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Abstract: Thickness control is a critical process of automated polishing of large and thin Si wafers
in the semiconductor industry. In this paper, an elaborate double-side polishing (DSP) system is
demonstrated, which has a polishing unit with feedback control of wafer thickness based on the
scan data of a laser probe. Firstly, the mechanical structure, as well as the signal transmission and
control of the DSP system, are discussed, in which the thickness feedback control is emphasized.
Then, the precise positioning of the laser probe is explored to obtain the continuous and valid scan
data of the wafer thickness. After that, a B-spline model is applied for the characterization of the
wafer thickness function to provide the thickness control system with credible thickness deviation
information. Finally, experiments of wafer-thickness evaluation and control are conducted on the
presented DSP system. With the advisable number of control points in B-spline fitting, the thickness
variation can be effectively controlled in wafer polishing with the DSP system, according to the
experimental results of curve fitting and the statistical analysis of the experimental data.
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1. Introduction

Silicon (Si) wafers are widely used for integrated circuits construction in the semiconductor
industry. With the application of large-scale and ultra-large-scale integration devices, the Si wafers
of larger sizes and thinner thickness are stringently needed, with which high output and well
performance of integrated circuits can be expected. To achieve high cost-effectiveness in wafer
processing, fine polishing or grinding systems, processes are studied by researchers. Eda et al.
developed a single-step grinding system for Si wafers with 300 mm diameter [1], which provides
an integrated solution by using fixed abrasive to achieve the required surface roughness and global
flatness. Sun et al. built a mathematical model of wafer shape for fine grinding of silicon wafers [2].
Lee et al. also presented a φ300 mm wafer polishing system, and the effects of applied down-force and
working temperature on surface characteristics were explored [3]. Schwandner et al. invented a method
for the double-side polishing of a semiconductor wafer and presented the construction for carrying out
the method [4]. Sun et al. established a predictive grinding-force model, as well as the relationship of
subsurface crack depth and total normal grinding-force, to optimize the self-rotating grinding process
for Si wafers [5]. Zhong et al. analyzed the effects of different pre-polishing processes on the site
flatness values of the finished wafers in wafer polishing [6]. For semiconductor manufacturers, the
improvement of quality, especially thickness uniformity of wafers, is an eternal pursuit, which demands
precise evaluation and effective control of wafer thickness.
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Thickness measurement and control are studied in many applications, such as mechanical
devices and polymer material. Chowdhury measured oil-film thickness to establish a monitoring and
control system for plain bearings [7]. Koberstein and Stein introduced the thickness measurement of
the diffuse phase boundary by small-angle X-ray scattering for two-segmented polyurethane block
copolymers [8]. Kita et al. discussed the applicability of using the brightness difference between the
SiO2 and bare Si portions, on the scanning electron microscope (SEM) image of a nanometer-thin SiO2

layer on a Si wafer, to evaluate the relative thickness of the SiO2 layer [9]. Zarzycki et al. used an
exponential two-layer light-material interaction model as an alternative to measuring the evaporate
SiO2 thickness on Si wafers [10]. Yan et al. developed a scanning interferometry system by using
the near-infrared low-coherence light to measure the surface profile, optical thickness and refractive
index, of double-sided polished Si [11]. Lee and Joo proposed an optical interferometric method
for the geometrical dimension measurement of the polished Si wafers [12]. Due to high accuracy,
a laser scanner is also preferred for thickness measurements in some applications, such as medicine,
archaeology and design. Tian et al. proposed an infrared-laser based thickness measurement method
of Si substrates [13]. Pouli et al. investigated applying the depth profiling analysis of breakdown
spectroscopy induced by nanosecond and femtosecond laser for the thickness measurement of thin
organic protective coatings on historic metal objects [14]. Song et al. presented a solution to high-quality
3D reverse modeling on complex surfaces using a laser line-scanning sensor [15].

Moreover, various thickness control approaches were proposed. Kloeck et al. applied the
electrochemical etch-stop for high-precision thickness control of Si membranes, which improves
piezoresistive pressure sensors’ reproducibility [16]. Chung presented a similar method for controlling
the thickness of single-crystal Si wafers in the aqueous tetramethylammonium hydroxide [17]. Zhu et al.
explored the thickness uniformity control of a single layer to obtain uniform optical properties of
a large-area soft X-ray multiplayer [18]. In this research, a laser probe is used as the tool for the
thickness measurement of Si wafers.

