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Purpose: Pituitary adenomas (PAs) are the secondmost common intracranial neoplasms.
Total surgical resection was extremely important for curing PAs, whereas tumor stiffness
has gradually become the most critical factor affecting the resection rate in PAs. We aimed
to investigate the molecular mechanisms of tumor stiffening and explore novel medications
to reduce stiffness for improving surgical remission rates in PA patients.

Methods: RNA sequencing, whole-genome bisulfite sequencing, and whole exome
sequencing were applied to identify transcriptomic, epigenomic, and genomic
underpinnings among 11 soft and 11 stiff PA samples surgically resected from
patients at Peking Union Medical College Hospital (PUMCH). GH3 cell line and
xenograft PA model was used to demonstrate therapeutic effect of sunitinib, and
atomic force microscopy (AFM) was used to detect the stiffness of tumors.

Results: Tumor microenvironment analyses and immunofluorescence staining indicated
endothelial cells (ECs) and cancer-associated fibroblasts (CAFs) were more abundant in
stiff PAs. Weighted gene coexpression network analysis identified the most critical
stiffness-related gene (SRG) module, which was highly correlated with stiff phenotype,
ECs and CAFs. Functional annotations suggested SRGs might regulate PA stiffness by
regulating the development, differentiation, and apoptosis of ECs and CAFs and related
molecular pathways. Aberrant DNA methylation and m6A RNA modifications were
investigated to play crucial roles in regulating PA stiffness. Somatic mutation analysis
revealed increased intratumoral heterogeneity and decreased response to immunotherapy
in stiff tumors. Connectivity Map analysis of SRGs and pRRophetic algorithm based on
drug sensitivity data of cancer cell lines finally determine sunitinib as a promising agent
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targeting stiff tumors. Sunitinib inhibited PA growth in vitro and in vivo, and also reduced
tumor stiffness in xenograft PA models detected by AFM.

Conclusion: This is the first study investigating the underlying mechanisms contributing to
the stiffening of PAs, and providing novel insights into medication therapy for stiff PAs.

Keywords: pituitary adenoma, stiffness-related gene, DNA methylation, m6A, sunitinib

INTRODUCTION

Pituitary adenomas (PAs) are the second most common type of
intracranial tumors, accounting for approximately 15% of
primary central nervous system tumors (Ostrom et al., 2014).
The mass effect of PA and secondary hypopituitarism and the
multisystem complications caused by excessive secretion of
hormones seriously reduce the quality of life and increase the
mortality of PA patients (Molitch, 2017). During the past few
decades, transsphenoidal surgery has been the first-line therapy
for PAs, and only a few patients gain limited benefits from
radiotherapy and medical treatments (Tabaee et al., 2009;
Molitch, 2017; Almutairi et al., 2018). However, gross total
resection can only be achieved in 66–78% of PA patients
(Tabaee et al., 2009; Almutairi et al., 2018). Despite concurrent
treatments, many patients still suffer repeated recurrence of
tumors, with a 10-years recurrence rate as high as 7–12%
(Reddy et al., 2011; Salomon et al., 2018). Hence, pursuing
total resection of tumors during surgery and exploring new
targeted drugs have become hopeful directions for reducing
recurrence and curing PA patients. Due to the complicated
anatomic structure in the sellar region and the limited
operative field of view, it is very difficult for neurosurgeons to
completely remove pituitary tumors with stiff texture, large size,
and cavernous sinus invasion. In particular, tumor stiffness has
become the most critical factor that affects the surgical resection
rate despite the rapid progression of endoscopic surgery systems
(Zhao et al., 2010; Sughrue et al., 2011). Soft tumors, even with
larger size and cavernous sinus invasion, can be easily curetted
through suctioning and usually have a better surgical outcome.
Hence, achieving a better understanding of the underlying
mechanisms of tumor stiffness and exploring novel
medications to transform stiff tumors into soft ones are
important for improving remission in PA patients.

Multiple studies have found that changes in tissue mechanical
properties can both precede and drive disease treatment (Kai
et al., 2016; Northcott et al., 2018), with tumor stiffness
correlating with prognosis in several tumor types, including
colorectal cancer, breast cancer and pancreatic ductal
adenocarcinoma (Colpaert et al., 2001; Paszek et al., 2005; Kai
et al., 2016; Laklai et al., 2016; Northcott et al., 2018; Anlaş and
Nelson, 2020; Shen et al., 2020). At the tissue level, stiffness is
governed by the cell cytoskeleton (Grady et al., 2016) and the
extracellular matrix (ECM) (Humphrey et al., 2014). Fibrillar
collagens are the most abundant ECM scaffolding proteins and
contribute significantly to tissue stiffness (Mouw et al., 2014).
Aberrant ECM remodeling with collagen I (COL-I) enrichment
have been identified as major causes of tissue stiffening during

cancer progression (Levental et al., 2009; Pickup et al., 2014). As
the major source of ECM, CAFs further modify the tumor
mechanical environment by expressing lysyl oxidase (LOX), an
amine oxidase that initiates the process of covalent
intramolecular and intermolecular crosslinking of collagen
(Kagan and Li, 2003; Levental et al., 2009). In experimental
models, inhibiting matrix stiffening via LOX inhibition
ameliorates tumor growth and improves therapy (Levental
et al., 2009). Thus, CAFs are regarded as a promising
therapeutic target for limiting cancer progression (Pickup
et al., 2014). Despite these findings, the molecular mechanisms
that regulate the mechanical properties and contribute to
stiffening in PAs still await elucidation.

Additionally, PA stiffness can be predicted through magnetic
resonance imaging (MRI). Several studies testing the ability of
MRI strategies utilizing machine learning algorithms to predict
the tissue consistency of PAs have been performed (Hughes et al.,
2016; Fan et al., 2019; Yao et al., 2020). Such strategies can help to
determine individualized therapeutic schemes for PA patients.
For those patients predicted to have stiff tumors, preferential use
of medications that reduce tumor stiffness preoperatively might
significantly improve the surgical resection rate.

In this study, by performing comprehensive multi-omics
analyses of transcriptomic, genomic, DNA methylation, and
m6A RNA methylation data from soft and stiff tumors, we
aimed to explore the specific alterations associated with the
unique biology of stiff tumors and the underlying mechanisms
contributing to the stiffening of PAs. Furthermore, the responses
to targeted therapy and immunotherapy were also explored to
demonstrate the potential therapeutic value of treating stiff PA
tumors. Sunitinib, the most critical predicted drug, was applied to
treat PAs in vitro and in vivo in order to explore whether sunitinib
could inhibit tumor growth and reduce stiffness.

