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The South American pinworm Tuta absoluta (Meyrick) (Family: Gelechiidae) is one

of the most devastating lepidopteran pests in the developing countries of South

America, Africa, and Asia. This pest is classified as the most serious threat for tomato

production worldwide. In the present study, we analyzed RNAi-mediated control through

exogenously applied dsRNA delivery on tomato. The dsRNA treatments were made to

target the juvenile hormone binding protein and the v-ATPase B. BothmRNA targets were

cloned, validated by sequencing, and used to produce each dsRNA. After treatments the

relative transcript expression was analyzed using qRTPCR to assess to efficacy of RNAi.

A leaf-dip assay was used to provide late 2nd instar larvae three feeding access periods:

24, 48, and 72 h, to evaluate the effect of gene silencing of each target. Larvae were

fed tomato leaves coated with five different RNAi concentrations (10, 20, 30, 40, and 50

micrograms/centimeter-squared), that suppressed two genes (juvenile hormone protein,

JHBP, and vacuolar-type adenosine triphosphatase enzyme, v-ATPase). Treatments with
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dsRNA showed a significant increase in mortality at 24, 48, and 72 h after ingestion (P

< 0.01, α = 0.05), along with reduced leaf damage, and increased feeding deterrence.

The results suggest that these two RNAi products may provide a suitable treatment for

control of this and other lepidopteran pests.

Keywords: tomato leaf miner, v-ATPase, juvenile hormone binding protein, JHBP, dsRNA, RNAi, lepidoptera, pest

management

INTRODUCTION

Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) is an
oligophagous pest infesting many Solanaceous crops (Global
Distribution Map: CABI, Campos et al., 2017; Biondi et al.,
2018; Rwomushana et al., 2019). Since the 1960s, this moth has
become one of the key pests of tomato in South America (Garcia
and Espul, 1982). In Europe, T. absoluta was first reported in
Spain in late 2006. Thereafter, it was reported in many countries
including India (Shashank et al., 2014). Cost-benefit analysis
showed that T. absoluta significantly increased costs of pest
management. Its primary host is tomato, although potato,
brinjal, common bean, and various wild Solanaceous plants
are also suitable hosts. Synthetic pesticides are commonly used
for pest control worldwide (Guedes et al., 2019). Application
of these chemicals against T. absoluta has been reported
with little success, mainly because the pest has developed
resistance (Siqueira et al., 2000; Senthil-Nathan, 2020). Efforts
to develop botanical pesticides, like citrus peel extract have
met with limited success (Senthil-Nathan, 2013; Miresmailli
and Isman, 2014; Campolo et al., 2017). Development of
alternative methods for pest control like RNAi biopesticides
provide highly specific pesticides that do not harm parasitoids,
pollinators, or predators (Chen et al., 2018; Niu et al., 2018;
Christiaens et al., 2020; Fletcher et al., 2020; Kunte et al.,
2020; Taning et al., 2020; Yan et al., 2020a,b; Sarmah et al.,
2021). Research also shows that RNAi biopesticides can be
exogenously applied in liquid sprays (Dalakouras et al., 2016;
Koch et al., 2016; McLoughlin et al., 2018; Dubrovina and
Kiselev, 2019; Dubrovina et al., 2019, 2020; Jalaluddin et al.,
2019; Mezzetti et al., 2020) or bound with a carrier-like clay
or nanotubes in sprays (Worrall et al., 2019; Fletcher et al.,
2020) or applied in water or clay pellets as a soil treatment
(Ghosh et al., 2018) or as plant-expressed silencing, which
has met with significant success in field crops (Younis et al.,
2014; Bramlett et al., 2020; Das and Sherif, 2020; Veillet et al.,
2020).

Juvenile Hormone (JH) is essential for regulating the
maturation, reproduction, and development of insects. JH
inhibits the metamorphosis, leading to growth arrest of
insects in their pre-metamorphosis stage, induces insect
diapauses, and affects the migratory behavior of insects. It
is transported into the target cells via JH binding protein
(JHBP) (Gilbert et al., 2000). It is present throughout late
embryonic and larval development. Changing ratios of JH/20E
regulate molting to the next developmental stage and thereby
allow for continued growth of insect larvae (Riddiford,
1994).