Meanwhile, the laser probe is connected to a Programmable Logic Controller (PLC) via a personal
computer (PC) to achieve the feedback control of wafer thickness. In wafer polishing, accurately
characterizing the thickness and shape of Si wafers is the prerequisite of wafer thickness control.
Thus, data fitting of the geometric profile based on the scan data from the laser probe is demanded.

Curve fitting is used to determine the parameters of a mathematical model that describes a set of
usually noisy data in a way that minimizes the difference between fitting model and the data. Kinds of
algorithms can be used for curve fitting. Florussen et al. applied ordinary polynomials functions for
representing the geometric errors of multi-axis machines [19], in which appropriate polynomial order
is obtained for every error component by analyzing the square root of the mean sum of squared errors.
Kono et al. analyzed machine tool motion errors in the frequency domain to separate geometric errors
from time-dependent errors [20]. However, due to leakage errors, the truncated Fourier series cannot
accurately describe the component error in both of its ends because the measured error data rarely
satisfy the periodic property. Ding et al. proposed an optimal modification approach to accurately
modify tooth flank form errors [21], where higher-order polynomial functions of the cradle’s rotation
angle are analytically treated as a motion element relative to a coordinate system. Kermarrec et al.
considered the obtaining of Cartesian coordinates of control points by using a B-spline curve [22].
They also showed that a constant variance was accessed to all points of an object owing homogeneous
properties, which does not affect the loss of efficiency of the least-squares solution.

In this paper, an elaborate double-side polishing system (DSP) is demonstrated for the fabrication
of Si wafers. a novel feedback control scheme of the DSP, which integrates an optical coherence
tomography (OCT) to shape the wafer thickness as the feedback, is stated. The precise location
of the laser probe in the measurement of the wafer thickness is discussed. In addition, a B-spline
representation is introduced for updating the wafer thickness model based on the measurement
points on the wafer surface, which contributes to accurately estimate whether the polishing wafer
reached the specified level of thickness. When the thickness function of the Si wafer is extracted from



Sensors 2020, 20, 1603 3 of 14

the corresponding scan data set, the residual errors can be treated as random errors. To verify the
effectiveness of the elaborate DSP system and the novel thickness control method, experiments and
result analysis are presented.

2. A Double-Side Polishing System for Si Wafers

In this section, the DSP system and laser-based thickness control (LTC) system for Si wafer
processing are introduced. Communications among a laser probe, a PLC and a PC enables real-time
detection, evaluation and location of the machining Si wafers, in which the wafer thickness is calculated
by interference signal rebounded from the upper and lower surfaces of a wafer.

2.1. Polishing Unit with Feedback Control

An Si wafer, which has extensive application in printing integrated circuits and miniature
integrated instruments, is one main component of the semiconductor apparatus. Polishing systems
have been widely used in the fabrications of large-scale integrated circuits (LSI), very-large-scale
integration (VLSI) and other semiconductors to obtain high-quality Si wafers. The mechanical structure
of an elaborate wafer polishing machine is shown in Figure 1, which mainly consists of an upper plate,
a lower plate, an outer internal gear, an inner sun gear and five planetary gears used as carriers for
carrying 15 Si wafers. The internal gear is connected to the sun gear with the aid of the carriers.
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Figure 1. The mechanical structure of a double-side polishing machine for Si wafers.

The DSP system in Figure 1 aims at the Si wafers with 300mm diameter. In wafer processing,
the sun gear and internal gear, as well as the upper and lower plates, rotate with preset speeds.
Owing to the rotational speed difference between the two counter-rotating plates, the Si wafers on
the carriers perform the planetary motion, which polishes the wafer surfaces to a specific thickness
range. Meanwhile, the lens of Santec laser sensor is mounted on the upper plate and rotates along
with it. a through-hole is manufactured on the top plate so that the laser beam can pass through.
During polishing, wafers and the carrier rotate for laser scanning across the wafers, refer to Figure 2.
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Figure 2. Wafer scanning with a laser probe.

