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Obesity and insulin resistance (IR) are well-studied risk factors for systemic cardiovascular
disease, but their impact on pulmonary hypertension (PH) is not well clarified. This study
aims to investigate if diet-induced obesity induces PH and if peroxisome-proliferator-
activated receptor (PPAR-g) and/or endoplasmic reticulum (ER) stress are involved in this
process. Mice were maintained on a high-fat diet (HFD) for 4 months, and IR and PH were
confirmed. In a separate group, after 4 months of HFD, mice were treated with
pioglitazone (PIO) or 4-phenylbutyric acid for the last month. The results demonstrated
that HFD for at least 4 months is able to increase pulmonary artery pressure, which is
maintained, and this animal model can be used to investigate the link between IR and PH,
without changes in ER stress in the pulmonary artery. There was also a reduction in
circulating adiponectin and in perivascular adiponectin expression in the pulmonary artery,
associated with a reduction in PPAR-g expression. Treatment with PIO improved IR and
PH and reversed the lower expression of adiponectin and PPAR-g in the pulmonary artery,
highlighting this drug as potential benefit for this poorly recognized complication
of obesity.

Keywords: obesity, insulin resistance, pioglitazone, PPAR-g, high-fat (HF) diet
INTRODUCTION

Pulmonary hypertension (PH) is a disease of the pulmonary circulation associated with an excessive
proliferation of vascular cells that may induce alterations in the resistance of the pulmonary arteries
(PAs), but systemic vessels are spared (1, 2). It may be idiopathic or familial, which are rare forms,
but most often, PH is associated with more common diseases such as left heart failure, collagen
vascular diseases, congenital heart disease, and AIDS, among others (1, 3). PH is defined by mean
pulmonary artery pressure ≥25 mmHg at rest or 30 mmHg during exercise, measured invasively
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during right heart catheterization (4, 5), and presented a
progressive increase in pulmonary vascular resistance, right
heart failure, and death in most patients after 5 years since
diagnosis (6, 7).

The molecular pathophysiology of PH has been studied in the
past years and involves multiple molecular pathways and triggers
including endoplasmic reticulum (ER) stress and signaling of
Notch, mutations in the bone morpho-genetic protein receptor II
(BMP-RII), hypoxia, viruses, tyrosine kinase receptors and
signaling pathways, hypoxia-inducible factor-1a (HIF-1a), and
peroxisome-proliferator-activated receptor (PPAR) (8–10). The
lack of complete understanding of the mechanisms underlying
PH limits the development of effective therapies.

Although obesity and insulin resistance (IR) are well-studied
risk factors for systemic cardiovascular disease, their impact on PH
is not well clarified. Zamanian and colleagues showed that patients
with PH have widespread metabolic dysfunction, including IR,
and also indicated that metabolic changes can occur due to
inhibition of an essential transcription factor, PPAR-g (11).
Patients who develop PH have reduced expression of apoE and
PPAR-g in their lungs, and deficiency of both is directly linked to
IR (12). On the other hand, Sutendra and collaborators considered
the ER stress present in endothelial muscle cells of the pulmonary
artery as a factor for the development of PH, placing ER stress as a
common molecular hypotheses among IR and PH (13).

However, the role of obesity in inducing PH, and the
molecular mechanism behind this process, is still scarce. In
this regard, the aim of the present study was to investigate if
diet-induced obesity is able to induce PH, and if so, whether
PPAR-g and/or ER stress are involved in this process.
METHODS

Animals
Male C57BL6/J mice were provided by the State University of
Campinas Central Breeding Center (Campinas, Brazil). Eight-
week-old male C57BL6/J mice were maintained under specific
pathogen-free conditions in a regimen of light/dark cycle of 12 h,
and temperature set to 23°C ± 2°C. All experiments were
conducted according to the “Guide for the Care and Use of
Laboratory Animals of the Institute of Laboratory Animal
Resources, US National Academy of Sciences” and were
approved by the Ethics Committee (Comissão de Ética no Uso
de Animais/Instituto de Biologia/Universidade Estadual de
Campinas number 2837-1).

