COVID; Titanji et al., 2020, no controls, 2–4 mg baricitinib 5–7 days
with hydroxy-chloroquine, 15 moderate-critical patients; Cantini et al., 2020,
moderate patients with lopinavir/ritonavir, 88% of those on baricitinib
recovered after 14 days (control 14%); Stebbing et al., 2021 propensity
matched patients, with antiviral medications including lopinavir/ritonavir; Kalil
et al., 2021: Patients requiring high flow oxygen or non-invasive ventilation
(ordinal groups 5 and 6), mortality at day 28, with remdesivir, median time to
recovery 10 days (control 18 days). Marconi et al., 2021: 38% reduction in
mortality at day 28, with standard of care. IMV: invasive mechanical ventilation.

Mortality/IMV n (%) Patient numbers

Observational studies Control Baricitinib Control Baricitinib

Stebbing et al. (2020b) — 0 — 4
Bronte et al., 2020 25 1 20 20
Titanji et al. (2020) — 4 — 15
Cantini et al., 2020 7 0 78 78
Propensity matched trials
Stebbing et al. (2021) 13 5 37 37
Stebbing et al. (2021) 16 9 46 46

Randomised trial
Kalil et al. (2021) 25 12 356 341
Marconi et al. (2021) 100 62 761 764

TABLE 6 | Biological process enrichment for the six largest modules in the initial network.

Module Process rank Process name Adjusted p
value

Matched in
network

Total gene
set

1 1 Inflammatory response 3.50E-33 54 381
1 2 Cytokine-mediated signaling pathway 3.14E-29 45 279
1 3 Immune response 5.04E-19 36 297
2 1 Positive regulation of cell migration 2.48E-05 10 227
2 2 Leukocyte migration 3.46E-05 8 130
2 3 Receptor internalisation 3.46E-05 6 42
3 1 Positive regulation of protein kinase B signaling 2.05E-34 26 166
3 2 Positive regulation of cell population proliferation 1.69E-26 28 497
3 3 MAPK cascade 7.44E-25 23 262
4 1 Cholesterol homeostasis 3.24E-12 8 84
4 2 Chylomicron remnant clearance 5.44E-10 5 8
4 3 Cholesterol metabolic process 2.72E-08 6 75
5 1 Fibrinolysis 8.01E-06 4 20
5 2 Positive regulation of fibrinolysis 0.02912269 2 4
6 1 Blood coagulation 1.00E-10 8 173
6 2 Blood coagulation, intrinsic pathway 2.26E-06 4 17
6 3 Platelet activation 1.20E-03 4 102
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repeatedly append and amend the content throughout workflow
stages. For example, in this paper we describe the means by which
a knowledge graph was enhanced, leading to increased confidence
in both the general biological mechanisms and specific targets of
interest.

It is worth noting that when multiple iterations are made,
trends and patterns detected in the data can also come and go in
rapid succession–and one important pattern detection method
used in this research was the topological community detection
in networks. When iterating on multiple networks–the
communities identified can drastically change size and location
based on the addition or omission of a single network node,
which poses a challenge when interpreting them across
multiple iterations of the same network. In this study, we
observed the endocytosis module, an immune system
module, and an inflammation module, were all often of the
same size in relation to each other and maintained similar
inter-module relationships and location in the network. This
suggested the importance, and prevalence of those three
mechanistic areas across the network iterations, so the
fragility of dynamic topological community detection
became instead a signal for detecting robust biology across
workflow iterations.

Although automated methods are largely free of user bias,
the biomedical literature suffers from different types and
levels of biological and informational bias. In the tools used
in this workflow, several metrics were embedded in views
while interpreting results; examples of these are normalised
point-wise mutual information scores for measuring the
specificity of literature co-occurrences, and Jaccard
similarity scores for measuring knowledge graph entity
similarity. In addition, the tools also feature visual and
interaction techniques that provide the expert with
multiple options of assessing relevancy (i.e. module
coloring and topological clustering rather than
informational clustering) and changing visual encodings of
information at hand. There is always a risk in a collaborative
human-machine knowledge discovery approach, in that the
inherent conscious or unconscious bias of the user will guide
the workflow toward well understood areas. Mitigation of this
risk lies both with the user and the design of the system, the

success of which is seen in experimental validation of
predictions.

Overall, the methodology described here points to a
pragmatic balance between scientist expertise and machine
power, in the face of an urgent worldwide health emergency.
While not instant, or push-button, this paper demonstrates that
it is possible to rapidly interrogate huge volumes of data to
purposeful effect, with clinically confirmed outcomes. While
this approach generated one of the earliest data-driven
discoveries in response to the COVID-19 pandemic, it does
not reflect BenevolentAI’s typical approach to de-novo drug
discovery, but we do anticipate that it will be increasingly used
by many in the future.
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