MATERIALS AND METHODS

Human Samples
We prospectively enrolled 30 patients with nonfunctioning PAs
who underwent transsphenoidal adenectomy at Peking Union
Medical College Hospital (PUMCH) between April 2018 and
June 2018. All patients received pituitary endocrinological and
neuroradiological evaluations before and after surgery and were
diagnosed with nonfunctioning PAs confirmed by postoperative
histopathology. The inclusion criteria were as follows: 1) intact
and available perioperative endocrine examinations and sellar
MRI; and 2) no history of pituitary surgery, radiotherapy or
medical treatment (e.g., bromocriptine or cabergoline)
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preoperatively. During the surgical procedure, the consistency of
the pituitary tumor was classified as stiff or soft by at least two of
four experienced neurosurgeons together (Bahuleyan et al., 2006).
In contrast to that of other solid tumors, the stiffness of PAs can
be easily distinguished in most instances. Soft pituitary tumors
are pasty, loose, and amenable to being suctioned out piecemeal
with an aspirator, whereas stiff pituitary tumors grow to be almost
firm spherical ellipsoids and cannot be removed easily with
suction despite vigorous movement of the suction tips
(Bahuleyan et al., 2006). Postoperatively, fresh tumor
specimens were immediately frozen in liquid nitrogen and
then stored at −80°C. After rigorous screening according to
the inclusion criteria, 22 samples, including 11 soft and 11
stiff pituitary tumors, were used for integrated transcriptomic,
genomic, and epigenomic profiling analyses. This study was
approved by the Institutional Ethics Committee and
Institutional Review Board of PUMCH (No. S-K431), and
informed consent was obtained from all participants for the
publication of any potentially identifiable images or data
included in the study.

DNA and RNA Extraction
Pituitary tumor samples (10–50 mg) were powdered under liquid
nitrogen. DNA was extracted and purified following proteinase K
digestion using a TIANamp Genomic DNA Kit (TIANGEN
Biotech, Catalog No. DP304-03). DNA concentrations were
determined using a Qubit DNA HS Assay Kit (Thermo Fisher,
Catalog No. Q32854). The DNA quality was assessed with Agilent
2,200 TapeStation Genomic DNA Analysis (Agilent
Technologies).

Total RNA was extracted using TRIzol reagent (Thermo
Fisher, Catalog No. 15596018). The RNA quality was checked
by Agilent 2,200 TapeStation RNA Analysis (Agilent
Technologies) to determine the RNA integrity number (RIN).
The RNA was considered acceptable for cDNA library
construction when the RIN was >7.0.

RNA Sequencing
cDNA libraries were constructed for each RNA sample using the
TruSeq Stranded mRNA Library Prep Kit (Illumina, Inc.)
according to the manufacturer’s protocols. The quality of the
cDNA libraries was assessed with the Agilent 2,200 system, and
the libraries were sequenced with the HiSeq X Ten system
(Illumina, Inc.) with a 150 bp paired-end run. Raw reads were
filtered with FAST-QC. Before read mapping, clean reads were
obtained from the raw reads by removing the adaptor sequences
and low-quality reads. The clean reads were then mapped to the
human genome hg19 sequence (GRCh37) using HISAT2 (Kim
et al., 2015). HTseq was used to generate gene counts, and the
RPKM method was used to determine gene expression (Anders
et al., 2015).

Whole-Genome Bisulfite Sequencing
Genomic DNA was bisulfite converted with the EZ DNA
Methylation-Gold Kit (Zymo Research) and then processed
with the TruSeq DNA Methylation Kit (Illumina, Inc.)
according to the manufacturer’s instructions for WGBS library

construction. The tagged WGBS libraries were used for 150 bp
paired-end sequencing in a single lane of the HiSeq X Ten system
(Illumina, Inc.) with 10-15% phi-X for base balance. Before read
mapping, clean reads were obtained from the raw reads by
removing the adapters and sequences at the 5′ and 3′ ends
with methylation bias by using Trim Galore. The bisulfite
mapping of methylation sites, including alignment to human
genome hg19 (GRCh37), removal of duplicates, and extraction of
clean reads to a CpG count matrix, was performed by utilizing
Bismark and then indexed by Bowtie2 (Krueger and Andrews,
2011; Langmead and Salzberg, 2012).

Exome Sequencing and Variant Calling
To generate standard exome capture libraries, we used the Agilent
SureSelectXT Reagent Kit (Agilent, Catalog No. G9611B)
protocol for the Illumina HiSeq Paired-end Sequencing
Library, SureSelectXT Human All Exon v6 system (Agilent,
Catalog No. 5190-8864), followed by sequencing of libraries
using paired-end mode (2 × 75 bp) on the HiSeq X Ten
(Illumina, Inc.). Raw reads were filtered and evaluated with
FAST-QC. Before read mapping, clean reads were obtained
from the raw reads by removing the adaptor sequences, reads
with >5% ambiguous bases (noted as Ns) and low-quality reads
containing more than 20% bases with qualities of <20. The clean
reads were then aligned to the human genome hg19 sequence
(GRCh37) using BWA-MEM with the default settings (Houtgast
et al., 2018). Variant calling was performed by using the GATK3
(version 3.6) standard pipeline with default parameters based on
the mapping bam file, which was sorted, indexed and
deduplicated with SAMtools and recalibrated with GATK tools
(McKenna et al., 2010; Li, 2011). Mutation sites were annotated
by the VEP analysis pipeline and filtered by the following criteria:
allele frequency<0.01 in common frequency databases, such as
gnomAD; IMAPCT over moderate; mutation frequency >0.1;
sequencing depth >10; intolerant or damaging impact on protein
structure and function predicted by the SIFT and PolyPhen-2
databases (McLaren et al., 2016; Amadori et al., 2020).

Analysis of the Tumor Microenvironment
and Immunogenomic Patterns of PAs
To clarify the cellular components of the PA TME, the xCell
algorithm was employed to accurately quantify the abundances of
64 cell types within the admixtures of tumor samples by using the
xCell package in R (Aran et al., 2017). The enrichment levels of 7
subgroups of epithelial cells, nine subgroups of hematopoietic
progenitors, 21 subgroups of lymphoid cells, 13 subgroups of
myeloid cells, and 14 subgroups of stromal cells were estimated
via single-sample gene set enrichment analysis (ssGSEA) based
on the gene expression profiles of PAs (Hänzelmann et al., 2013).
The Estimation of Stromal and Immune Cells in Malignant
Tumors using Expression Data (ESTIMATE) algorithm was
utilized to assess factors of the overall TME, including the
abundances of intratumoral stromal and immune cells and
tumor purity, based on the transcriptomic profiles of PA
samples (Yoshihara et al., 2013). The immune and stromal
scores were used to represent the abundances of immune and
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stromal cells, the ESTIMATE score were used to represent general
nontumoral components, and tumor purity was used to reflect
general tumoral proportions. CIBERSORT, a deconvolution
algorithm based on linear support vector regression, was also
utilized to quantify the abundances of 22 subtypes of tumor-
infiltrating immune cells (TIICs) in PAs (Newman et al., 2015).
Furthermore, 31 immune signatures (gene sets) introduced by
He et al. (2018) were utilized to reflect the overall immune
activity of solid tumors in terms of the types, related immune
functions and molecular pathways of TIICs, and these
factors were quantified by the ssGSEA algorithm
(Supplementary Table S1). Then, based on the enrichment
scores of those immunogenomic signatures, unsupervised
hierarchical clustering was performed to categorize PA
patients into different clusters according to immune subtype.
The high immunity group included “immune hot” tumors,
which had the highest enrichment scores; the low immunity
group included “immune cold” tumors, which had the lowest
enrichment scores; and the medium immunity group included
“immune altered” tumors, which had the potential to transform
into hot or cold tumors (Wang et al., 2021). Additionally, to
elucidate the functional heterogeneity of cancer cells at single-
cell resolution, the gene signature profiles of 14 functional states
of cancer cells obtained from CancerSEA were evaluated by
ssGSEA using transcriptomics data from PA samples
(Supplementary Table S1) (Yuan et al., 2019).