The machining equipment also requires some software, the peripheral device, the control system,
etc. The Q04UDEHCPU PLC from Mitsubishi is used for motion control of the mechanical structure of
the wafer polishing machine. The MODBUS TCP is used as the communication medium between PC
and PLC. An LTC system (see Figure 3) that consists of the thickness measurement, signal transmission
and feedback control is constructed for polishing Si wafers with demanded technical indexes. In the
LTC system, the thickness measurement of an Si wafer is achieved by using an OCT [23], which applies
the basic principle of the weakly coherent light for detecting the time difference of the back reflection or
scattering signals of the wafer’s upper and lower surfaces to calculate the wafer thickness. The main
technical parameters of the thickness measurement system are shown in Table 1. By scanning of
different positions at different times, the global shape of the wafer is obtained.Sensors 2019, 19, x FOR PEER REVIEW 5 of 14 
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Table 1. The main parameters concerning the thickness measurement system.

Parameter Unit Specification

Thickness measurement
range µm 3–1325

Working distance mm 3–1000

Repeatability(1σ) nm ≤35

Measurement frequency Hz 30,000

Beam spot size mm Φ2.7

Operation temperature range degC 25+/−5

Storage temperature range degC 10–40

Storage humidity range % ≤80

As shown in Figure 3, the laser probe moves over the moving wafer on the carrier to detect the
thickness and shape with the laser beam. Then a photodetector delivers the received signals to the
controlling PC for analysis. The detected scattered signal difference between double-side surfaces
of the wafer is served as a valid signal to calculate the wafer thickness so that the global profile of
the wafer is obtained. The real-time detection of the wafer profile is integrated into wafer processing.
The PC would deliver the stop command to the PLC to stop the polishing processing once the profile
of the machined wafer meets the preset thickness and surface shape.

2.2. Precise Location of Laser Probe

The thickness measurement has two components: profile detection and probe location. The PC
collects pulse information of the sun gear, internal gear and upper plate, as well as the elapsed time.
Real-time physical coordinates of the carriers, wafers and laser probe are calculated based on the pulse
information by comparing the timestamps of the PC and PLC. Along with the obtained thickness
points, the real-time thickness-coordinate couples used as scan data can be obtained.

The calculation of the wafer position is illustrated in Figure 4.
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Firstly, the position coordinate of a carrier (Xc, Yc) can be computed by{
Xc = X0 + Rc × cos(θc)

Yc = Y0 + Rc × sin(θc)
(1)

where (X0, Y0) is the coordinate of the sun gear, the default of which is (0, 0); Rc is the distance between
the sun gear and planetary gear, which is a fixed parameter of the polishing equipment; θc is the
real-time angle of the carrier relative to the sun gear, which can be calculated by the pulse information;
the angle difference of adjacent carriers relative to the sun gear is 72◦.

Similarly, the position coordinate of a wafer (Xw, Yw) can be expressed by{
Xw = Xc + Rw × cos(θw)

Yw = Yc + Rw × sin(θw)
(2)

where Rw is the distance between the wafer and the carrier, which is also a fixed parameter of the
polishing equipment; θw is the real-time angle of the wafer relative to the carrier, which can be
calculated by the corresponding pulse information; The angle difference between adjacent wafers
relative to the relevant carrier is 120◦.

Then, according to Figure 5, the position coordinate of the laser probe (Xs, Ys) can be denoted by{
Xs = Rs × cos(θs)

Ys = Rs × sin(θs)
(3)

where θs is the real-time angle of the probe relative to the sun gear, which can be calculated by the
obtained corresponding pulse information; Rs is the distance between the laser probe and the center of
the sun gear; Rs is a fixed value since the laser probe is attached on the upper plate, and the installation
position of the probe is determined by testing to obtain enough valid scan data.
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Moreover, we can have the position coordinate of the laser probe relative to the wafer, assuming
the wafer center is the origin. {

Xws = r× cos(θc−w−s)

Yws = r× sin(θc−w−s)
(4)

In Equation (4), r is the distance between the laser probe and the wafer, which is obtained by

r =
√

∆2
x + ∆2

y =

√
(Xs −Xw)

2 + (Ys −Yw)
2 (5)
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θc−w−s is the angle between the distances r and Rw refers to the small triangle in Figure 5. With the
law of cosines, the required angle can be easily calculated by cos(θc−w−s) =

R2
w+r2

−R2
ws

2×Rw×r
θc−w−s = cos−1(θc−w−s)

(6)

where Rws is the distance between the laser probe and the center of carrier, which can be calculated by

Rws =

√
(Xc −Xw)

2 + (Yc −Yw)
2 (7)

The continuous data of the couples of thickness and (X, Y) coordinates are treated as the scan
data. Only scan data passing through the wafer center is valid data, and other invalid data is removed.
Meanwhile, we can further filter the out-of-tolerance scan data by PLC programming based on the
preset thickness tolerance of the wafer. In addition, piecewise approximation can be applied for the
pruning of the scan data.