Insect vacuolar ATPase synthase genes have been compared
across many insect orders (Pan et al., 2017). RNA interference,
which prompts specific gene silencing through the delivery
of homologous double-stranded RNA (dsRNA) fragments, is
referred to as the “trigger” (Fire et al., 1998; Mello and Conte,
2004). Application of RNAi to manage insect pests or viral
pathogens is widely supportive of integrated pest management
strategies and shows great potential (Bramlett et al., 2020;
Christiaens et al., 2020; Das and Sherif, 2020). Sarmah et al.
(2021) report that while Tuta absoluta is sensitive to RNAi
treatments demonstrating significantly increased mortality when
ingesting the dsRNA made to the alphaCOP (αCOP) (Coatomer
subunit alpha protein) mRNA transcript, there was no significant
increase in mortality when treated individuals were fed on by the
mirid predator Nesidiocoris tenuis (Hemiptera: Miridae). Thus,
they concluded that RNAi-mediated control of T. absoluta would
be a safe addition to biological control programs as it would not
negatively affect the pest’s natural enemies (Sarmah et al., 2021).

Functional gene studies have provided significant advances
in understanding insect physiology across many orders
of arthropods including Coleoptera, Diptera, Hemiptera,
Hymenoptera, and Lepidoptera (Chaitanya et al., 2017). In the
present study we have chosen to silence the genes of v-ATPase B
and JHBP, which are involved in the growth and development of
insects, as effective targets for the management of pests.

MATERIALS AND METHODS

Insect Rearing and Maintenance
Tuta absoluta was obtained from the Division of Biotechnology,
ICAR-Indian Institute of Horticultural Research, Bangalore,
Karnataka, India. The cultures were maintained on tomato leaves
at a 28± 1◦C temperature, 60–70% relative humidity, and 14:10 h
of light: dark photoperiod in the laboratory.

Target Gene Selection
Genes encoding v-ATPase B and JHBP genes were chosen
based on previous successful reports of RNAi used for insect
control (Chaitanya et al., 2017). Since no sequence information
was available for T. absoluta genes, degenerative primers were
designed based on conserved amino acid sequence regions from
aligned homologs of Plutella xylostella (JN410829), Manduca
sexta (S56567), and Bombyx mori (NM_001043483). Based
on these orthologous genes, the mRNA for the complete v-
ATPase B coding sequence was estimated to be around 1,500 bp
(Supplementary Table 1).
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Target Gene Amplification, Template
Cloning, and Sequencing
Target transcripts were amplified from cDNA using a nested
PCR-based method with degenerate primer pairs in a 20 µL
reaction containing 2 µg of cDNA, 3mM of MgCl2, 100µM of
dNTP, 1µM of each primer, and 2U of Taq DNA polymerase
(Bioline reagents, Germany). Amplifications were done in a
PepseqTM thermo cycler, programmed to cycle at 95◦C for 5min,
and followed by 35 cycles of 95◦C for 30 s, 60◦C for 30 s, 72◦C
for 15 s, and a final cycle at 72◦C for 10min. Amplification
products were analyzed by gel electrophoresis (1.5% agarose gels,
voltage 100mV, for 30min); fragments were excised, purified
using a NucleoSpin R© Gel and PCR Clean-up kitTM (Fermentas,
GmbH, Germany), ligated into a TA cloning vector (PTZ57R/TB)
(GenJETTM Plasmid MiniPrep kit), and used to transform
the DH5α E. coli strain as per the manufacturer’s protocol.
After blue-white colonies were screened, plasmids were isolated
from “white” colonies using a GenJETTM Plasmid MiniPrep kit
(Fermentas, GmbH, Germany) and were sequenced (XCelris
Labs, Ahmadabad, India).