Immunofluorescence Analysis
Immunofluorescence (IF) staining was performed on formalin-
fixed, paraffin-embedded (FFPE) sections of tumor tissues.
Briefly, FFPE tissues were cut into 4 μm sections, followed by
deparaffinization and rehydration using xylene and ethanol.
Next, the slides were incubated in EDTA antigen retrieval
buffer at subboiling temperature and then in blocking solution
(BSA; G5001, Servicebio) for 30 min at room temperature. The
slides were incubated overnight with primary antibodies,
including anti-CD31 (ab28364, Abcam), anti-von Willebrand
factor (VWF) (bs-10048R, Bioss), anti-smooth muscle actin-α
(αSMA) (A2547, Merck), and anti-S100A4 (bs-3759R, Bioss)
antibodies, followed by incubation with fluorochrome-
conjugated secondary antibodies for 50 min at room
temperature. DAPI (G1012, Servicebio) was used to stain cell
nuclei. Pictures were taken with an Ortho fluorescence
microscope (ECLIPSE C1, NIKON). All staining was
quantified using NIH ImageJ 1.51s analysis software with the
same threshold for each stain.

Gene Set Variation Analysis
GSVA was utilized to evaluate the 50 most significantly
enriched hallmark pathways obtained from the Molecular
Signatures database (MSigDB) (Subramanian et al., 2005) in
soft and stiff tumors by using the GSVA package in R
(Hänzelmann et al., 2013). Differential analysis of the
enrichment scores of molecular pathways between two
groups was performed with the limma package in R (Smyth
et al., 2005). The hallmark pathways with |t value| > 4,
indicating a false discovery rate (FDR) < 0.05, were

considered the most differentially enriched molecular
pathways between the two groups (Lambrechts et al., 2018).

Weighted Gene Coexpression Network
Analysis
The differentially expressed genes (DEGs) between soft and stiff
tumors were identified by using the edgeR package in R based on
the raw count data (Robinson et al., 2010). The criteria for
selecting DEGs were Benjamini–Hochberg corrected FDR
<0.05 and |fold change (FC)| > 2. Next, the coexpression
network for the DEGs was constructed by the WGCNA
package in R based on the RPKM data (Langfelder and
Horvath, 2008). First, sample clustering was performed to
detect outliers. The pickSoftThreshold method was used to
select an appropriate soft threshold (power) to achieve a scale-
free topology fit index >0.85 and maintain optimal mean
connectivity. Afterwards, the adjacency matrix was
transformed into a topological overlap matrix (TOM) to
define gene coexpression similarity, and gene hierarchical
clustering for TOM-based dissimilarity was performed to
obtain the hierarchical clustering dendrogram. The Dynamic
Tree Cut package was used to identify the modules with a
minimum gene size of 50, and then the similarity cut-off was
set to 0.75 to merge the modules after calculating the dissimilarity
of module eigengenes (MEs), representing the overall expression
profiles of each module. The adjacency of the MEs of all modules
was determined by Pearson correlation analysis.

Identification of Clinically Significant
Modules
Pearson correlation analyses betweenMEs and clinical traits were
performed to determine the key gene signatures associated with
the stiffness of tumors. Furthermore, gene significance (GS) was
calculated as the absolute value of the correlation between each
gene within MEs and each trait, and module membership (MM)
was calculated as the correlation of the gene expression profile
and each ME. A high correlation between GS and MM suggested
a highly significant association between the modules and clinical
traits (Zhang and Horvath, 2005).

Construction of the Protein-Protein
Interaction Network and Functional
Enrichment Analysis of Key MEs
The genes within the key module associated with stiffness were
mapped with the STRING database (http://string-db.org) to
evaluate their functional associations, and a combined score
>0.4 was defined as significant (Mering et al., 2003). The PPI
network, representing the topology of the interactions between
SRGs, was constructed and visualized by Gephi software. To
further explore the biological properties and molecular
mechanisms of the SRGs, gene ontology (GO) enrichment
analyses were performed with the ClueGO plug-in of
Cytoscape (Bindea et al., 2009). An FDR <0.05 was considered
significant.
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Identification of Differentially Methylated
Regions and DMR-Associated Genes
DMRs between soft and stiff tumors were identified by using
the DSS package in R (Park and Wu, 2016). First, the
DMLtest function was used to perform statistical tests for
differentially methylated loci (DML), including estimating
mean methylation levels for all CpG sites and dispersions at
each CpG site and performing the Wald test. Based on the
DML results, the callDMR function was applied to identify
DMRs consisting of at least four statistically significant CpG
sites. A |delta| > 0.1 and p < 0.01 were considered the
thresholds for determining DMLs and DMRs. Genes
overlapping with DMRs in the whole genome were
considered DMR-associated genes.

Evaluation of m6A Modification
To explore the potential roles of RNAmodifications in regulating
the stiffness of PAs, three types of m6A regulators, including 2
demethylases (erasers), 7 methyltransferases (writers), and 11
RNA binding proteins (readers), were compared between soft and
stiff tumors (Li et al., 2019). The post-methylation regulation of
stiffness-related mRNAs was evaluated by Pearson analysis of the
correlation between the expression of readers and SRGs. The
overall effects of m6A in regulating the stiffness of PAs were
comprehensively assessed as reported in the literature (He et al.,
2019).

Somatic Mutation Analysis
The different genomic variations between soft and stiff tumors
were explored by somatic mutation analysis. The mutation
types and frequencies of the top mutated genes were visualized
by a waterfall plot using the maftools R package (Mayakonda
et al., 2018). The differentially mutated genes (DMGs) between
soft and stiff tumors were detected by the mafComapre
function, which used Fisher’s test to compare all genes
between the two groups. An FDR <0.05 was considered
statistically significant. As reported by previous studies,
mutation of transcription factors (TFs) plays a critical role
in the development and progression of multiple cancers. The
differentially mutated TFs were visualized by a lollipop plot.
The target genes of TFs were obtained from the Gene
Transcription Regulation database (GTRD, http://gtrd.
biouml.org/) based on the ChIP-seq data. Tumor mutation
burden (TMB) was defined as the total number of
nonsynonymous mutations in the coding region per
megabase (Budczies et al., 2018). Tumor heterogeneity was
inferred by clustering variant allele frequencies (VAFs) using
the inferHeterogeneity function, which clustered variants to
infer clonality. According to the VAF clustering, clones were
defined as either mutations that occurred in most cancer cells
or that only existed in a small number of cells (subclones). The
mutant-allele tumor heterogeneity (MATH) score is a novel
quantitative measure of intratumoral genetic heterogeneity that
calculates the width of the VAF distribution (Mroz et al., 2015).
Tumors with high heterogeneity and a high subclonal fraction

tend to experience immune evasion and resist immunotherapy
(Guan and Shastri, 2018).

