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As neuronal simulations approach larger scales with increasing levels of detail, the neurosimulator 
software represents only a part of a chain of tools ranging from setup, simulation, interaction 
with virtual environments to analysis and visualizations. Previously published approaches to 
abstracting simulator engines have not received wide-spread acceptance, which in part may be 
to the fact that they tried to address the challenge of solving the model specifi cation problem. 
Here, we present an approach that uses a neurosimulator, in this case NEURON, to describe 
and instantiate the network model in the simulator’s native model language but then replaces 
the main integration loop with its own. Existing parallel network models are easily adopted 
to run in the presented framework. The presented approach is thus an extension to NEURON 
but uses a component-based architecture to allow for replaceable spike exchange components 
and pluggable components for monitoring, analysis, or control that can run in this framework 
alongside with the simulation.
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2006) participates in the development of the simulator NEURON 
(Hines and Carnevale, 1997). Those efforts ensured the effi cient par-
allelization of the simulator software to thousands of processors as 
well as model reproducibility throughout the parallelization process 
(Migliore et al., 2006). Furthermore, features such as cache effi ciency, 
spike compression, random number handling, or distributing indi-
vidual neurons for load-balance (Hines et al., 2008a,b) as well as ports 
to modern platforms like IBM Blue Gene/L and IBM Blue Gene/P 
have been integrated into the publicly available open-source version 
of NEURON. NEURON, therefore, is well positioned as a primary 
tool for large-scale detailed neuronal simulations.

While most simulators have means to extend the operations 
performed during the integration time step of the compute engine 
(in the case of NEURON through the NMODL interface, Hines 
and Carnevale, 2000), for some extensions it might be desirable 
or even required to sit outside of the compute engine. Interfacing 
the simulation to an external entity, e.g. another simulation or 
a virtual or real environment is such a scenario where the com-
munication handling requires access to the event information and 
distribution. Similarly, online analysis, i.e. analysis that is running 
during a simulation on the same hardware, or simulation-steering 
scenarios either in analysis or visualization may also require access 
to the fl ow control information of the simulation as well as access 
to internal variables of the compute engine.

Here we present a new extension framework that encapsulates 
NEURON as a compute engine while providing its own master 
integration loop that permits calls to an arbitrary number of user 
components and:

1. allows the execution of arbitrary parallel NEURON network 
models;

INTRODUCTION
The growing interest in large-scale, detailed multi-compartment neu-
ronal simulations requires increasing parallelism in neurosimulator 
software (Bhalla, 2008; Goddard and Hood, 1998; Hammarlund and 
Ekeberg, 1998; Migliore et al., 2006). Large-scale detailed modeling 
efforts, however, face two opposing challenges. On the one hand, the 
high-level of biological detail in the models requires the feature sets 
of a specialized simulator. On the other hand, simulation workfl ows 
at this scale require integration with a variety of visualization and 
analysis tools, virtual environments and the fl exibility to run the 
simulations on either cluster-based or specialized high-bandwidth 
supercomputer architectures and thus the actual simulator should 
be abstracted to maintain sustainability of the investments.

Previous efforts to provide a standardized component frame-
work for neuronal simulations, namely the NeoSim project 
(Goddard et al., 2001; Howell et al., 2003), have proposed to use 
component-based concepts in neuronal simulations to provide an 
abstraction of the specifi c compute engine and allow reusability of 
components. At the same time the NeoSim project tried to address 
the common model specifi cation problem through NeuroML. The 
multitude of publications on that very topic though shows that 
defi ning a standardized and general network description remains 
a fi eld of active research (Cornelis and DeSchutter, 2003; Crook 
et al., 2007; Davison et al., 2008). Trying to accommodate cutting-
edge network models while providing a stringent abstraction of the 
software components and a common model specifi cation poses a 
severe challenge and may effectively limit the applicability of such 
a tool at the current stage of the research (Cannon et al., 2007).

In an effort to extend simulator technology to accommodate large-
scale, biologically models effi ciently, the Blue Brain Project (Markram, 
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2. provides a replaceable message bus for alternative spike 
exchange schemes;

3. provides user-specifi ed online monitoring, analysis, and con-
trol components.

