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Abstract

In rapidly growing and high-burden urban centres, identifying tuberculosis (TB) transmission
hotspots and understanding the potential impact of interventions can inform future control
and prevention strategies. Using data on local demography, TB reports and patient reporting
patterns in Dhaka South City Corporation (DSCC) and Dhaka North City Corporation
(DNCC), Bangladesh, between 2010 and 2017, we developed maps of TB reporting rates
across wards in DSCC and DNCC and identified wards with high rates of reported TB
(i.e. ‘hotspots’) in DSCC and DNCC. We developed ward-level transmission models and esti-
mated the potential epidemiological impact of three TB interventions: active case finding
(ACF), mass preventive therapy (PT) and a combination of ACF and PT, implemented either
citywide or targeted to high-incidence hotspots. There was substantial geographic heterogen-
eity in the estimated TB incidence in both DSCC and DNCC: incidence in the highest-inci-
dence wards was over ten times higher than in the lowest-incidence wards in each city
corporation. ACF, PT and combined ACF plus PT delivered to 10% of the population reduced
TB incidence by a projected 7%-9%, 13%-15% and 19%-23% over five years, respectively.
Targeting TB hotspots increased the projected reduction in TB incidence achieved by each
intervention 1.4- to 1.8-fold. The geographical pattern of TB notifications suggests high levels
of ongoing TB transmission in DSCC and DNCC, with substantial heterogeneity at the ward
level. Interventions that reduce transmission are likely to be highly effective and incorporating
notification data at the local level can further improve intervention efficiency.

Introduction

Tuberculosis (TB) is the leading single-agent infectious cause of morbidity and mortality, with
an estimated 10.0 million new TB cases and 1.4 million deaths worldwide in 2019 [1]. Despite
the availability of effective treatment, TB incidence has not declined substantially in many
high-burden countries, including Bangladesh, where an estimated 361 000 people developed
new TB disease in 2019 [1, 2]. The End TB Strategy, launched by the World Health
Organization as part of its post-2015 agenda, set goals to reduce TB incidence by 50% by
2025, and by 90% by 2035 [3]. Unfortunately, given the present slow decline in TB incidence
of 1.5% per year, it is unlikely that these targets will be met unless concerted efforts are made
to rapidly increase the rate of decline in TB incidence.

In high-burden settings, a substantial proportion of incident TB occurs as a result of recent
transmission [4, 5]. This is particularly true in densely populated urban centres, such as
Dhaka, which have higher social contact rates, facilitated by factors such as the use of mass
public transportation, the presence of slums and markets, and high rates of internal migration
[6-10]. Furthermore, it is known that TB, along with many of its common risk factors, such as
low socio-economic status [11], poor living conditions (e.g. crowding, poor ventilation in
housing) [12-14], migration status [8, 10], and Human Immunodeficiency Virus infection
[15, 16], tends to cluster in hyperendemic ‘hotspots.’ These high-incidence areas can act
as reservoirs of infection and drive secondary transmission within the larger community
[12, 17, 18].
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As such, interventions aimed at reducing transmission may
be critical to bringing about a decline in TB incidence in these
settings [19, 20]. Furthermore, targeting hotspots may be more
effective in reducing TB incidence at the local (e.g. city) level
compared with interventions that are delivered to the general
population without any attempt to prioritise those at the highest
risk. Empirical evidence for the effectiveness and feasibility of
geographic targeting is currently lacking [21]. As such, by lever-
aging available surveillance data at the local level, models of geo-
graphically targeted interventions can inform evidence-based
decision-making until data on specific interventions are col-
lected. Models can also motivate this future empirical research
by estimating the potential impact of targeted interventions
in specific settings and by identifying important data gaps.
Therefore, in this study, we aimed to understand the population-
level impact of TB interventions, aimed at reducing TB trans-
mission and the added value of targeting hotspots with these
interventions. Using data on TB notification, patient reporting
patterns and transmission models of TB, we estimate the impact
of targeting potential TB interventions, namely active case find-
ing (ACEF, designed to reduce transmission by finding cases earl-
ier) and preventive therapy (PT, designed to prevent reactivation
of remote infection) to high-incidence geographical hotspots in
Dhaka, Bangladesh.