Prediction of Targeted Drugs for PAs and
Therapeutic Response
The Connectivity Map (CMap) database (https://clue.io/) was
employed to explore potential compounds targeting the
molecular pathways and genes associated with the stiffness of
PAs (Subramanian et al., 2017). The SRGs of stiff tumors were
considered potential targets of compounds used to query the
CMap database. The enrichment scores of compounds were
calculated, and compounds with enrichment scores < -95 and
p < 0.05 were considered potential therapeutic drugs for stiff PAs.
The most enriched mode of action (MoA) and corresponding
drugs were selected for further analysis. Drug sensitivity data of
cancer cell lines obtained from the Cancer Cell Line Encyclopedia
(CCLE) project were obtained from the Genomics of Drug
Sensitivity in Cancer database (GDSC, https://www.
cancerrxgene.org/) (Geeleher et al., 2014a). These data provide
the half maximal inhibitory concentration (IC50) as the measure
of drug sensitivity, and lower IC50 values indicate increased
sensitivity to compounds. After integrating the gene expression
profiles of cell lines (as the training set) and PA samples (as the
test set), the IC50 values of drugs in PA patients were estimated by
ridge regression analysis via the pRRophetic R package, and the
prediction accuracy was assessed by 10-fold cross-validation
(Geeleher et al., 2014b).

Prediction of the Response of PAs to
Immunotherapy
The Tumor Immune Dysfunction and Exclusion (TIDE, http://
tide.dfci.harvard.edu/) algorithm quantifies T cell dysfunction
signatures by testing how the expression of each gene in solid
tumors affects the infiltration of cytotoxic T lymphocytes (CTLs)
to influence the immunotherapy response (Jiang et al., 2018).
TIDE scores, which are suggestive of the clinical response to
immunotherapy, were calculated based on the gene expression
profiles of PA samples. A TIDE score <0 was considered to
indicate sensitivity to immunotherapy, and >0 was considered to
indicate resistance to immunotherapy. In addition, an
unsupervised subclass mapping (https://cloud.genepattern.org/
gp/) method was utilized to predict the clinical response to
anti-PD1 and anti-CTLA4 therapy in soft and stiff tumors
(Hoshida et al., 2007). An FDR <0.05 was considered to
indicate a significant response to immune checkpoint
inhibitors (ICIs).

Cell Culture
The GH3 cell line were purchased fromNational Infrastructure of
Cell Line Resource (Beijing, China) and cultured in DMEM/F12
medium supplemented with 15% horse serum, 2.5% fetal bovine
serum, and an antibiotic-antimycotic solution. Cell cultures were
maintained in an incubator at 37°C and 5% CO2.
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Cell Viability Assay
For Cell Counting Kit-8 (CCK-8) cell viability assays, cells were
seeded in 96-well plates at a density of 5,000 cells per well and
then incubated with dimethyl sulfoxide (DMSO; control) or a
series of 2-fold-diluted concentrations of sunitinib (cat. no.
S7781, Selleck) for 2 days. Six parallel wells were used for each
concentration of the drugs. After incubation, CCK-8 assays (cat.
no. CCK-8, Dojindo) were performed to measure cell viability
according to the manufacturer’s instructions.

Xenograft Experiment
A total of 12 Wistar Furth rats were used for generation of the
GH3 xenograft model. Four-week-old female rats were
subcutaneously injected with GH3 cells (5 × 105) into the left
lumbar area. Tumor size was measured every 3 days, and tumor
volume was calculated as width2 × length × 0.5. Twelve rats were
randomly divided into 2 groups, including drug treatment group
and control group. sunitinib was intragastrically administered at a
dose of 40 mg/kg once daily when the tumor volumes approached
approximately 100 mm3. All rats were sacrificed upon completion
of the 12-days experiment, and the tumors were excised, weighed,
and maintained in PBS at 4°C for stiffness analysis. All animal
experiments and euthanasia were approved by Animal Care and
Use Committee of PUMCH.

Atomic Force Microscopy-Based Young’s
Modulus Measurement of Tumor Samples
Resected xenograft PA samples were cut to proper size by a
scalpel and immobilized on 6 cm-cell culture dishes
(Thermofisher, cat. no. 15462) with two slices of 1mm× 5 cm-
parafilm (Bemis, PM-996). Then the tissues were immersed in 1×
PBS, and applied to the AFM force-measuring setting. A
homemade AFM from Institute of Biophysics, Chinese
Academy of Sciences was used in this study. Using constant
force mode, more than 2000 force-to-distance traces (force
curves) were recorded and more than 300 traces were selected
for each group. The slope K (pN/nm) of every trace was calculated
and then transformed to Young’s modulus (kilopascal, kPa) by
using JPK Data Processing software. The final Young’s modulus
of each tumor was calculated taking into account all traces
recorded for a single tissue sample. The tumor stiffness
between sunitinib treatment and control group were compared
bymean Young’s modulus of each group, which was calculated by
the Gaussian fitting via the amplitude version of Gaussian peak
function (GaussAmp) in Origin software.

Statistical Analyses
Independent Student’s t test was utilized for continuous
variables and the χ2 test was utilized for categorical variables
when making comparisons between two groups. The Mann-
Whitney U test was used to compare categorical variables and
nonnormally distributed variables between two groups. The
Kruskal–Wallis test was used to compare multiple groups.
Correlation analysis was performed by the Pearson
correlation test, and a p value <0.05 and |correlation
coefficient| > 0.3 were considered to indicate significant

correlation. The statistical analyses in this study were
performed with R 3.6.1 software. A two-tailed p value <0.05
was considered to indicate statistical significance.

RESULTS

Clinicopathological Features of Soft and
Stiff PAs
The demographics and clinicopathological features of 22 PA
patients are summarized in Table 1. In general, almost all the
clinical variables did not differ significantly between soft and stiff
tumors. Gross total resections were achieved in all soft PAs
(100%), whereas 18.2% of stiff tumors were only subtotally
resected via transsphenoidal surgery due to firm texture. After
a long-term follow-up (2.35 ± 0.06 years), recurrence occurred in
three patients (all from the stiff tumor group), with an average
recurrence time of 1.30 years. The recurrence in two of these
patients was due to the active growth of residual tumors.

ECs and CAFs Were More Abundant in
Stiff PAs
The overall workflow of this integrated transcriptomic,
genomic, and epigenomic profiling analysis is displayed in
Figure 1. First, the xCell algorithm was employed to quantify
the cellular components of PA samples, including epithelial,
hematopoietic progenitor, lymphoid, myeloid, and stromal
cell clusters (Figure 2A). Then, the ESTIMATE algorithm was
employed to assess the overall TME of PAs. Compared with
the respective scores in soft tumors, the stromal and
ESTIMATE scores were significantly higher and the tumor
purity score was significantly lower in stiff PAs (all p < 0.05),
and stiff PAs demonstrated high abundances of general
stromal cells and low tumor purity (Figure 2B). However,
the immune score did not differ significantly between soft and
stiff tumors, and the CIBERSORT algorithm also
demonstrated no significant difference in the infiltration
abundances of the majority of TIICs between the two
groups (Figure 2C). Next, the enrichment levels of 31
immune signatures, representing the overall immune
activity of PAs, were quantified by ssGSEA, and the 22 PA
patients were classified into three immune subtypes by
unsupervised hierarchical clustering (Figure 2D). The
distributions of soft and stiff tumors in the high-, medium-
, and low-immunity groups did not differ significantly (p =
0.659).