3. Modeling and Evaluation of Wafer Thickness

In wafer polishing with the DSP system, after the thickness measurement of the wafer, the measured
data from the laser probe cannot directly be used for the thickness control. It is assumed that the
exported unorganized data represents the profile of the wafer surface. Approximate curves should be
fitted to the data of the wafer thickness to effectively obtain the representation. The most common
method for curve fitting is the linear least-squares method, also called the polynomial least-squares.
However, the B-spline model [24] is adopted to represent the thickness function of Si wafers considering
the high-performance in geometric modeling.

3.1. B-spline Model for Characterizing Wafer Thickness Function

In the field of computational geometry, B-spline is a useful model to represent freeform curves
since a combination of B-splines can express any spline. The wafer thickness y(k) represented by
a B-spline model is given below.

y(k) =
[

B0,d(k) B1,d(k) · · · Bn,d(k)
]


C0

C1
...

Cn

 (8)

where Ci, (i = 0, 1, · · · , n) are control points, the number of which determines the flexibility of the
thickness curve; Bi,d(k) are basis functions of degree d of the B-spline concerning a knot vector
K =

{
k0, k1, · · · , kn+d+1

}
; the k is an estimated parameter to compute basis functions.

In this section, uniform B-spline basis functions, which are recursively denoted as below, are used.
Bi,0(k) =

{
1 i f ki ≤ k ≤ ki+1

0 otherwise
Bi,d(k) =

k−ki
ki+d−ki

Bi,d−1(k) +
ki+d+1−k

ki+d+1−ki+1
Bi+1,d−1(k)

(9)

In Equation (9), ki is the ith knot which is obtained by

ki =


0 0 ≤ i ≤ d

(i− d)/(n + 1− d) d + 1 ≤ i ≤ n

1 n + 1 ≤ i ≤ n + d + 1

(10)
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To obtain a wafer thickness function based on the scan data, we fit the B-spline model to the scan
data. The degree d is often chosen to be 3 to ensure C2 continuity. If we obtain a set of scan data
S =

{
(x j, y j), j = 1, 2, · · · , m

}
, the parameter k j can be computed by

k j =
x j − xinit

xterm − xinit
, j = 0, 1, · · · , m (11)

where x j is of the jth scan point, xterm and xinit are of the terminative and initiatory scan data, respectively.
With Equations (9) and (11), we can obtain

B =


B0,d(k0) B1,d(k0) · · · Bn,d(k0)

B0,d(k1) B1,d(k1) · · · Bn,d(k1)
...

...
. . .

...
B0,d(km) B1,d(km) · · · Bn,d(km)

 (12)

Thus, the thickness of a scan point, which is estimated by the fitted B-spline curve, can be
denoted by

_
y j =

[
B0,d(k j) B1,d(k j) · · · Bn,d(k j)

]


C0

C1
...

Cn

 (13)

Intuitively, the residual errors of each point of the scan data set S can be obtained by

e j = y j −
_
y j, j = 1, 2, · · · , m (14)

To evaluate the performance of characterizing wafer thickness function, the probability distribution
parameters of the residual errors, i.e., mean value µ and standard deviation σ, are calculated by

µ =

m∑
j=0

ei

m + 1
, σ =

√√√√√√ m∑
j=0

(ei − µ)2

m + 1
(15)

3.2. Wafer Thickness Evaluation and Control Experiments

In experiments, after we obtain the raw data of wafer thickness by using the laser probe of the
DSP system shown in Figure 1, the B-spline representation is applied to build the wafer thickness
model. Thus, the feedback control of the wafer thickness can be expected by using the LTC system in
Figure 3. The procedure of the wafer thickness evaluation is briefly given as follows.

• Step 1: Obtain the raw thickness points of 0◦ and 90◦ measuring paths of Si wafer of “P-” type
when scanning;

• Step 2: Explore the effects of the number of control points on the quality of the B-spline fitting of
the raw thickness points, and choose an appropriate amount of control point;

• Step 3: Conduct the B-spline fitting of the raw thickness points based on deficient and superfluous
control points to demonstrate the necessity of selecting the proper number of control points;

• Step 4: Contrast the results of the B-spline fitting and the biquadratic polynomial function to verify
the effectiveness of the B-spline model on the characterization of the wafer thickness variation.