Methods
Ward-level TB notification maps

We aggregated notification data from TB reporting centres within
each ward of Dhaka South City Corporation (DSCC) and Dhaka
North City Corporation (DNCC) between the years 2010 and
2017 - as of 2017, DSCC and DNCC consisted of 54 and 36
wards, respectively. Reporting centres provide TB treatment via
Bangladesh’s Directly Observed Therapy, Short-Course (DOTYS)
program. We generated annual estimates of ward-level TB notifi-
cation rates, calculated as the number of reported TB cases within
each ward divided by the population of the ward (estimated using
the 2011 national census with 5% annual growth rates). Using GIS
data of the administrative boundaries of DSCC and DNCC, we
then generated maps of the distribution of estimated TB notifica-
tion rates in each ward.

To account for discrepancies between ward of TB notification
(where patients were diagnosed) and ward of residence (where
patients lived), we used de-identified individual-level data on
2980 patients diagnosed with TB from selected reporting centres
in five DSCC wards and 532 patients in a single DNCC ward
between 2017 and 2018. Using these data as a guide, we adjusted
previously generated ward-level TB notification rates to reflect
the observed distribution of TB cases notified in a given ward
that comprised patients living in the ward of notification, patients
living in adjacent wards (distributed equally across all adjacent
wards) and patients living in non-adjacent wards (distributed
equally across all other wards in the corresponding city
corporation).

Institutional review board

Johns Hopkins School of Public Health Institutional Review
Board (IRB) policy does not require IRB oversight for studies
involving data analysis of de-identified aggregated data. No
informed consent was needed for this use of the data.
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Transmission model

Drawing on our previous work [12, 17, 19], we constructed ward-
specific epidemiological models to characterise transmission pat-
terns and the natural history of TB in all wards of DSCC and
DNCC. Following a deterministic, compartmental model struc-
ture (Fig. 1), each ward’s population was stratified into three com-
partments: TB uninfected, latent TB infection (LTBI, including
post-treatment), and active (infectious) TB disease. We assumed
that uninfected individuals, upon being infected with TB, progress
either to LTBI or to active TB disease (primary progression).
Latently infected populations could develop active TB disease
either via reactivation or via reinfection followed by primary pro-
gression. We assumed that prior TB infection provides partial
protection against future TB infection. Finally, we modelled diag-
nosis and successful treatment of TB disease as a return to the
LTBI compartment. The model did not consider age structure,
drug resistance, or other risk factors that may affect TB natural
history. A full description of the model, including differential
equations describing the model, is included in the
Supplementary materials (Appendix II).

We calibrated the models to ward-specific TB prevalence.
Ward-specific TB prevalence was estimated based on the inci-
dence maps generated (as described above). Following WHO esti-
mates, we assumed that 67% of incident TB cases in Bangladesh
are reported, and the average duration of TB disease is 1.5 years
before individuals with active TB are successfully diagnosed and
treated. Other model parameters were taken from the published
literature (see Table A1, Appendix III for details) [19]. To enable
a simple and transparent model calibration process, we assumed
that there were no significant secular trends in TB prevalence
or incidence at baseline. The Model calibration process is
described in detail in Appendix II and implemented in excel
spreadsheets included in the Supplementary materials.

Model scenarios

Genomic data (e.g. population-wide whole-genome sequencing) to
inform the amount of ongoing TB transmission are not available
for Dhaka or similar high-burden urban settings [22]. As such,
we modelled three different scenarios, each reflecting different
levels of TB transmission at the ward level and each independently
calibrated to the estimated TB incidence in Dhaka. These scenarios
were chosen to reflect reasonable levels of transmission that could
each be consistent with the observed epidemiology of TB in Dhaka.

(1) Low transmission. In this scenario, an estimated 71% (inter-
quartile range: 62%-79%) of incident cases in DSCC and
56% (interquartile range: 52%-61%) of incident cases in
DNCC were due to recent transmission rather than reactiva-
tion of remote infection - a figure that is lower than estimated
in models of Rio de Janeiro, Brazil [12], and other urban set-
tings in countries where TB incidence is substantially lower
than that of Bangladesh.