Among all the cellular components of PA samples, general
ECs, lymphatic ECs, microvascular ECs, and CAFs showed
significantly higher abundances in stiff tumors than in soft
tumors (Figure 2E), and they were highly positively correlated
(Figure 2F). Furthermore, to elucidate the functional associations
between ECs, CAFs and 14 functional processes of cancer cells,
Pearson correlation analysis was used, and the results
demonstrated that general, lymphatic, and microvascular ECs
were negatively correlated with the cell cycle, DNA damage/
repair, hypoxia, and stemness, whereas CAFs were positively
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correlated with angiogenesis, apoptosis, epithelial-mesenchymal
transition (EMT), hypoxia, inflammation, invasion, metastasis,
and proliferation (Figure 2G). To verify the difference in stromal
cells between soft and stiff tumors, we performed
immunofluorescence staining of CAF markers (αSMA and
S100A4) and EC markers (CD31 and VWF) (Figure 2H).
Significantly higher expression levels of αSMA, S100A4, CD31
and VWF were observed in stiff tumors than in soft tumors,
suggesting that there are higher abundances of CAFs and ECs in
stiff PAs.

GSVA was further performed to explore the hallmark
pathways and underlying molecular mechanisms associated
with the stiffness of PA samples. A total of 23 differentially
enriched molecular pathways were identified, including 18
pathways positively correlated with stiff tumors and five
pathways positively correlated with soft tumors (Figure 2I).
EMT was the most significant hallmark pathway related to
stiff PAs, suggesting a potential molecular mechanism
underlying the stiff phenotype.

All these findings suggest that stromal cells, especially ECs and
CAFs, and EMT might play critical roles in contributing and
promoting the stiffening of PAs, whereas immune cells might not
be associated with the stiffness of PAs.

Identification of the Top Stiffness-Related
Gene Module of PAs by WGCNA
A total of 1,288 DEGs between soft and stiff PAs were identified,
including 759 upregulated and 529 downregulated genes in stiff
tumors, and the results are displayed in the volcano plot
(Figure 3A). To determine the phenotypic relevance of the

DEGs, WGCNA was performed to identify the most critical
gene module related to the stiffness of tumors. By using the
pickSoftThreshold method, 30 was selected as the soft-
thresholding power needed to achieve a scale-free topology fit
index >0.85 and maintain optimal mean connectivity
(Supplementary Figure S1). A hierarchical clustering
dendrogram was obtained, and 12 gene modules were
ultimately generated by employing the Dynamic Tree Cut
package (Figure 3B). The gray module, including all the genes
that could not be enrolled into any other modules, was excluded
from the subsequent analysis. The network heatmap
demonstrated that MEs were highly correlated within each
module, suggesting that highly coexpressed eigengenes in the
same module (Supplementary Table S2) may possess similar
biological significance and function together (Figure 3C). In
addition, to explore the coexpression similarity of all modules,
the modules were mainly divided into two clusters in the
hierarchical clustering dendrogram and the eigengene
adjacency heatmap according to their correlations with each
other (Figure 3D). Furthermore, analyses of the correlations
between MEs and clinical traits were performed, and the
turquoise module, consisting of 131 genes, was positively
correlated with stiffness (R = 0.84, p = 1 × 10−05), general ECs
(R = 0.90, p = 2 × 10−07), lymphatic ECs (R = 0.94, p = 4 × 10−10),
microvascular ECs (R = 0.94, p = 2 × 10−09), and CAFs (R = 0.70,
p = 0.003) (Figure 3E). There were high correlations of MM for
genes in the turquoise module and GS with stiffness, ECs and
CAFs, which also indicated the critical roles of the turquoise
module in promoting the stiffness of PAs (Supplementary Figure
S2). Hence, the 131 MEs in the turquoise module were defined
as SRGs.

TABLE 1 | Demographics and clinicopathological features of 22 patients diagnosed with pituitary adenomas.

Variables Soft tumor (n = 11) Stiff tumor (n = 11) p Value

Age (years) 46.5 ± 14.7 47.7 ± 13.7 0.847
Gender (M/F) 6/5 8/3 0.659
Disease course (years) 0.67 (0.17, 2) 0.67 (0.25, 3) 0.597
No. of chief complaints 2 (1, 3) 2 (0, 2) 0.407
Endocrine examinations
APD (N/Y) 7/4 6/5 1.0
Hyperprolactinemia (N/Y) 6/5 7/4 1.0

Pituitary MRI
Max diameter (cm) 2.9 ± 0.6 3.4 ± 0.8 0.123
Tumor volume (ml) 7.6 ± 3.7 11.8 ± 8.9 0.158
Tumor size (macro/giant) 7/4 4/7 0.395
Apoplexy (N/Y) 7/4 10/1 0.311
Knosp classification (Grade II/III/IV) 5/5/1 5/3/3 0.472
Hardy classification (Grade II/III/IV) 6/4/1 8/2/1 0.621
Hardy classification (Type A/B/C-E) 8/3/0 5/6/0 0.387
Invasiveness (invasive/noninvasive) 6/5 6/5 1.0
Resection extent (GTR/STR) 11/0 9/2 0.476

Histopathology
Pathological subtype (SSA/SGA) 9/2 6/5 0.361
Ki-67 index (%) 2 (1, 3) 1 (1, 2) 0.219
No. of recurrence (%) 0 (0) 3 (27.3) 0.214

AbbreviationsM/F, male/female; No., number; APD, anterior pituitary deficiency; N/Y, no/yes; GTR, gross total resection; STR, subtotal resection; SSA, silent somatotroph adenoma; SGA,
silent gonadotroph adenoma.
Tumor volume = sagittal×coronal×axial diameters×π/6 (ml). Tumor size was classified as microadenoma (<1 cm), macroadenoma (1–4 cm) or giant pituitary adenoma (>4 cm).
Invasiveness was determined by the following criterion: Knosp classification Grade III-IV, and Hardy classification Grade III-IV, and/or Type D-E according to the coronal view of sellar MRI.
Disease course, number of chief complaints, and Ki-67 index are expressed as the median (interquartile range).
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To better illustrate the functional associations and topology of
the interactions between SRGs, we constructed a PPI network
(Figure 3F). Three TFs (SOX18, HES1, and ZNF358) and 4 TF
cofactors (CCDC85B, ENG, PYCARD, and TRIP6) were
identified in the network. Functional annotations of the 131
SRGs indicated that they were mainly enriched in 14 GO
clusters, representing 30 GO terms (Figure 3G). Vascular
smooth muscle cell development, including 11 terms (36.7%),
was the most important functional cluster, followed by lymph
vessel development (13.3%), endothelial cell apoptotic process
(6.7%), regulation of VEGFR signaling pathway (6.7%), etc. These
findings suggest that the SRGs might regulate the stiffness of

pituitary tumors by regulating the development, differentiation,
and apoptosis of ECs and CAFs and related molecular pathways.

Associations Between DMRs and the
Stiffness of PAs
To investigate epigenomic associations with the stiffness of PAs,
genome-wide methylation profiles were utilized to determine
DMRs between soft and stiff tumors. A total of 188 significant
CpG sites and 38 DMRs were identified, including 25 regions with
higher methylation in soft tumors and 13 regions with higher
methylation in stiff tumors (Figure 4A and Supplementary

FIGURE 1 | The overall workflow of the integrated transcriptomic, genomic, and epigenomic profiling analyses in this study.
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Table S3). The hypermethylated DMRs in stiff tumors were more
enriched within exons (p = 0.037) than were those in soft tumors,
whereas the percentage of hypermethylated DMRs in the
promoter regions did not differ significantly between the two
groups (Figure 4B). DMR-associated genes were identified for all
the DMRs, and only two of them (C5orf66-AS1 and CAVIN3)
belonged to the SRGs. The methylation levels of the promoter
regions of C5orf66-AS1 and CAVIN3 were significantly lower in
stiff tumors than in soft tumors, and in contrast, their gene
expression was higher in the stiff tumors (Figures 4C,D). The
strong negative correlations between promoter methylation and
mRNA expression levels of C5orf66-AS1 and CAVIN3 suggest
that aberrant DNA methylation of the SRGs might be a crucial
process contributing to the stiffening of PAs.