Phylogenetic Analysis
The phylogenetic tree analysis was performed usingMEGAX 11.0
software in the NCBI public database. Significant Lepidoptera
species included, but were not limited to: Spodoptera littoralis;
Plutella xylostella, Helicoverpa armigera (Noctuidae); Bombyx
mori (Bombycidae); Galleria mellonella (Pyralidae); and
Amyelois transitella (Pyralidae).

dsRNA Synthesis
Unmodified, canonical syntaxin-1A dsRNA was synthesized
using the Ambion R© MEGAscript R© RNAi Kit (Ref. No.
AM1626) per manual instructions. dsRNA was uniquely
designed with specific primers along with T7-polymerase
promoter sequences. The reaction volume was made up to
50 µl, v-ATPase B and JHBP plasmid clones were used for
the DNA template with primer annealing at 63◦C /40 s. The
amplified products were run on 1.3% agarose gel, expected
bands were eluted, and then were used as templates (1 µg)
for synthesis of dsRNA following the manufacturer’s protocol
(Thermo Scientific, Germany). Finally, dsRNAs were quantified
using Thermo NanoDropTM (Thermo Scientific) and verified by
agarose gel electrophoresis (Rebijith et al., 2015; Chaitanya et al.,
2017). The dsRNA for v-ATPase was 192 nt without T7, and the
JHBP was 136 nt (Supplementary Table 1).

Oral Delivery of dsRNA T. absoluta
Tomato leaflet feeding bioassays were carried out as described
by Rebijith et al. (2015) and Chaitanya et al. (2017) with
slight modifications. Briefly, a fresh and young tomato leaf
(Lycopersicon esculentumMill) was rinsed in 1% Triton-X, rinsed
with double-ionized distilled water, and then dried and placed
on moist cotton in a Petri dish. The leaflets were treated with
200 µl of the solution topically applied with the following
dsRNA concentrations (10, 20, 30, 40, and 50 µg/cm2) and
spread across the leaf surface using a fine hairbrush. The treated
leaves were allowed to sit until dry, ∼15–20min. Then, five

T. absoluta larvae (late 2nd instars) were transferred to cages
with the dsRNA-coated leaves, with three leaves per treatment.
Experiments were replicated three times for a total of 45 insects
per treatment. Control received nuclease free water applied in
the same manner. Mortality was recorded after 24, 48, and 72 h
of feeding access. Extra cohort cages provided a source of live
insects for qPCR analyses that were sampled over time from each
treatment concentration.

RNA Extraction and cDNA Synthesis
RNA was extracted from 100mg of fourth instar T. absoluta
larvae using an Isolate II RNA mini kit (Bioline reagents,
Germany). RNA were quantified using a NanoDropTM Lite
Spectrophotometer (Thermo Scientific, Germany) and further
analyzed by electrophoresis in 1.5% denaturing agarose gels. The
cDNA was synthesized using a Bioline kit manufacture protocol,
taking 2.0 µg of RNA and adding oligo- (dT)18 primers. The
mixtures were incubated at 65◦C for 5min and immediately
cooled in ice. A total of 5× reverse transcriptase buffer, 2.5mMof
dNTPs, and 10 U/µl of RNase inhibitor were added into the tube.
The mixtures were incubated at 42◦C for 90min. Finally, reverse
transcriptase was added and incubated at 72◦C for 15min as per
the manufacturer’s instructions (Bioline, Germany).

Gene Expression Analysis
The v-ATPase subunit B and JHBP genes were assessed by
RT-qPCR (Supplementary Table 1). All expression studies were
carried out following MIQE. Live larvae were used for RNA
isolation using the MyTaqTM One-Step RT-PCR Kit (Catalog No.
BIO-65049, Meridian BioscienceTM) as per the manufacturer’s
protocol. In brief, samples were diluted 1:5 before RT-qPCR. The
final reaction volume was adjusted to 20 µl with RNAse free
water and SYBR Green (TaKaRa, Japan). The cDNA from all
samples was prepared as normalized concentrations of 5 ng/µl
in 10 µl, then diluted 1:5 before RT-qPCR reactions as per the
instructions. All selected primers used a 10-µM scale with β-
actin (KU872540) as the reference gene (Pfaffl, 2001; Pfaffl et al.,
2002). The expressed β actin constitutively was used for loading
normalization. RT-qPCR was carried out with the following
conditions, viz., 95◦C for 5min, followed by 40 amplification
cycles at 95◦C for 30 s, and 60◦C for 1min in a Light Cycler 480
II (Roche Applied Science, Switzerland). Relative expression was
calculated by the 2−11ct method (Pfaffl et al., 2002).