Experimental Design
The animals were randomly divided into two groups with similar
body weights, according to the diet that they were assigned to
receive: control animals fed a standard rodent chow (8% fat, 26%
protein, and 54% carbohydrate, as a percentage of total kcal) (CTL
group) or a high-fat diet (55% of energy derived from fat, 29%
from carbohydrates, and 16% from protein) (HFD group) (14) for
4 months. Food and water were available ad libitum. After 4
months of feeding, the animals underwent echocardiographic and
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hemodynamic measurements before sacrifice. After fasting, blood
samples were collected and centrifuged at 3,000×g for 10 min at
4°C to obtain serum for the determination of basal insulin
(Millipore, St. Charles, MO, USA) and adiponectin (Millipore,
St. Charles, MO, USA) by ELISA. Glucose values were measured
from the tail venous blood of all animals with a glucose monitor
(Glucometer; Bayer, Tarrytown, NY, USA). HOMA-IR was
calculated from the fasting concentrations of glucose (mg/dl)
and insulin (mU/L) through the HOMA-IR index (HOMA-IR =
fasting glucose × fasting insulin/405). The animals that developed
PH (HFD) were treated for 30 days by oral gavage with PIO
(20 mg/kg/day—an agonist of PPAR-g) (15, 16) and 4-
phenylbutyric acid (PBA) (500 mg/kg/day—an inhibitor of
endoplasmic reticule stress) (17). CTL and HFD animals were
treated with vehicle as an internal control (Figure S1).

Intraperitoneal Glucose Tolerance Test
The mice fasted for 6 h before blood samples were collected.
After the collection of a fasting sample (time 0), the mice received
an injection of glucose (20% solution in saline) into the
peritoneum. Blood glucose measurements were assessed
through tail blood and repeated at 30, 60, 90, and 120 min
after glucose challenge.

Insulin Tolerance Test
The mice fasted for 6 h before blood samples were collected.
After the collection of a fasting sample (time 0), the mice received
one injection of insulin (1.5 IU/kg body weight) into the
peritoneum. Blood glycemia was verified at 5, 10, 15, 20, 25,
and 30 min. The constant rate for glucose disappearance (kITT)
was calculated from the slope of the least square analysis of the
blood glucose concentrations during the linear phase of decay.

Tissue Extraction and Western Blotting
The mice fasted for 6 h before procedures. Briefly, the mice were
anesthetized, and after assurance of loss of pedal and corneal
reflexes, they were intraperitoneally injected with insulin
(1 U/kg) or saline, and after 10 min, the pulmonary artery was
extracted and homogenized in extraction buffer [10 mmol/L
ethylenediaminetetraacetic acid (EDTA), 100 mmol/L Tris (pH
7.4), containing 100 mmol/L sodium pyrophosphate, 100 mmol/L
sodium fluoride, 10 mmol/L sodium vanadate, 2 mmol/L
phenylmethylsulfonyl fluoride (PMSF), and 0.1 mg of aprotinin/ml,
and 1% Triton-X 100]. The samples were centrifuged at 11,000 rpm
and 4°C, and the supernatants were used.

Western Blotting Analysis
The samples were treated with Laemmli sample buffer (100 mM
dithiothreitol) and heated at 100°C for 5 min, after which they
were subjected to sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE) in a Bio-Rad (Hercules, CA, USA)
miniature slab gel apparatus (Mini-Protean). Protein transfer
from the gel to nitrocellulose membranes was performed for 90
min at 120 V in a Bio-Rad Mini-Protean transfer apparatus (14).
Nonspecific protein binding to the nitrocellulose was reduced by
preincubating for 2 h in blocking buffer (5% non-fat dry milk,
10 mM Tris, 150 mM NaCl, and 0.02% Tween 20).
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The nitrocellulose blot was incubated overnight at 4°C with the
following antibodies: anti-Akt (SC-81434 mouse monoclonal),
anti-phospho-Akt (SC-7985 rabbit polyclonal), anti-phospho-
JNK (SC-6254 mouse monoclonal), anti-PPAR-g (SC-7273
mouse monoclonal), and anti-b−tubulin (SC-5274 mouse
monoclonal). The secondary antibody linked to a peroxidase
molecule reacted with the chemiluminescence solution
(ClarityTM Western ECL substrate kit, BioRad©), and the
membranes were developed in photodocumentation (Gel
Doc™ XR, BioRad©), generating digital files. Later, the images
were analyzed using the software ImageLab (v. 5.2.1 build 11,
Bio-Rad © Laboratories). The Akt phosphorylation levels were
normalized by total Akt levels.