We use a component-based architecture that encapsulates the neu-
rosimulator and provides components for spike event communi-
cation event and components that can perform online analyses. 
In contrast to NeoSim, the presented framework does not address 
the common model specifi cation, i.e. it leaves the complete model 
 instantiation to the compute engine’s modeling language, and there-
fore imposes no constraints on the user model. The latter point makes 
the framework immediately amenable to being used with existing 
models while providing stable interfaces to components requiring 
effi cient access to the inner compute loop of a parallel simulation.

In the following, we describe the concept of such an extension 
framework and demonstrate a prototype implementation running 
at scale using the simulator NEURON, exchangeable spike event 
distribution components, and a component capable of online moni-
toring, analysis, and control (MAC component) that can be used for 
simulation steering. We demonstrate its usefulness in the context of 
large-scale network simulations of the Blue Brain Project running 
on 8192 processors of the EPFL Blue Gene/L supercomputer and 
show the performance benefi ts of adapting the simulator com-
munication patterns to the underlying computer platform using 
the Extension Framework. We furthermore show its generality by 
applying it to a previously published model from ModelDB1.

MATERIALS AND METHODS
The goal of the Extension Framework design is to provide a fl exible 
simulation system in which independently developed neurosimula-
tors may be utilized as part of a larger toolchain. To achieve this fl ex-
ibility, the Extension Framework encapsulates simulator functions 
(Compute Engine) in a component-based architecture including 
an Adapter Component, a Message Bus Component, and a MAC 
Component (Figure 1). The Compute Engine is the neurosimulator 
developed separately from the rest of the Extension Framework. The 
Adapter Component provides a layer over the Compute Engine to 
give it a consistent interface for all other components. Although the 
current version of the extension framework includes an Adaptor 
Component specifi c for NEURON, the concept should be readily 
extensible to other simulator engines.

The Message Bus Component facilitates the communication 
of spikes between neurons during the course of a simulation. 
Communication between computing nodes is handled via the 
Message Passing Interface (MPI) developed initially by Argonne 
Labs (Gropp et al., 1999). The Message Bus Component can even 
be used to manage spike exchanges via TCP/IP sockets with simu-
lators outside a running instance of the framework. The MAC 
Component can be used to monitor the simulation as it progresses 
and generate reports. Yet, the functionality of a MAC Component 
is not limited to observing; rather, it can also do advanced analysis 
and even control the simulation through an appropriate interface. 
Specialized MAC Components, so-called Real-time Agents, fur-
thermore can provide external entities the capacity to interact 
with the running simulation in real-time. Another type of MAC 

FIGURE 1 | The structural organization of component-based Extension Framework. An instance of it running on a node consists of different components. One 
component allows access to a Compute Engine, providing a common interface to other components. A Message Bus Component implements network connectivity, 
handling the exchange of APs among nodes. A MAC (monitor, analyze, control) Component may perform simulation analysis or modify simulation parameters.
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Component could provide interactive visualization of a running 
simulation.

Unlike previous efforts to abstract neurosimulators such as 
NeoSim, the Extension Framework is not responsible for model 
confi guration. Rather, it invokes the Compute Engine to instantiate a 
model through the simulator engine’s means of model specifi cation 
(e.g. HOC or Python in the case of NEURON, Hines et al., 2009) and 
then queries the Compute Engine through the Adapter Component 

for the information needed for the spike distribution. This design 
decision positions the presented framework as a real extension to 
NEURON as it is applicable to any preexisting model with essen-
tially no modifi cation to the model specifi cation. Consequently, the 
framework does not address the distribution/load balancing issues 
as it instantiates the models as described in their specifi cation.

The control fl ow in Extension Framework as the simula-
tion executes is shown in Figure 2. During initialization of 

FIGURE 2 | Control fl ow in the Extension Framework.
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the  framework, it passes the native model specifi cation to the 
Compute Engine and then extracts the necessary distribution/
connection information through the Adapter Component. The 
Message Bus Component is initialized for the data exchanges 
that will occur whenever the minimum spike delay interval (as 
e.g. defi ned in Morrison et al., 2005) has elapsed. The MAC 
Component acquires the memory addresses of the variables 
from the simulator engine it needs to read or modify during 
the course of the simulation. Once all initializations have been 
complete, the Extension Framework moves on to the simulation 
loop where the main components operate.