Statistical Analysis
Probit studies were performed using SPSS v 16.0. The qRT-PCR
gene expression data were analyzed using GraphPad Prism 5.0
software (www.graphpad.com). Significant differences analyzed
by one-way ANOVA, followed by post-hoc Tukey (P≤ 0.05). The
correlation between mortality and downregulation was analyzed.
T-tests for independent samples or Mann–Whitney U-tests,
depending on data distribution, were used to test for significant
differences in expression levels (11

Ct values) of the target genes
between the experimental and control.
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RESULTS

Cloning, Sequencing, and Phylogenetic
Analysis
v-ATPase subunit B and JHBP gene cDNA sequencing resulted in
851 and 584 bp products, respectively. NCBI-BLASTX analysis
indicated a 98% amino acid sequence match with Plutella
xylostella sequences (Rebijith et al., 2015). Our target gene
sequences and alignments were deposited at NCBI (v-ATPase
B, Accession number; MN414200; JHBP Accession number;
OK066277). The sequences of v-ATPase B and JHBP were
clustered with publicly available sequences from Lepidoptera,
BLASTn, NCBI, and the nr database. Significant identified
Lepidoptera species in the NCBI public database included
Spodoptera littoralis (Noctuidae); Plutella xylostella (Plutellidae),
Helicoverpa armigera (Noctuidae) (Ni et al., 2017); Bombyx mori
(Bombycidae); Galleria mellonella (Pyralidae); and Amyelois
transitella (Pyralidae).

dsRNA Delivery Using a Coated-Leaf
Feeding Assay
Three T. absoluta larvae were given feeding access periods of
24 and 48 h on single leaflets (n = 3), with three leaflets per
treatment (n = 9), per concentration of dsRNA triggers (10,
20, 30, 40, and 50 µg/cm2), of v-ATPase B or JHBP sequences,
topically applied to leaflets. Significant larval mortality was
observed in larvae feeding at the increasing concentrations of
each dsRNA (Figure 1, JHBP; Figure 2, v-ATPase B and LC50

values of 3.426 and 4.121 µg/µl; 5.126). The increased mortality
rates were observed at all three feeding access periods, 24, 48,
and 72 h. The treatment leaf damage decreased as the dsRNA
concentration increased (Figure 3). The delivery of dsRNA
triggers at different concentrations (10, 20, 30, 40, and 50µg/cm2)
per treatment were sampled at three time-points during the
feeding access period (24, 48, and 72 h). Results showed that
the expression of both v-ATPase B and JHBP transcripts
decreased progressively with increasing concentrations of dsRNA
represented in Relative Fold Change per treatment (Figures 4, 5).
The qRT-PCR analysis showed that relative expression of each
target gene was significantly downregulated (∼3.1 fold for JHBP;
∼2.6 fold for vATPase B).

DISCUSSION

There is an urgent need to develop alternative strategies for
Tuta absoluta pest control. In the present study, we demonstrate
that oral delivery and RNAi-based silencing of JHBP and v-
ATPase B transcripts cause significantly increased mortality in
T. absoluta. Juvenile Hormone (JH) regulation is essential for
development and reproductive maturation in insects (REF). In
hemolymphs, JH appears complexed with a glycoprotein, the
juvenile hormone-binding protein (JHBP), which serves as a
carrier to release the hormone to target cells at appropriate
developmental points. RNAi silencing of JHBP is reported to
significantly increase mortality in several lepidopteran pests
including Helicoverpa armigera (Lepidoptera: Noctuidae) fed on
transgenic cotton. However, the JH gene family has not been

FIGURE 1 | Percentage of mortality rates of T. absoluta larvae (late 2nd

instars) post ingestion of JHBP dsRNA through treated leaves. Mortality was

positively correlated with dsRNA concentration and feeding access time

period. The mortality is averaged across three trials each with three biological

replicates. The three time-points, 24, 48, and 72 h, were sampled across each

dsRNA concentration treatment. One-way ANOVA followed by post-hoc

Tukey’s multiple comparison test were completed. Error bars indicate standard

errors of each mean values. Asterisk (*) shows statistically significant at various

time intervals at different concentrations (P < 0.05).