Hemodynamic Measurements
The mice were anesthetized with inhalation of isoflurane 2%
(1 ml/ml), intubated, and mechanically ventilated (115 breaths
per minute, FiO2 = 1). A micromanometer pressure catheter
(SPR 671, 1,4F 56 cm, Mikro-Tip®, Millar) was placed into the
right ventricle for intraventricular arterial pressure monitoring
(18). Systemic arterial pressure, heart rate, and right ventricular
systolic pressure (RVSP) were recorded and analyzed using a
PowerLab 8/35 A/D converter data acquisition system (Chart,
AD Instruments, Colorado Springs, CO, USA). After data
acquisition, the pulmonary artery was removed, and the
animals were euthanized.

Echocardiography
The echocardiographic studies were performed using a murine-
dedicated system (Vevo 2100® equipment—Visualsonics®,
Toronto, Canada) with a 40-mHz transducer, in 4 months
HFD mice, as previously described (19, 20). Anesthesia was
performed by placing the animal in a closed chamber ventilated
with a titratable mixture of oxygen and isoflurane. The mouse
was then placed on a 40°C-heated platform in the dorsal
decubitus position, with continuous provision of isoflurane and
shaved left hemithorax. Heart and respiratory rates were
recorded continuously throughout the study. High-quality RV
outflow pulsed-wave Doppler echocardiography was obtained
from parasternal short-axis view 2D echocardiography. The
following variables were measured: pulmonary acceleration
time (PAT, measured from the beginning of RV outflow to the
peak in ms) and RV ejection time (ET, the time from the onset to
the end of RV outflow, in ms). The PAT/ET correlation ratio was
calculated as described by Thibault et al. (21). Three cardiac
cycles were analyzed and averaged for each measurement.

RNA Extraction and Quantitative PCR
The messenger RNA (mRNA) level was determined in the
isolated pulmonary artery. After total RNA purification and
complementary DNA (cDNA) synthesis, quantitative PCR
(qPCR) was performed as previously described (22). Specific
primers were used for amplification of ATF6, Ire-1a, CHOP,
PERK, PPAR-g, and eIF2a, adiponectin genes; glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) and b-actin were used as
endogenous control genes. The results were expressed as relative
expression values compared to the respective CTL group.
Frontiers in Endocrinology | www.frontiersin.org 3
Statistical Analysis
All analyses were run in triplicate, and the results were expressed
as mean ± standard deviation (SD); the number of animals used
in each experiment are described in the figure legend. Differences
between means were first analyzed by Student’s t-test or one-way
ANOVA, followed by the post-hoc comparisons with Bonferroni
test, where necessary (p < 0.05). The multiple comparisons test
was used when appropriate. Statistical analysis was carried out
with GraphPad Prism v.7.00 (GraphPad Software, San Diego,
CA, USA).
RESULTS

Characterization of Diet-Induced
Insulin-Resistant Mice Model
Previous data demonstrate that IR seems to increase the risk of PH
(11, 23). Despite this, no study has been reported in the literature
that shows the effect of a high-fat diet (HFD) and a well-described
obese IR model, in the development of PH. In this regard, herein,
we assessed the PH after 4 months of HFD. Before measuring PH,
we first confirmed IR in our mice model. We observed that HFD
group exhibited significant weight gain compared to animals fed
on chow diet, i.e., the control group (CTL) (Figure 1A). The high-
fat fed animals also presented superior insulin and glucose
intolerance, as evidenced by lower constant for insulin tolerance
test (kITT) and higher area under the curve (AUC) in the glucose
tolerance test (GTT) when compared to their CTLs (Figures 1B,
C). Additionally, high-fat feeding resulted in elevated fasting blood
glucose and insulin levels, along with higher homeostasis model
assessment insulin resistance (HOMA-IR) compared to lean
animals (Figures 1D–F). Lastly, we measured the circulating
levels of adiponectin, an adipokine that is secreted by adipose
tissue and shows an inverse correlation to the amount of adipose
tissue, and here, we show a decrease in adiponectin levels in HFD
group when compared to CTL group (Figure 1G).