(2) Moderate transmission. In this scenario, we used our best a
priori estimates of TB transmission, as described in our
model of TB transmission in Karachi, Pakistan [19]. This
resulted in 82% (interquartile range: 76%-87%) of incident
cases in DSCC and 70% (interquartile range: 66%-75%) of
incident cases in DNCC being due to recent transmission.
This scenario is used as the reference for all results presented
below.
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Fig. 1. Schematic representation of transmission model. In this ward-specific compartmental model, the population was divided into three compartments based
on their TB status: uninfected (i.e. individuals who have not been exposed to TB), LTBI (i.e. individuals with LTBI) and active TB (i.e. individuals with infectious TB
disease). We modelled two interventions: ACF, which was modelled to reduce the time for diagnosis and thus, resulting in an increase in the rate marked in blue;
and PT, which was modelled to prevent reactivation and progression of the disease and thus, resulting in a reduction in the rates marked in red.

(3) High transmission. Here, we assumed higher transmission
rates, similar to the ‘high-transmission’ scenario in our
model of Karachi [19], such that the vast majority of TB is
due to recent transmission. This resulted in 88% (interquar-
tile range: 83%-91%) of incident cases in DSCC and 79%
(interquartile range: 75%-83%) of incident cases in DNCC
being due to recent transmission events.

Interventions

We modelled three different TB interventions; (i) ACF; (ii) mass
PT and (iii) ACF and PT combined, with each intervention
achieving the population-level coverage of 10% in DSCC and
DNCC separately. For ACF, we assumed that implementation
would reduce time to diagnosis by one-third (i.e. 33.3% reduction
in the average time to diagnosis). For PT, we assumed adherence
levels of 60% and efficacy of 80% in reducing reactivation and
rapid progression of infections that existed at the time of the
intervention. For the combined intervention, we assumed that
both interventions, ACF and PT, would be implemented in the
same population with independent effects. For simplicity, we
assumed rapid scale-up of each intervention to the target level
specified.

For all three interventions, we modelled two implementation
strategies, either a citywide implementation (in which 10% of
the entire population of DSCC and DNCC received the interven-
tion, regardless of the ward of residence), or a targeted implemen-
tation (in which the interventions were targeted to high-incidence
wards, but at a higher coverage such that the same number of peo-
ple were covered as in the citywide implementation). For DSCC,
we selected the 12 wards with the highest TB notification rates
in 2017, which comprised ~20% of the total population of
DSCC. Similarly for DNCC, we selected the six wards with the
highest TB notification rates between 2015 and 2017; these
wards comprised ~20% of the total population of DNCC. We
assumed that 50% of the population in these wards would be cov-
ered by each intervention under targeted implementation, thereby
achieving the population-level coverage of 10% in each city
corporation.

Primary outcome

The primary outcome was the projected reduction in TB
incidence in DSCC and DNCC, five and ten years after the imple-
mentation of each intervention, comparing the targeted imple-
mentation of the intervention in high incidence ‘hotspots’ vs.
untargeted citywide implementation.

Sensitivity analyses

To explore the sensitivity of the model results to the changes in
model parameters, we conducted multivariate uncertainty ana-
lyses. We generated 10000 parameter sets for DSCC and
DNCC separately using Latin Hypercube Sampling, carried out
model simulations for each parameter set and estimated partial
rank correlation coefficients, between the model parameters and
key model outcomes, the relative reduction in 10-year TB inci-
dence achieved through ACF, PT and a combination of both via
targeted implementation compared to a citywide implementation
[23] (see Appendix III for details).

Results
Spatiotemporal patterns of TB in DSCC and DNCC

TB notification data during the seven-year period between 2010
and 2017 suggests that while TB notification rates are generally
higher in DSCC compared to DNCC, TB is highly heterogeneous
at the ward level in both city corporations (Figs 2 and 3).
Unadjusted ward-level notification rates in 2010 in both DSCC
and DNCC ranged from 60.9 to 2822.6 per 100000 per year,
over 40-fold difference.