ADAPTER COMPONENT
In order for a Compute Engine to be usable in the Extension 
Framework, an Adapter Component must be created as a layer, 
encapsulating the functionality of the Compute Engine and sup-
plying a consistent interface so that the framework can perform 
necessary operations to execute a simulation. Table 1 shows all 
functions the Adapter Component provides for the confi guration 
and execution of a simulation. In principle, an Adapter Component 
can be built for any kind of Compute Engine as long as it pro-
vides adequate functionality; details on how it is implemented for 
NEURON is given in the Section ‘Technical Details’.

The interface of the Adapter Component can essentially 
be divided into setup phase commands and simulation phase 
commands:

For the setup phase, the Adapter Component provides func-
tionality to initialize the Compute Engine (initializeCom-
puteEngine()) and to pass in the model description fi le for the 
Compute Engine to parse and instantiate (setupSimulation()). 
The model description fi le is in the Compute Engine’s natural form; 
the Adapter Component passes the model fi le using a function that 
allows the fi le contents to be processed by the interpreter of the 
respective Compute Engine. Once the model has been interpreted 
and instantiated, the Adapter Component allows other components 
to make initial queries about the model.

Queries necessary for the Message Bus Component include 
acquiring information about the connections between cells using 
functions sendingGids() and arrivingGids(); here, a gid 
refers to a global unique identifi er for a neuron in the simula-
tion regardless of which node it is assigned (Migliore et al., 2006). 
Additionally, the function minDelays() is provided for decid-
ing on the timing of spike exchange; here, the delay refers to the 
amount of time that has to exceed before a presynaptic cell fi ring 
can trigger the synaptic mechanism in a postsynaptic cell. The 
function targetNodes() can be used to create a Message Bus 
with more specifi c send and receive capabilities. Whereas the MAC 
Component gathers references to variables to be monitored during 
simulation run using getVariableReferenceForReading() 
and getVariableReferenceForWriting().

Once all variables are accessed, the Adapter Component has 
the Compute Engine perform fi nal initialization steps using the 

Table 1 | Interface functions of the Adapter Component during setup and simulation phase.

Function Parameters Description

SETUP PHASE COMMANDS

initializeComputeEngine() Environmental  Have the Adapter Component take steps necessary to initialize the Compute

 Variables Engine prior to loading the model.

setupSimulation() Model Description  The Adapter Component gives the initial Model Description File to the Compute

 File Engine so that it can instantiate the cells of the network and connect them.

sendingGids() Array Pointer Request for gids of cells on local node which send APs out. The gids are stored in

  the given Array Pointer. Used by Message Bus to coordinate spike exchange.

arrivingGids() Array Pointer Request for gids of cells on remotes nodes which deliver APs in. The gids are stored 

  in the given Array Pointer. Used by Message Bus to coordinate spike exchange.

minDelays() NodeID Array,  Request for the minimum spike delay of presynaptic objectsand which node they. 

 Delay Array reside on. Used by Message Bus to coordinate spike exchange.

targetNodes() Gid, Array Pointer Request more specifi c information regarding which nodes a given gid sends spikes.

getVariableReferenceForReading() Gid, Variable Name Acquire access to cell values during simulation to be used for reporting or analysis.

getVariableReferenceForWriting() Gid, Variable Name Acquire access to variables from the simulator for the purpose of modifying the

  value during simulation.

completeInitialization()  Once the Message Bus Component and MAC Component have completed their 

  setup, have the Adapter Component execute any fi nal preparation steps on the

  Compute Engine so that it is ready to start simulating.

SIMULATION PHASE COMMANDS

integrateUntil() Time Stop Adapter Component has the Compute Engine execute solver until the specifi ed 

  time is reached.

receiveFireEvent() Gid, Time of Event During the course of simulation,when a cell fi res, the event is recorded.

injectActionPotential() Gid, Time of Event,  After spike exchange, deliver any action potentials from the indicated gid. Need

 Local Flag to also relay if the gid is local to this node or remote.
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function completeInitialization(), then the Extension 
Framework proceeds onto the simulation phase.