High-Fat Diet for 4 Months Presents Slight
Effects on PH
After confirming both obesity and IR status, the next step was to
perform high-resolution transthoracic echocardiography and
catheterization in CTL and mice with obesity. According to a
validated study on echocardiographic measurements using
catheterization (21), pulmonary acceleration time (PAT) values
below 21 ms or PAT/ejection time (ET) ratio lower than 39%
correlates with increased RVSP and, consequently, PH. Thus, the
lower PAT/ET ratio, the higher the values of RVSP.

In the current study, we hypothesized that the measurements
obtained by catheterization would be similar to those reported in
models induced by monocrotaline with RVSP values >25 mmHg
(24–26). Indeed, animals fed on an HFD displayed a more
pronounced decrease in PAT than the ET, which in turn
resulted in significant reduction in the PAT/ET ratio
(Figures 2A, B). These data are directly related to the values of
pulmonary arterial pressure obtained through catheterization.
Regarding RVSP, we saw a significant increase in all HFD
September 2021 | Volume 12 | Article 701994
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animals when compared to their respective CTL group
(Figure 2C). Although not significant because of the small
number of animals studied, there was a clear tendency to have
a correlation between RVSP and HOMA-IR in HFD mice (r =
0.7434 and p = 0.0903) (Figure 2D). Furthermore, there was a
significant correlation between RVSP and adiponectin (r =
−0.676 and p = 0.0016) (Figure 2E).

PH in HFD-Fed Mice Is Mediated by the
Decrease in PPAR-g Expression and
Protein Levels in Pulmonary Artery
To investigate if the molecular mechanism of PH could be
associated to the deleterious effects of obesity, we evaluated the
gene expression of ER stress markers ATF6, Ire1a, CHOP, PERK,
and eIF2a in the pulmonary artery of CTL and HFD animals fed
for 4 months (Figures 3A–E). We also observed JNK protein
phosphorylation in CTL and HFDmice (Figure 3F). As shown in
Figure 3, the results do not indicate a clear participation of ER
stress in the PH observed in the mice with obesity.

Since PPAR-g is reduced in lungs of patients who develop PH
(12), we investigated if HFD fed mice presented a reduction in
PPAR-g gene and protein expression in the pulmonary artery. As
evidenced in Figure 4A, PPAR-g protein level shows an increase
after 1 month of HFD returning to control levels at 2 months of
HFD and decreasing at 4 months of HFD. Furthermore, at 4
months, PPAR-gmRNA and protein levels are decreased in HFD
mice (Figures 4B, C). Additionally, adiponectin mRNA, a
Frontiers in Endocrinology | www.frontiersin.org 4
marker of PPAR-g activity, is also decreased in HFD mice
when compared to CTLs (Figure 4D). In accordance with
previous data (27), PPAR-g protein levels were reduced in liver
and muscle of HFD after 2 months of this diet but not in adipose
tissue, and this reduction was maintained at 4 months of HFD
(data not shown).

PPAR-g Agonist Treatment Improves
PH in HFD Mice
Since PPAR-g and adiponectin mRNA levels are decreased in the
pulmonary artery, and adiponectin circulating levels are also low
in mice with obesity, we treated these mice with an agonist of
PPAR-g, PIO. PIO treatment was able to decrease HFD fasting
blood glucose (Figure 5A) and also improve glucose and insulin
tolerance, as evidenced by lower AUC of the GTT and higher
kITT (Figures 5B, C). Interestingly, when we analyzed insulin
signaling through Akt phosphorylation, we observed that PIO
treatment was not able to reverse insulin signaling in the artery of
mice with obesity (Figures 5D, E), even though it clearly
improved whole-body insulin sensitivity.