Using individual-level data from selected reporting centres, we
estimated that 18%-50% of reported cases resided in the ward in
which the reporting centre was housed, 12%-37% resided in
neighbouring wards (wards within the city corporation sharing
boundaries with the reporting centre) and the remaining resided
elsewhere in Dhaka. For each ward, we, therefore, adjusted notifi-
cation rates to more closely reflect potential patterns of patient
residence by attributing 50% of the reported cases to the ward
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Fig. 2. Maps of DSCC with estimated TB notification rates in 2010 and 2017. Panels (a) and (c) show unadjusted notification rates (in units per 100 000 per year) in
2010 and 2017, respectively. Panels (b) and (d) show corresponding notification rates after adjustment for observed correlations between ward of residence and

ward of reporting centre in 2010 and 2017, respectively.

housing the reporting centre, 40% to adjacent wards and 10%
equally to all wards in the city corporation. Even after adjusting
for potential clustering of reporting in this fashion, substantial
geographic heterogeneity in TB incidence persisted in both
DSCC and DNCC; distinct ‘hotspots’ with high TB notification
rates and ‘cold’ patches with low TB notifications were still
observed. This pattern of geographic heterogeneity persisted and
intensified over time, as depicted by TB notification maps of
DSCC and DNCC, which show darker shades of red and
blue in 2017 (Figs. 2¢, d and 3¢, d) than in 2010 (Figs. 2a, b
and 3a, b).

Changes in TB notification rates between 2010 and 2017 were
also heterogeneous across wards. For example, in DSCC, the
southern and northcentral sections had prominent declines in
TB notification rates, whereas the central and northeastern parts
experienced large increases (Fig. 4a; blue patches indicate a
decline, and red and orange patches indicate increase). In
DNCG, the central area had marked declines, whereas the eastern
and southern areas experienced large increases (Fig. 4b).

Epidemiological impact of TB interventions

ACF implemented throughout DSCC over a five-year period and
randomly targeting 10% of the population was projected to reduce
TB incidence by 9.0%; when targeted to the 12 wards with the
highest TB incidence, this impact grew to 14.6% projected reduc-
tion (Fig. 5). The corresponding impact of PT was a 15.2% (untar-
geted) and 22.3% (targeted) reduction in five-year incidence, and

when ACF and PT were combined, the greatest reductions in five-
year incidence were achieved: 22.6% if untargeted and 27.7% if
targeted to the 12 highest-incidence wards (Fig. 5).

The impact of TB interventions in DNCC was slightly lower
than in DSCC, reflecting the lower burden of TB incidence and
TB transmission in DNCC relative to DSCC (Fig. 6). Projected
reductions in five-year TB incidence in DNCC were: 7.0% from
citywide ACF, 13.9% from hotspot-targeted ACF, 13.0% from
citywide PT, 22.8% from targeted PT, 18.9% from citywide com-
bined ACF and PT and 28.2% from targeted ACF and PT. Over a
ten-year time horizon, the projected epidemiological impact of all
citywide interventions grew by an additional 18%-41%; this grew
to 19.8%-44.8% at 20 years. Notably, the relative added benefit of
targeting was greatest at earlier timepoints. For example, ACF
deployed in a targeted fashion in DSCC was 1.6 times more
impactful compared to citywide ACF at year 5, but only
1.4-times at year 20, suggesting that the relative value of targeting
can wane over time. The relative added benefit of the targeting
diminished when both interventions, ACF and PT were imple-
mented in a targeted fashion. For example, at year 5 in DSCC,
ACF and PT when applied separately, was respectively, 1.6 and
1.5 times impactful when targeted. However, when combined,
the relative impact of targeting was only 1.2 times more. The
impact of interventions also increased with the intensity of trans-
mission, with the high-transmission scenario leading to estimates
of impact at least 20% greater than those in the low-transmission
scenario for all interventions. However, the relative benefit of geo-
graphically targeted implementation also decreased with higher
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Fig. 3. Maps of DNCC with estimated TB notification rates in 2010 and 2017. Panels (a) and (c) show unadjusted notification rates (in units per 100 000 per year) in
2010 and 2017, respectively. Panels (b) and (d) show corresponding notification rates after adjustment for observed correlations between ward of residence and

ward of reporting centre in 2010 and 2017, respectively.

levels of transmission; for example, targeted implementation of
ACF in DNCC was estimated to generate a reduction in TB inci-
dence that was 2.0 times greater than untargeted implementation
in the low transmission scenario, compared to 1.7 times in the
high transmission scenario (Figs. S5 and S6 in the Appendix I).
Finally, the results from multivariate uncertainty analyses show
that targeted interventions have greatest impact in settings
where more incident TB is due to recent rather than remote infec-
tion. The model parameters that correlated most strongly with the
relative value of targeting interventions were the level of protec-
tion against reinfection, the rate of TB diagnosis and the rate of
rapid progression; an increase in any one of these increases the
proportion of incident TB that is due to recent infection com-
pared to remote (see Appendix III).