Dynamic Bilateral Regulation of Stiffness
by m6A
To explore the potential roles of RNAmodifications in regulating
the stiffness of PAs, we assessed the associations between m6A
regulators and SRGs. Twenty m6A regulators were compared

between soft and stiff tumors, and we found that FTO and
RBM15 were significantly downregulated in stiff tumors,
suggesting low m6A levels in these PAs (Figure 4E). Analysis
of the correlation between reader and SRG expression
demonstrated that the post-methylation regulatory effects on
target genes were mainly negative, but some readers showed
positive effects (IGF2BP1 and IGF2BP3) (Figure 4F). m6A has
been previously reported to have a dual role in regulating the
stiffness of PAs, mostly promoting stiffening and rarely inhibiting
stiffening of pituitary tumors (Figure 4G).

High Intratumoral Heterogeneity in Stiff PAs
Somatic mutation analysis was performed to investigate distinct
genomic alterations between soft and stiff tumors that have been
reported to regulate the TME and immunity. A total of 12 DMGs
were identified between the two groups (Figure 5A), and the
mutation frequency of AR, the only TF, was significantly higher
in the soft tumor group than in the stiff tumor group (63.6 vs.
18.2%, p = 0.035). A lollipop plot was generated and illustrated
that the mutation sites and types of AR were distinct in the soft
and stiff tumors (Figure 5B). TF mutation has been reported to

FIGURE 2 | Estimation of tumor immune microenvironment patterns associated with the stiffness of PAs. (A) Heatmap illustrating the cellular components of PA
samples, including epithelial, hematopoietic progenitor, lymphoid, myeloid, and stromal cell clusters, quantified by the xCell algorithm. (B)Comparisons of stromal score,
immune score, ESTIMATE score and tumor purity between soft and stiff tumors. (C) Comparisons of the abundances of 22 immune cells between soft and stiff tumors.
(D) Heatmap illustrating the immune subtypes of PA patients, which were categorized based on the overall immune activity of tumors. (E) Comparisons of ECs,
lymphatic ECs, microvascular ECs, and CAFs between soft and stiff tumors. (F) Correlation analysis of ECs, lymphatic ECs, microvascular ECs, and CAFs. (G)
Correlation analysis of ECs, CAFs and 14 functional processes of cancer cells. (H) Left panels: Immunofluorescence staining of CAF markers (αSMA and S100A4) and
EC markers (CD31 and VWF) (green) in soft and stiff tumors. Cell nuclei were counterstained with DAPI (blue). Scale bar: 50 μm. Right panels: Quantification of the
fluorescence intensity of four cell markers between soft and stiff PAs. a. u., arbitrary unit. (I) The differential hallmark pathways associated with stiff and soft tumors. *
means p < 0.05, ** means p < 0.01, and *** means p < 0.001.
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play a crucial role in pathogenesis; hence, we performed
correlation analysis between AR and its target genes.
SELENBP1, one of the SRGs and one of the target genes of
AR, was positively correlated with stiff tumors (R = 0.65, p =
0.029) (Figure 5C). In addition, as shown in Figure 5D, patients
with stiff tumors had lower TMB (p = 0.11), higher MATH score
(p = 0.023), lower clonal fraction (p = 0.019), and higher subclonal
fraction (p = 0.019) than patients with soft tumors, indicating that
there is higher intratumoral heterogeneity in stiff PAs
(Figure 5E). All these findings suggest underlying differences
in immune evasion and immunotherapy response between soft

and stiff tumors. The general TME patterns of soft and stiff
tumors are displayed in Figure 6.

Identification of Potential Drugs for Treating
Stiff PAs
CMap analysis of the SRGs and related molecular pathways was
performed to explore potential compounds that could be used to
treat stiff PAs. MoA analysis revealed 35 molecular pathways
targeted by 36 compounds in the stiff tumors (Figure 7A and
Supplementary Table S4). Regarding the most enriched and

FIGURE 3 | Identification of the top stiffness-related genemodule of PAs byWGCNA. (A) Volcano plot displaying the DEGs between stiff and soft tumors. Red dots
represent the upregulated genes, and green dots represent the downregulated genes in the stiff PAs. (B) Cluster dendrogram of the DEGs. Upper panel: Each branch
represents one single gene. Lower panel: Each color represents one coexpression module. (C) Heatmap illustrating the interactions of coexpressed genes. The
brightness of yellow in the heatmap represents the degree of connectivity of different modules, with a lighter color indicating greater overlap. The colors of the
horizontal and vertical axes represent different modules, and the branches represent different genes. (D) Upper panel: Hierarchical clustering of module genes. Lower
panel: Heatmap of the adjacencies in the module gene network. (E) Heatmap displaying the correlations between module eigengenes and the clinical traits of patients
with PA. The turquoise module was the most critical module and was positively correlated with stiffness, general ECs, lymphatic ECs, microvascular ECs, and CAFs. (F)
PPI network including 131 SRGs from the turquoise module. A change in dot color from lighter to darker indicates an increasing degree of gene connectivity. Red circles
represent TFs, and purple circles represent TF cofactors. (G) Functional enrichment analysis of the SRGs. Different dot colors indicate different GO clusters.
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critical MoAs, there were 14 compounds sharing the same MoA
as VEGFR inhibitors, 7 compounds sharing the same MoA as
PDGFR inhibitors, and three compounds sharing the same MoA
as FGFR inhibitors in the stiff tumors. Hence, the VEGF, PDGF
and FGF signaling pathways might serve as potential therapeutic
targets for stiff PAs. As shown in Figure 7B, the enrichment levels
of the VEGF, PDGF and FGF signaling pathways were
significantly higher in the stiff tumors than in the soft tumors,
indicating that there is activation of these molecular pathways in
stiff PAs and that they have potential roles in promoting the
stiffening of PAs. Regarding the structurally related factors and
receptors of the VEGF family, only VEGFR3 (FLT4) was observed
to be significantly higher in the stiff PAs (Figure 7C). In addition,
the therapeutic responses of stiff PAs to axitinib, pazopanib,
sorafenib, and sunitinib were evaluated by using the pRRophetic
algorithm based on GDSC data. By integrating the gene
expression profiles of cell lines and PA samples, we estimated
the IC50 values of the four drugs in each PA patient using ridge
regression analysis. The estimated IC50 value of sunitinib was
significantly lower in stiff PAs than in soft PAs (p = 0.003),

indicating that PA patients with stiff tumors tended to be more
sensitive to sunitinib therapy (Figure 7D).