The scanning is conducted when polishing, and the raw thickness points in scan data concerning 0◦

and 90◦ measuring paths of a Si wafer of type “P-” are shown in Figure 6. The sampling frequency
of the thickness measurement system is 3000 points per second. The preset thickness threshold is
used to automatically remove the invalid data, including motion artifacts. In addition, the scan data
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which does not pass through the wafer center are also treated as invalid data and discarded. For fitting
B-splines to the scan data of wafer thickness, the degree of the B-spline basis functions d, the number of
the control points n + 1 and the knot vector K should be determined in advance. As described above,
the degree d is chosen to be 3, and a uniform knot vector is used. For the advisable flexibility of the
B-spline model, the effects of the number of control points on the B-spline fitting are explored below.
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The mean value and standard deviation of the residual errors from the B-spline fitting of the
scanning date in Figure 6 are demonstrated in Figure 7. From the figures, it can be seen that the means
are minimal regardless of the number of control points. At the same time, the standard deviations
of the residual errors decrease with the increasing of the number of the control points from d + 1 to
25 control points. After 25 control points, the increase in the number of control points induces very
little change of the mean value and standard deviation. Therefore, the number of control points are
chosen to be 25.

With the selected number of the control points, the B-spline fitting is conducted on two scan data
sets of the Si wafer, to provide an accurate characterization of wafer thickness for thickness control.
The fitting results of the 0◦ and 90◦ measuring paths are shown in Figure 8, respectively. The fitted
curves that are drawn by a solid red line accurately characterize the thickness variations, and the
residual errors approximate a zero-mean normal distribution. The two purple dotted curves denote
the upper and lower ends of the thickness range, which is exactly ±3σ about the fitted curve. It means
that 99.73% of the scanning points will be with the thickness range.
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Figure 8. The B-spline fitting of scan data wrt. 0◦ and 90◦ measuring paths with a selected number of
control points.

To demonstrate the necessity of selecting the proper number of control points, the B-spline fittings
based on deficient and superfluous control points are comparatively conducted on the scan data of
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a “P-” type wafer. Refer to Figure 9, when the B-spline model with deficient control points is fitted to
the thickness scan data, the fitted curves cannot characterize the thickness variation, and some of the
thickness is identified as random errors. Thus, the residual errors deviate from the normal distribution,
and the standard deviations are large.

Refer to Figure 10, then the B-spline model with superfluous control points is fitted to the thickness
scan data, in which some random errors are fitted by the B-spline model. Additionally, no obvious
improvement concerning the residual error distribution.

Additionally, compared with the wafer thickness curves shown in Figure 11, which are fitted by
the biquadratic polynomial function Thinkness(X) = AX4 + BX3 + CX2 + DX + E, the ones fitted by
the B-spline model with a selected number of control points can accurately characterize the thickness
variation. After the evaluation of the wafer thickness along the measuring paths, including 0◦ and 90◦

paths, the deviation of desired thickness from the fitted one provides the DSP system with the feedback
for modifying the machining path of the DSP system. Then, the polishing unit with feedback control
could be used to further polish the Si wafers. After thickness control, the root means square errors are
intuitively and largely reduced. The magnitudes of the mean value and standard deviations could also
be brought down, which can fulfill the quality requirement of Si wafers with 300mm in diameter.
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4. Conclusions

For polishing large and thin Si wafers, an elaborate DSP system is demonstrated. The mechanical
structure, especially the polishing unit, is discussed in detail. For effective wafer-thickness control,
a laser probe is applied for thickness scanning, and a scheme of signal transmission and feedback
control is constructed. To obtain continuous and valid scan data of the thickness, the mathematical
model of the precise location of the laser probe is explored. Accurate thickness characterization of the
wafer is the prerequisite of the thickness control. Thus, a B-spline model is used to represent the wafer
thickness function, and the thickness deviation can be calculated for online machining compensation of
the DSP system. In the B-spline fitting, the number of control points is adequately selected for excellent
fitting performance. Experimental results show that the wafer thickness in Si wafer processing can be
effectively controlled by using the presented DSP system in which the wafer thickness is evaluated by
a B-spline model.
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