FIGURE 2 | Mortality rates (%) of T. absoluta larvae (late 2nd instars) post

feeding access period on v-ATPase B dsRNA-treated leaves. Observed

mortality was recorded every 24, 48, and 72 h. The average values were

obtained over three biological replications. One-way ANOVA followed with

Tukey’s multiple comparison (P < 0.05) were completed. Error bars are the SE

± means-averaged mortality across three trials each with three biological

replicates. Asterisk shows statistically significant in various time intervals at

different concentrations (*P < 0.05 and **P < 0.01).

extensively studied with only a few genes thus far demonstrated
to be efficient targets for pest control (Yu et al., 2013).

The function of v-ATPase plays an essential role in the
Lepidoptera midgut by keeping the midgut lumen alkaline and
energizing secondary amino acid absorption. It is present at high
density across the plasmamembrane (Vitavska et al., 2003, 2005).
The major challenge to implementing an effective RNAi strategy
for controlling agricultural pests involves reliable delivery of
dsRNA into the insects and choice of effective target genes that
can confer pest protection. The use of RNAi in crop production
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FIGURE 3 | Single leaf feeding assay. There was an observed correlation

between decreased feeding damage to leaves with increasing dsRNA

concentrations (A) 10 µg dsRNA /cm2, up to (E) 50 µg dsRNA /cm2.

Individual leaves were coated with dsRNA solution at different concentrations

of: (A) 10; (B) 20; (C) 30; (D) 40; (E) 50 µg/cm2 leaf. The dsRNA

concentration of treated leaves at 10 µg/cm2 had >50% of the leaf surface

eaten, and larger larvae than the 50 µg/cm2 treatment, while the dsRNA

concentrations of 20–50 (µg/cm2) had <50% leaf damage.

FIGURE 4 | Relative fold change in expression of v-ATPase B transcript in T.

absoluta larvae post feeding post treatment. Comparing relative expression of

controls (set to “0,” to all other concentration treatments, at each of three

time-points during feeding access period). RT-qPCR was used to quantify

expression levels with internal control (β actin). Treatment concentrations were

10, 20, 30, 40, and 50µg/ cm2 leaf). Relative expression levels were

determined with respect to control larvae fed on untreated tomato leaves.

Analysis within each time-point across treatments compared to control was

carried out by a one-way ANOVA (*P< 0.0001) multiple comparison test (n =

9) biological replicates, with three technical replicates.

requires delivery systems to provide dsRNA continuously as
a diet component that is ingested by insects, either through
transgenic plants expressing hairpin triggers, or by application of
exogenous dsRNA by topical sprays, soil applications, baits, etc.
(see reviews: Bramlett et al., 2020; Dubrovina et al., 2020; Fletcher
et al., 2020; Kunte et al., 2020; Samada and Tambunan, 2020).
Our results support previous RNAi studies on T. absoluta which
demonstrated a high sensitivity to dsRNA triggers including

FIGURE 5 | Relative fold change in expression of JHBP transcript in T.

absoluta larvae, post feeding access on JHBP-dsRNA-treated leaf. RT-qPCR

was used to access the expression levels at 24, 48, and 72 h post feeding

access periods on dsRNA treatments at different concentrations (10, 20, 30,

40, and 50 µg/cm2 leaf). Relative expression levels were determined with

respect to expression in the control at each time-point. Analysis was carried

out by one-way ANOVA (*P < 0.0001); multiple comparison (n = 9), biological

replicates with three technical replicates.

Camargo et al. (2016) who first showed that RNAi of v-
ATPase A could reduce T. absoluta in treated tomato. RNAi
caused suppression and significant mortality of T. absoluta after
feeding. And the report by Bento et al. (2020) demonstrated
increased mortality of larvae T. absoluta fed on diets containing
bacterial-expressed dsRNA to six different target genes (juvenile
hormone inducible protein (JHP); juvenile hormone epoxide
hydrolase protein (JHEH); ecdysteroid 25-hydroxylase (PHM);
chitin synthase A (CHI); carboxylesterase (COE); and arginine
kinase (AK). Finally, Rahmani and Bandani (2021) reported on
the RNAi efficiency of silencing v-ATPase A in T. absoluta as an
effective biopesticide. In the lepidopteran Helicoverpa armigera
similar results using RNAi silencing of JHBP were reported (Ni
et al., 2017).