Discussion

In this study, we aimed to assess the benefits of potential TB inter-
ventions, specifically active case finding and mass preventive ther-
apy, in Dhaka, Bangladesh - a high-incidence, densely urban South
Asian city. We found that TB is geographically heterogeneous
across wards, with ward-level notification rates varying by more

than a factor of ten. Interventions in Dhaka to actively find TB
cases and to prevent reactivation disease have the potential to affect
substantial and rapid declines in TB incidence. For example, cover-
ing 10% of the population with ACF and PT could reduce TB inci-
dence in Dhaka by about 20% within five years. Targeting these
interventions to the wards with the highest TB notification rates
could magnify the impact of these interventions still further, such
that nearly 30% reductions in TB incidence could be achievable
within five years. These results may help to motivate the implemen-
tation of interventions to reduce TB transmission in South Asian
megacities and to collect data at the district level that could help
inform evidence-based targeting of those interventions to high-
incidence hotspots.

Geographic heterogeneity is a hallmark of most infectious dis-
eases, including vector-borne diseases, such as malaria and den-
gue virus [24-26], and sexually transmitted diseases, such as
gonorrhea, chlamydia and syphilis [27]. For many of these infec-
tions, it has been recommended that interventions be targeted to
high-incidence hotspots. Nevertheless, TB differs from most other
infectious diseases, particularly in terms of its airborne route of
infection and lengthy/highly variable trajectory of latency and dis-
ease, which may mitigate the degree of geographic heterogeneity
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(b)

Fig. 4. Annual percentage change in TB incidence in DSCC and DNCC wards between 2010 and 2017. Panels (a) and (b) give the average annual changes (% per
year) in estimated TB incidence at the ward level in DSCC and DNCC, respectively, between the years 2010 and 2017. Blue shading indicates a decline in TB inci-
dence during the 7-year period (with darker shades representing steeper declines), whereas red shading indicates an increase (with darker shades representing
greater increases).
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Fig. 5. Impact of TB interventions on ward-level TB incidence in DSCC after five years. The colours for each ward depict the projected TB incidence after five years of
intervention and the bubbles indicate the absolute size of the reductions (the reduction in the number of incident TB cases achieved by the intervention in year 5).
Panel (a) represents city-wide ACF, (b) represents the targeted case finding, (c) represents the city-wide PT, (d) represents the targeted PT, (e) represents the com-
bination of citywide ACF and PT and (f) represents the combination of targeted ACF and PT.
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Fig. 6. Impact of TB interventions on ward-level TB incidence in DNCC after five years. The colours for each ward show the projected TB incidence after five years of
intervention and the bubbles indicate the absolute size of the reductions (the reduction in the number of incident TB cases achieved by the intervention in year 5).
Panel (a) represents city-wide ACF, (b) targeted case finding, (c) city-wide PT, (d) targeted PT, (e) combination of citywide ACF and PT, and (f) combination of

targeted ACF and PT.

and the impact of such heterogeneity on disease transmission.
Understanding the dynamics of geographic heterogeneity in TB
incidence can therefore not only inform the prioritisation of exist-
ing TB interventions and resources but can also add insight into
the natural history and transmission patterns of M. tuberculosis,
the most deadly human pathogen. Such investigations may be
particularly useful in urban settings such as Dhaka, where TB
transmission is particularly intense and notification data are avail-
able at the scale of small administrative units.

In addition to informing city-level policy (in collaboration
with partners such as the Bangladesh National Tuberculosis
Program, which contributed to this work), our model findings
can also help motivate the collection of finer-resolution data on
TB notifications in Dhaka and other similar settings. Our results
illustrate how the abilities to accurately identify high-incidence
hotspots and assess reporting and mixing patterns, at an appro-
priate and actionable spatial scale (such as the ward level in
Dhaka) can help to harness the full potential of geographically

targeted TB interventions. In assessing the relative benefit of tar-
geting actual interventions (rather than the stylised interventions
presented here), the feasibility and cost-effectiveness of delivering
interventions at the local scale must also be considered.