Furthermore, PIO treatment was able to increase the PPAR-g
protein amount when compared to HFD (Figure 6A). Additionally,
circulating adiponectin levels are also increased after PIO treatment
(Figure 6B). We analyzed the measurements obtained by
catheterization and observed that PIO treatment was able to
decrease the RVSP to levels similar to CTL mice (Figure 6C);
these results are also confirmed by the echocardiogram data
A B

D E F G

C

FIGURE 1 | (A) Representative graphics of body weight in CTL mice (CTL, n = 8) and HFD mice fed (HFD n = 10). (B) kITT (CTL n = 5 and HFD n = 5). (C) Curve
and AUC during the GTT (CTL n = 5 and HFD n = 7). (D) Fasting blood glucose (CTL n = 5 and HFD n = 5). (E) Fasting serum insulin (CTL n = 5 and HFD n = 5).
(F) HOMA-IR calculated from the fasting concentrations of glucose (mg/dl) and insulin (mU/L) (CTL n = 5 and HFD n = 5). (G) Adiponectin levels (CTL n = 5 and HFD
n = 9). Values represent mean ± SD. **p < 0.01 vs. CTL; ***p < 0.001 vs. CTL.
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(Figure 6D) that show an increase in the PAT/ET in PIO treated
mice when compared to HFD.

To further verify the role of ER stress in our model, we also
treated mice with an inhibitor of ER stress, PBA. Similar to PIO
treatment, PBA was able to ameliorate some aspects of glucose and
insulin intolerance, with decreased fasting blood glucose
(Figure 5A), lower AUC in the GTT (Figure 5B), and increased
kITT (Figure 5C). In addition, we also investigated the role of ER
stress in insulin resistance in different tissues, through blockage of
this phenomenon with PBA. The results showed that PBA
improved insulin signaling in liver and adipose tissue but not in
muscle (Figure 5D), and in pulmonary artery, this improvement is
only mild (Figure 5E), pointing that ER has minimal or no role in
insulin resistance in these last two tissues. However, PBA was not
able to increase adiponectin levels (Figure 6B), and for this reason,
Frontiers in Endocrinology | www.frontiersin.org 5
no difference was observed in RVSP in PBA-treated mice when
compared to HFD mice (Figure 6C), although echocardiogram
results show an increase in PAT/ET (Figure 6D).
DISCUSSION

In the past 50 years, experimental and clinical studies have
clearly shown a link between IR and cardiovascular disease.
Although this link related to PH was previously suggested (28,
29), our report is the first experimental demonstration that HFD-
induced IR, by itself, is accompanied by sustained PH established
after 4 months of this diet. Previous data have shown that apoE-
knockout mice on an HFD developed PH; clearly, these animals
A

B

D E

C

FIGURE 2 | (A) Representative images and quantification graphics (B) of PAT, ET, and PAT/ET ratio obtained by RV outflow pulsed-wave Doppler echocardiography
from CTL mice (CTL, n = 12) and HFD mice (HFD n = 15). (C) RVSP obtained by catheterization from CTL mice (n = 5) and HFD mice (n = 6). (D) Correlation of RVSP/
HOMA-IR in HFD mice (n = 6). (E) Correlation of RVSP/adiponectin in HFD mice (n = 6). Values represent mean ± SD. *p < 0.05 vs. CTL, **p < 0.01 vs. CTL.
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A B

D E F

C

FIGURE 3 | Representative graphics of ER stress markers relative gene expression, (A) ATF6, (B) IRE1, (C) CHOP, (D) PERK, and (E) eIF2a of the pulmonary
artery from CTL mice (n = 5) and HFD mice (n = 5). (F) Protein amount of phosphorylated JNK protein of the pulmonary artery from CTL mice (n = 4) and HFD mice
(n = 4). Values represent mean ± SD. *p < 0.05 vs. respective CTL.
A B

DC

FIGURE 4 | (A) Representative Western blots of PPARg and b-tubulin from the pulmonary artery in CTL mice (n = 4) after 1, 2, or 4 months of HFD (n = 4).
(B) Representative graphics of relative gene expression of PPAR-g and of (C) PPAR-g protein amount and (D) of relative gene expression of adiponectin from the
pulmonary artery from CTL mice (n = 5) and HFD mice (n = 5). Values represent mean ± SD. *p < 0.05 vs. respective CTL.
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also developed an evident level of pulmonary atherosclerosis,
which may be a bias in the correlation of IR with PH (12). Our
model of obesity-induced IR showed an increase in pulmonary
artery pressure, with an RVSP variation of 6–9 mmHg and also
confirmed after catheterization, which was not based on left
ventricular dysfunction and seems to be similar to other PH
animal models induced by other methods (30, 31).