Success of RNAi for pest control is dependent upon the choice
of suitable gene target(s) (Terenius et al., 2011). Inhibition of
RNAi activity in some pests is caused by excessive enzymes
produced in the mouth and/ or gut of the target insects (Allen
and Walker, 2012). Additionally the strength of the RNAi
activity is dependent upon the concentration of dsRNA absorbed
into the cells which are expressing the mRNA targeted for
silencing (Terenius et al., 2011; Burand and Hunter, 2013; Scott
et al., 2013). For chewing insects, exogenously applied or plant-
absorbed dsRNA can be effectively introduced into the insect
system (Koch et al., 2016; Faustinelli et al., 2018; Ghosh et al.,
2018; Dubrovina and Kiselev, 2019; Dubrovina et al., 2019, 2020).
While 130 lepidopteran genes have been screened for RNAi
silencing, only 48% of these genes were silenced at a significant
level, while 14% of the attempts resulted in failure (Terenius et al.,
2011). Rebijith et al. (2015) reported that oral delivery of dsRNA,
when effective, offers the best prospects for pest control under
field conditions.

Modern agricultural biotechnologies are the most likely
solution to growing demands for food, feed, and fibers,
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providing safer, more specific management of pathogens and
pests (Adeyinka et al., 2020; Bramlett et al., 2020; Kunte et al.,
2020; Raybould and Burns, 2020; Yan et al., 2020a,b; Sarmah et al.,
2021). Furthermore, the increasing public acceptance and safety
record (Kleter, 2020; Papadopoulou et al., 2020) continue to
provide evidence for their adoption in the management of insect
pests (Khalid et al., 2017; Sinisterra-Hunter and Hunter, 2018;
ISAAA, 2019; Jalaluddin et al., 2019; Samada and Tambunan,
2020). Our results further support the concept of using RNAi
to improve the management of T. absoluta (Camargo et al.,
2016; Rahmani and Bandani, 2021; Sarmah et al., 2021) and
other lepidopteran pests (Ni et al., 2017; Bramlett et al., 2020;
Yan et al., 2020a). The capacity to use RNAi to reduce T.
absoluta through exogenously treated leaves, plants, or diets with
bacterial-expressed dsRNA provides ample evidence for moving
forward toward commercialization of RNAi biopesticides for the
management of this economically devastating lepidopteran pest.
Furthermore, development of an exogenously applied treatment
could be readily applied to many crop plants making pest
suppression more effective than treating just a single crop or
plant species (Dubrovina and Kiselev, 2019; Jalaluddin et al.,
2019). Based on these results, RNAi strategies could be effective
in targeting larvae of T. absoluta, with either exogenously
applied, or plant-expressed double-stranded RNAs (Burand and
Hunter, 2013; Scott et al., 2013; Younis et al., 2014; Zhang
et al., 2015; Camargo et al., 2016; Chen et al., 2018; Jalaluddin
et al., 2019; Bramlett et al., 2020; Samada and Tambunan,
2020).

CONCLUSION

RNAi for specific-target gene silencing through administration
of double-stranded RNA (dsRNA) has been a useful tool for
developing management of insect pests (Huvenne and Smagghe,
2010; Niu et al., 2018; Adeyinka et al., 2020; Christiaens
et al., 2020; Romeis and Widmer, 2020; Yan et al., 2020a,b).
In this study, we produced dsRNA for v-ATPase and JHBP
from T. absoluta. Our results show that exogenous application
on tomato leaves and oral ingestion of these dsRNA triggers
to v-ATPase and JHBP mRNA successfully induced RNAi
silencing resulting in a significant increase in larval mortality
(50 µg dsRNA /cm2 leaf). An additional benefit from RNAi
biopesticides are their demonstrated specificity to the pest
target, while not harming beneficial non-target insects that

may feed on treated pests, thus protecting predators (Sarmah
et al., 2021), parasitoids, and pollinators like bees (Hunter
et al., 2010; Tan et al., 2016; Vogel et al., 2019). With
all these breakthroughs in RNAi for pest management, our
study identifies two dsRNA triggers, v-ATPase B and JHBP,
that may provide suitable targets for development of RNAi-
based management of Tuta absoluta, a devastating global
lepidopteran pest.
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