Stiff PAs Were More Resistant to
Immunotherapy
Regarding immune checkpoint molecules (ICMs), the expression
levels of PD-1 and TIGIT were significantly higher in the soft PAs
than in the stiff PAs, whereas other ICMs did not differ between
the two groups (Figure 7E). Then, the TIDE algorithm, which
quantifies T cell dysfunction signatures, was applied to predict the
likelihood of immunotherapy response in PA patients. The
proportion of responders to immunotherapy in the patients
with soft PAs was two times greater than that in the stiff
tumors (54.5 vs. 18.2%, p = 0.183) (Figure 7F). The TIDE
scores, calculated based on gene expression profiles, were
significantly higher in the stiff tumors than in the soft tumors
(p = 0.039), suggesting that the patients with soft PAs were more
sensitive to immunotherapy than were those with stiff tumors
(Figure 7G). In addition, an unsupervised subclass mapping

FIGURE 4 | Associations of DNA methylation and m6A RNA methylation with the stiffness of PAs. (A) Heatmap illustrating the 38 DMRs between soft and stiff
tumors. (B) Comparisons of hypermethylated DMRs between soft and stiff tumors. (C,D) Left panel: Comparisons of the methylation levels of CpG sites within the
DMRs of promoter regions between soft and stiff PAs. Middle panel: Comparisons of the methylation levels of promoter regions between soft and stiff PAs. Right
panel: Comparisons of the gene expression levels between soft and stiff PAs. (E) Heatmap comparing 20 m6A regulators between soft and stiff tumors. (F)
Analysis of the correlation between reader and SRG expression. Blue dots represent SRGs, and purple rhombi represent readers. Red lines represent negative
correlations, and green lines represent positive correlations. (G) The overall role of m6A in regulating the stiffness of PAs is believed to be two-sided, including promotion
and inhibition of stiffness.
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method was utilized to predict the clinical response to ICIs,
including PD1 and CTLA4 inhibitors, of soft and stiff tumors.
Patients with soft tumors were more likely to respond to anti-PD-
1 therapy than those with stiff tumors (FDR = 0.011), whereas
neither group was more sensitive to anti-CTLA4 therapy
(Figure 7H). Generally, the higher TMB, lower intratumoral
genetic heterogeneity, lesser subclonality, and higher ICM
expression of soft PAs might explain why they are more
sensitive to immunotherapy, especially anti-PD-1 treatment,
than stiff PAs.

Sunitinib Inhibited PA Growth in Vitro and in
Vivo, and Reduced Tumor Stiffness in
Xenograft PA Models Detected by AFM
To further investigate the sensitivity of PAs to sunitinib
treatment, we tested the cell viability of GH3 cell line treated
by sunitinib. After 2 days of treatment, sunitinib exhibited
promising anti-proliferative effects in GH3 cells, with a half-
maximal inhibitory concentration value of 41.81 µM (Figure 8A).
Subsequently, to evaluate the impact of the sunitinib on GH3 cells
in vivo, we generated a xenograft PAmodel by transplanting GH3
cells subcutaneously into the flanks ofWistar Furth rats. Once the

tumor volume approached approximately 100 mm3, treatment
was started with intragastric administration of 40 mg/kg sunitinib
or vehicle control once daily for 12 days. All rats were sacrificed
after completion of the 12-days experiment. Sunibtinib
treatment significantly inhibited tumor growth with regard
to tumor volume (59% inhibition, p < 0.05) and tumor
weight (37% inhibition, p < 0.05) in comparison with the
control regimen (Figures 8B–D). Additionally, sunibtinib
treatment showed minimal effects on rats’ body weights,
demonstrating its safety (Figure 8E). Then, AFM was further
applied to examine the mechanical properties of the resected
tumor samples from two groups. The overall working schematic
of the AFM setup used for mechanical property measurement,
especially Young’s modulus changes, was shown in Figures
8F,G. The distributions of Young’s modulus of all traces
recorded for the tumors in two groups were displayed by the
statistic histograms (Figures 8H,I). Mean Young’s modulus
(xc ± SE), calculated by the Gaussian fitting, was 0.85 ± 0.34 kPa
for the sunitinib treatment group and 0.90 ± 0.03 kPa for the
control group. Kolmogorov-Smirnov test demonstrated that the
Young’s modulus of collected traces was lower in the sunitinib
treatment group than that in the control group (p < 0.0001;
Figure 8J). All these findings indicated that sunitinib can

FIGURE 5 |Comparisons of somatic variations between soft and stiff tumors. (A)Waterfall plots showing the mutation types and frequencies of 12 DMGs between
soft and stiff tumors. (B) Lollipop plot illustrating the mutation sites and types of AR in soft and stiff PAs. aa: amino acid. Androgen_recep: androgen receptor (6-449 aa);
zf-C4: zinc-finger, C4 type (two domains) (558-626 aa); Hormone_recep: ligand-binding domain of nuclear hormone receptor (692-877 aa). (C) Analysis of the
correlation between AR and its target gene (SELENBP1) in soft and stiff PAs. An AR motif is displayed in the upper panel. (D) Comparisons of TMB, MATH score,
clonal fraction, and subclonal fraction between soft and stiff tumors. (E) Schematic diagram displaying the intratumoral heterogeneity of soft and stiff PAs.
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inhibit tumorigenesis and reduce the stiffness of pituitary
tumors, which suggested sunitinib could serve as a potential
candidate drug for stiff PAs.

DISCUSSION

As the first-line and even the only therapy for PAs, total resection
of tumors in the transsphenoidal surgery was extremely
important for curing PAs. Despite rapid progression of
endoscopic surgery systems, tumor stiffness has become the
most critical factor that affects the surgical resection rate in
invasive tumors. Particularly, total resection of stiff PAs
invading the cavernous sinus is the most challenging for
neurosurgeons (Bao et al., 2016; Kim et al., 2018). Consistent
with this, in this study, stiff tumors had a significantly lower gross
total resection rates than soft tumors, and the recurrence rate of
stiff tumors was higher. These results suggest that the basis of this
investigation is well founded and that the samples used in the
study are robust. However, the molecular mechanisms that
regulate the mechanical properties and contribute to stiffening
in PAs were still unknown.

Tissue stiffness can be increased by collagen content and fiber
organization, which lead to angiogenesis (Bayer et al., 2019; Shen
et al., 2020). In our study, the xCell algorithm revealed that ECs
and CAFs were more abundant in stiff tumors than in soft
tumors. EMT might play critical roles in the stiffening of PAs.
Furthermore, immunofluorescence staining of CAF markers
(αSMA and S100A4) and EC markers (CD31 and VWF)

verified the differences in stromal cells. Therefore, CAFs and
ECs play important roles in tumor stiffness. In addition, the SRGs
identified by the transcriptome analysis were enriched in EC and
CAF regulation pathways. These results imply that these SRGs
probably lead to a high abundance of ECs and CAFs, whichmight
lead to stiffening of tumors.

DNAmethylation, in which alterations of CpG dinucleotides
block the transcriptional mechanism and silence gene
expression, is the most frequently studied epigenetic
phenomenon (Pease et al., 2013). By studying the correlation
between DNA methylation data with SRG expression data, we
found that the DNA methylation level was negatively correlated
with the RNA expression of SRGs, including C5orf66-AS1 and
CAVIN3, which indicates that SRGs are probably regulated by
DNA methylation. C5orf66-AS1 is a long noncoding RNA
(lncRNA) that suppresses the development and invasion of
pituitary null cell adenomas (Yu et al., 2017). Two groups
also reported aberrant methylation-mediated downregulation
of the lncRNA C5orf66-AS1. One study was in gastric cardia
adenocarcinoma (Guo et al., 2018), and the other study was in
head and neck squamous cell carcinoma (Sailer et al., 2018). The
relationships between DNA methylation, SRGs, and ECs and
CAFs are probably responsible for the regulation of PA
stiffening.