The molecular mechanisms of IR in liver, adipose tissue, and
vessels in obesity can be unified through ER stress, which also
accompanied different triggers of PH. More than 30 years ago,
Frontiers in Endocrinology | www.frontiersin.org 7
electron microscopy studies of PH tissues showed abnormal ER
structure, suggesting that ER stress may have a pathophysiological
role in this vascular alteration. More recently, the protein Nogo-B,
a regulator of ER structure, was shown to be involved in PH
through disruption of an ER-mitochondria unit and apoptosis
suppression (13). However, in our model of obesity-induced PH,
we did not find ER stress in the pulmonary artery, investigated
through expression of PERK, IRE-1, and CHOP, suggesting that
in this model of PH, ER stress may not be involved. Additionally,
our data showed that ER stress has a tissue-specific regulation in
A

B

D

E

C

FIGURE 5 | (A) Fasting blood glucose, (B) curve and AUC during the GTT, and (C) kITT from CTL mice (n = 5), HFD mice (n = 6), HFD mice treated with PIO (n = 5),
and HFD mice treated with PBA (n = 5). (D) Western blot of phosphorylated Akt protein with or without insulin stimulation in liver, adipose tissue, and skeletal muscle from
CTL mice (n = 4), HFD mice (n = 4), HFD mice treated with PIO (n = 4), and HFD mice treated with PBA (n = 4). (E) Western blot of phosphorylated Akt protein with or
without insulin stimulation in the pulmonary artery from CTL mice (n = 4), HFD mice (n = 4), HFD mice treated with PIO (n = 4), and HFD mice treated with PBA (n = 4).
Values represent mean ± SD. *p < 0.05 vs. same group without insulin, **p < 0.01 vs. CTL, #p < 0.05 vs. HFD.
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insulin resistance, with an important role in liver and adipose
tissue, but not in muscle, and only a mild or no role in pulmonary
artery. Reinforcing these data, the treatment of mice with PBA,
which attenuate systemic ER stress, mildly improved systemic IR
and insulin signaling in the pulmonary artery but did not change
PH. These data indicate that PH in obesity may be independent of
ER stress and also of insulin signaling in the pulmonary artery.

Obesity and IR have complex interplay, and previous data
have shown that in obesity, the IR may have a tissue-specific
regulation and, in some situations, a pathway-specific defect (32–
38), indicating that other pathways might be involved in the
association between IR and PH. It is important to mention that
systemic insulin resistance evaluated through HOMA showed a
tendency of correlation with pulmonary artery hypertension in
HFD mice. In this regard, we can suggest that the reduction in
adiponectin levels in HFD mice may have an important role
in this association. Reduced levels of adiponectin are uniformly
observed in IR, and increased levels of this hormone reverse IR
and reduce the risk of developing type 2 diabetes mellitus (39).
Moreover, our data showed a clear inverse correlation between
adiponectin levels and pulmonary hypertension. The reversal of
Frontiers in Endocrinology | www.frontiersin.org 8
IR in HFD mice treated with PIO, associated with an increase in
circulating adiponectin and partial improvement in PH, suggests
that this hormone may directly contribute to the reduction in
pulmonary artery pressure. In addition to circulating levels, the
reduced expression of adiponectin in perivascular adipose tissue
of the pulmonary artery was also reversed by PIO, suggesting a
possible paracrine effect of this adipocytokine. Adiponectin is
able to reduce the mitogenic function of vascular smooth cells,
possibly through reduction in PDGF-BB and also to suppress
intimal thickening.