As with any modelling analysis, these findings should be inter-
preted in light of several data limitations and modelling assump-
tions. Empirical data were not available to inform -certain
important considerations such as the movement of individuals
between wards and city corporations. This forced us to adopt a
number of simplifying assumptions, which could affect our results
in two distinct ways. First, discrepancies between patients’ place of
residence and place of notification could affect our ability to
accurately assess the geographic distribution of TB risk and inci-
dence from notification data alone. Because TB transmission
largely occurs within households and communities, tracking
patients by their place of residence may be a more accurate meas-
ure of capturing the spread of TB than the place of presentation
[19]. In our study, we partially accounted for these discrepancies



through adjustment based on patient-level data, which we col-
lected from reporting centres in five DSCC wards and one
DNCC ward. In this analysis, we found that nearly half of all
cases were reported in the wards where patients did not live.
These findings suggest that a systematic assessment of reporting
patterns throughout DSCC and DNCC is necessary to more com-
prehensively address this concern.

Second, movement of individuals between wards can further
drive the spread of TB within the city; for example, high-
incidence hotspots can fuel TB in many other parts of the city
if there is a large amount of movement between the hotspot
and the other parts of the city [10, 12]. Although such mixing
is generally difficult to quantify for an airborne disease, a lack
of data on between-ward mobility may result in an underestima-
tion of the impact of targeted interventions. Geographically tar-
geted interventions have been shown to have higher relative
benefit when there is more mixing between individuals in the hot-
spots and the general population [12, 17]. Given the importance
of mixing, there is a need to better understand the mobility and
migration of high-risk populations (e.g. commuting patterns),
from the perspective of airborne transmission events.

Finally, we relied on ward-level case notification data to ascer-
tain TB transmission risk within wards. Although we accounted
for some of this discrepancy in the patient reporting patterns,
some of the heterogeneity in case notifications could also reflect
differences in access to TB care [28, 29] (e.g. lower case notification
due to lower case notification ratios), demographics [30] (e.g. clus-
tering of migrants from other high incidence areas) or socio-
economic differences [31] (e.g. poverty). The relative impact of geo-
graphic targeting in such instances may not be as substantial or as
sustained. Hence, a better understanding of the mechanisms driv-
ing geographic heterogeneity in TB reporting and incidence is
needed to more comprehensively understand the incremental epi-
demiological value of geographic targeting. These considerations
are particularly important, given that such targeting may increase
programmatic costs and add logistical challenges, and inadvertently
contribute to the stigmatisation of vulnerable communities [32, 33].
Ultimately, more detailed field studies are required to garner robust
empirical evidence that geographically targeted case finding can be
both impactful and successfully implemented [21].

These results lay the groundwork for future modelling ana-
lyses, including a more detailed characterisation of patient report-
ing patterns and mixing rates, as well as the integration of
demographic, socio-economic and TB care-seeking factors. The
incorporation of genomic data could also refine our interpretation
of TB incidence [22]. Specifically, since the projected impact of
TB interventions depends on the degree to which incident TB dis-
ease reflects recent transmission vs. reactivation, more accurate
estimates of the proportion and geographic distribution of new
cases due to the recent transmission can help refine estimates of
intervention impact. Such additional analyses can also better
quantify heterogeneity and help validate findings from simpler
models such as the one presented here.

In summary, this mathematical model of TB transmission in
DSCC and DNCC suggests that both ACF and PT can achieve
important reductions in TB incidence over a five-year period. If
these interventions are combined and targeted to those wards
with the highest TB notification rates (as identified using
ward-level data), the achievable reduction in incidence can
approach 30% within five years. The success of these interventions
is only possible if carried out in conjunction with strengthening
existing diagnostic and treatment services, which would allow
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for appropriate diagnosis and treatment of an expanded number
of individuals, without a loss in quality. These findings support
efforts to intensify active TB case finding and PT in Dhaka,
strengthen existing TB diagnostic and treatment services and col-
lect additional supporting data to further tailor the implementa-
tion of these interventions to those populations that are most
affected by high rates of TB transmission.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/50950268821000832.
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