RNA methylation is an important regulatory factor in
different physiological and pathological processes. including
development (Yoon et al., 2017; Li et al., 2018; Ma et al.,
2018; Wang et al., 2018), neurogenesis (Li et al., 2017),
innate immunity (Zheng et al., 2017), and tumorigenesis

FIGURE 6 | Schematic diagram illustrating the general TME patterns of soft and stiff tumors.
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(Zhang et al., 2016; Zhang et al., 2017a; Cui et al., 2017; Ma et al.,
2017; Chen et al., 2018; Chen et al., 2019; Han et al., 2019; Lan
et al., 2019; Niu et al., 2019; Jin et al., 2020). m6A has been
shown to play a role in fate determination of cells (Batista et al.,
2014; Aguilo et al., 2015; Chen et al., 2015; Zhang et al., 2017b).
In this study, we found that m6A regulators (FTO and RBM15)
were significantly downregulated in stiff tumors, suggesting
aberrant m6A levels in stiff PAs. Moreover, the expression
levels of m6A “readers” and SRGs were mainly decreased,
while some readers showed increased expression. m6A has
been shown to regulate RNA expression levels by influencing
RNA degradation (Wang et al., 2014; Ke et al., 2017). Therefore,
m6A might play a role in the posttranscriptional regulation of
SRGs and further regulate EC and CAF production. Consistent
with this, m6A was found to be critical for the development of
cardiac fibrosis (Li et al., 2021). In another study, the m6A-
mediated MALAT1/miR-145/FAK pathway was found to be
involved in renal fibrosis (Liu et al., 2020). Three ECM
components (COL6A1, LAMA5, and FN1) are target genes of

the m6A reader IGF2BP3 and can be regulated in an m6A-
dependent manner (Gu et al., 2020). Together, these
mechanisms provide strong evidence that m6A regulation
might play an important role in ECM component
production, which is important for tissue stiffening.

Consistent with the increased levels of ECM components
seen in stiff tumors, tumor heterogeneity is also increased in stiff
tumors. Compared with soft tumors, stiff tumors showed higher
MATH scores, indicating that there is higher intratumoral
heterogeneity in stiff PAs. Increased heterogeneity can lead
to tumor evolution (McGranahan and Swanton, 2017;
Pelham et al., 2020), drug resistance (Lim and Ma, 2019),
and immune evasion (Vinay et al., 2015). In addition,
immune markers were decreased in stiff tumors, and stiff
PAs were likely to show a decreased response to
immunotherapy. Taken together, these data suggest that stiff
tumors have higher heterogeneity, greater subclonality, and
fewer immunotherapy targets than soft tumors, which make
them harder to treat with targeted therapy. Therefore,

FIGURE 7 | Prediction of PA targeted therapy response. (A)CMap-based exploration of candidate drugs andmolecular pathways that can be used for treatment of
stiff PAs based on the SRGs. The MoA analysis revealed 35 molecular pathways targeted by 36 compounds. (B) Comparisons of the ssGSEA enrichment scores of the
VEGF, PDGF, FGF and RTK signaling pathways between soft and stiff tumors. (C)Comparisons of the gene expression of structurally related factors and receptors of the
VEGF family between soft and stiff tumors. (D)Comparisons of the IC50 values of axitinib, pazopanib, sorafenib, and sunitinib as treatment between soft and stiff PA
samples, as estimated by the pRRophetic algorithm based on GDSC data. (E) Comparisons of the gene expression of ICMs between soft and stiff tumors. (F)
Comparisons of the proportions of nonresponders and responders to immunotherapy between the soft and stiff tumor groups. NR, nonresponder; R, responder. (G)
Comparisons of the TIDE score between soft and stiff tumors. A TIDE score <0 indicates sensitivity to immunotherapy, and a TIDE score >0 indicates resistance to
immunotherapy. (H) Subclass mapping analysis for predicting the likelihood of response to ICI treatments in soft and stiff PAs.
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FIGURE 8 | Sunitinib inhibited PA growth in vitro and in vivo, and reduced tumor stiffness in xenograft PA models examined by AFM. (A) Cell viability of GH3 cells
treated with sunitinib or DMSO for 2 days. Three independent experiments were repeated for each result. *** means p < 0.001. Bar represents mean ± SD. (B) Tumor
volume of rats treated with sunitinib or vehicle control once daily, measured for 12 days. (C) Tumor weight of rats treated with sunitinib or vehicle control. ** means p < 0.
01. (D)Macroscopic image of the resected tumors. Scale bar: 1 cm. (E) Body weight of rats measured for 12 days “NS”means no significant difference between
groups. (F)Working schematic of the AFM setup used for mechanical property measurement of tumor samples. (G) Slope changes deliver Young’s modulus changes of
different interaction surfaces. Black curve represents force vs. distance curve recorded for the chamber surface (reference), and the red one represents force vs. distance

(Continued )
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transforming stiff tumors into soft tumors can make tumor
treatment easier.

We used CMap to obtain compounds that can inhibit SRG
expressions. MoA analysis revealed compounds targeting the
most enriched and critical molecular pathways. Sunitinib was
ultimately selected as the drug to which stiff PAs would be
most sensitive using the pRRophetic algorithm based on
GDSC database. In the GH3 cell cultures, sunitinib
significantly decrease the cell viability. In addition, since
the pituitary gland sites outside the blood-brain barrier, a
rat xenograft flank model was applied to explore the efficacy of
sunitinib on PA in vivo. Sunitinib significantly inhibited GH
tumorigenesis but did not show toxicity to rats when orally
administered for 12 days. In addition, AFM-based Young’s
modulus measurement also demonstrated the stiffness of PA
samples were significantly reduced after sunitinib treatment,
which suggested sunitinib could serve as a potential candidate
drug for stiff PAs. As reported in the literature, sunitinib was
developed to inhibit growth factor receptor tyrosine kinases in
ECs and pericytes, which are implicated in angiogenesis (Tran
et al., 2016). Sunitinib is a standard-of-care first-line therapy
for patients with advanced renal cell carcinoma (Motzer et al.,
2019). Sunitinib was also reported to block survival in the rat
pituitary cell line GH4C (Chenlo et al., 2019). In summary,
sunitinib is a potential therapeutic agent for stiff PAs.
Prospective clinical studies investigating sunitinib will be
necessary to assess its efficacy.

In conclusion, we assessed the molecular landscape during
PA stiffening and discovered unique features of cell
components and gene regulation in stiff tumors. Our results
indicate that the epigenome and epitranscriptome are essential
in the regulation of tumor stiffness-related RNA expression. In
vitro and in vivo also provided evidence that sunitinib has the
potential to reverse PA stiffening. Therefore, characterizing the
mechanism by which PAs become stiff will offer a new
theoretical basis for developing novel therapies for
individualized treatment.
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FIGURE 8 | curve for the tumor tissue. Statistic histograms show the distributions of Young’s modulus of all traces recorded for tumor tissues in the sunitinib treatment
group (H) and control group (I). Mean Young’s modulus (xc ± SE), calculated by the Gaussian fitting, was 0.85 ± 0.34 kPa for the sunitinib treatment group and 0.90 ±
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