Moreover, one of the most important findings of our data is
the reduction in PPAR-g RNA and protein expression in the
pulmonary artery in obesity-induced PH, which are both
reversed by PIO. Right ventricular heart failure is the
convergent cause of death in most patients with PH. Previous
data showed that PPAR-g has a vasoprotective role in smooth
muscle cells and also endothelial cells, probably through a
metabolic regulation (40) and that deletion of PPAR-g in
cardiomyocytes induces intramyocellular lipid accumulation
and systolic dysfunction in both ventricles. In another PH
model, the SU5416/hypoxia (SuHx) rat model, there is
A B

DC

FIGURE 6 | (A) Western blot of PPAR-g in the pulmonary artery from CTL mice (n = 4), HFD mice (n = 4), HFD mice treated with PIO for 30 days (n = 4).
(B) Circulating adiponectin levels from CTL mice (n = 4), HFD mice (n = 4), HFD mice treated with PIO for 30 days (n = 4), and HFD mice treated with PBA for 30
days (n = 4), (C) RVSP obtained by catheterization, and of PAT, ET, and PAT/ET ratio obtained by RV outflow pulsed-wave Doppler echocardiography from CTL
mice (CTL, n = 6), HFD mice (n = 6), HFD mice treated with PIO for 30 days (n = 6), and HFD mice treated with PBA for 30 days (n = 5). (D) Quantification graphics
of PAT, ET, and PAT/ET ratio obtained by RV outflow pulsed-wave Doppler echocardiography from CTL mice (n = 5) and HFD mice (HFD n = 5), HFD mice treated
with PIO for 30 days (n = 5), and HFD mice treated with PBA for 30 days (n = 5). Values represent mean ± SD. *p < 0.001 vs. CTL, ***p < 0.001 vs. CTL and
#p < 0.05 vs. HFD.
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l ipotoxicity in the heart associated with epigenetic,
transcriptional, and metabolic alterations (16). In this model, it
was demonstrated that PIO can normalize lipid metabolism and
mitochondrial dysfunction, reversing the epigenetic and
transcriptional alterations and improving right ventricular
(RV) failure and PH.

Previous data showed that loss-of-function mutations in the
BMP-RII gene frequently occur in cases of familial and idiopathic
PH and that this alteration would decrease endogenous PPAR-g
activity (6, 41). It is important to mention that BMP-2 may
activate PPAR-g. In this regard, the activation of PPAR-g by PIO
may at least partially reverse PH in these patients. More
importantly, BMPR-II is a dominant gene with low penetrance,
resulting in only 20% of affected family members developing the
disease, reinforcing the important role of acquired factors such as
obesity and IR to potentiate BMPR-II mutations.
CONCLUSIONS

In summary, the results of the present study demonstrated that a
HFD for at least 4 months is able to increase pulmonary artery
pressure, and this animal model can be used to investigate the
link between IR and PH. In this model, there was a reduction in
circulating adiponectin and in perivascular adiponectin
expression in the pulmonary artery, associated with a
reduction in PPAR-g expression in this artery. Treatment with
PIO improved IR and PH and reversed the lower expression of
adiponectin in perivascular and PPAR-g in the pulmonary artery,
highlighting this drug as potential benefit for this poorly
recognized complication of obesity.
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Gonçalves et al. PIO Improves Obesity-Pulmonary Hypertension
12. Hansmann G, Wagner RA, Schellong S, de Jesus Perez VA, Urashima T, Wang
L, et al. Pulmonary Arterial Hypertension Is Linked to Insulin Resistance and
Reversed by Peroxisome Proliferator–Activated Receptor-g Activation.
Circulation (2007) 115(10):1275–84. doi: 10.1161/circulationaha.106.663120

13. Sutendra G, Dromparis P, Wright P, Bonnet S, Haromy A, Hao Z, et al. The
Role of Nogo and the Mitochondria–Endoplasmic Reticulum Unit in
Pulmonary Hypertension. Sci Trans Med (2011) 3(88):88ra55. doi: 10.1126/
scitranslmed.3002194

14. Tobar N, Oliveira AG, Guadagnini D, Bagarolli RA, Rocha GZ, Araújo TG, et al.
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