The simulation phase requires functionality to extract/deliver 
spikes and to advance the integration loop.

In order for the Extension Framework to implement a master 
integration loop, the Adapter Component must provide a way to 
control the duration of the integration in the Compute Engine; 
this is provided through the function integrateUntil(). This 
allows the Extension Framework to regain control after a span of 
time so that it can let its other components execute, such as the 
spike exchange via the Message Bus Component or examining states 
and modifying them via the MAC Component.

Before the Extension Framework can invoke the Message Bus 
Component, the spikes that occurred in that interval are que-
ried from the Compute Engine and for this purpose the Adapter 
Component provides the function receiveFireEvent(). The 
Message Bus Component operates on those spikes and distributes 
them accordingly as described below; for the injection of the spikes 
into the Compute Engine, the Adapter Component provides the 
function injectActionPotential().

Once the Extension Framework has fi nished its tasks, it invokes 
the Adapter Component to have the Compute Engine resume com-
putations from where it left off, to continue evaluating the state 
variable equations for the next interval.

MESSAGE BUS COMPONENT
The Message Bus Component handles communications between 
the neurons of the network. It stores spike messages that have 
occurred within a current time frame that must be sent, exchanges 
spike buffers with other processors, and queues up synapse ids 
which will be activated after their spike delay has elapsed.

In the setup phase, after the model has been instantiated on the 
compute nodes, the Message Bus Component of the Extension 
Framework will be called to instantiate and confi gure itself using 
information accessed from the Compute Engine through the 
Adapter Component. First, the Message Bus requests information 

on which gids on the local node will be propagating APs through 
the function sendingGids(). Next, a list of remote gids which will 
be delivering APs to the local node is acquired through a call to the 
function arrivingGids(). Using these two lists, the communica-
tion patterns for sending and receiving data via MPI are established. 
To reduce the number of MPI invocations, the Message Bus also 
queries the minimum delay (minDelays()) on the destinations 
and exchanges this information across all nodes. The minimum 
spike delay interval determines the schedule for when the spike 
exchanges take place (e.g. Morrison et al., 2005).

During simulation, the Message Bus monitors the generation 
of spikes within any neurons on the local CPU via the Adapter 
Component through the function receiveFireEvent(). The 
Adapter Component needs a means to detect spikes as they hap-
pen on the Compute Engine. As these spike events occur, they are 
stored locally until they are relayed to the Message Bus Components 
on other CPUs such that the events arrive prior to the elapse of a 
minimum spike delay for any destination neuron. Any synapses that 
should be activated by the relayed spikes are queued into a message 
ring buffer until their individual delays have elapsed. The Message 
Bus then uses the Adapter Component’s function injectAction-
Potential() to access the Compute Engine’s facilities to inject 
the spikes into any neurons that are connected to the originating 
neuron once the spike delay has elapsed.

In the current version of the Extension Framework, two dis-
tinct Message Bus Components have been developed as shown 
in Figures 3A,B. Each of these Message Bus Components has 
distinct performance advantages depending on the computing 
architecture.

The fi rst Message Bus of the Extension Framework was derived 
from an implementation used by the NeoCorticalSimulator (Wilson 
et al., 2001), a simulator designed for parallel communication on 
a Beowulf cluster. This implementation performs point-to-point 
communication such that a given node would communicate only 
with those other nodes from which it sends or receives spikes. When 
the simulation started, a node would use information from the 

FIGURE 3 | Three possible implementations of the Message Bus. Each square represents a Node for computation, arrows indicate delivery of AP messages. 
(A) Point–Point communications using MPI_Send and MPI_Recv. (B) Collective Communication using MPI_AllGather. (C) Extension to B featuring external socket 
communication.
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network connectivity description to build send and receive lists 
for the neurons instantiated on it to determine on which nodes to 
perform MPI_Send commands and on which nodes to perform 
MPI_Recv commands.

The second Message Bus performs collective communication, 
using the MPI_AllGather command to allow all the nodes to broad-
cast those neurons that have fi red during the simulation time steps 
since the last communication. The Collective Communication 
Message Bus experienced improved performance since the ver-
sion of MPI running on Blue Gene was specifi cally designed to 
take advantage of Blue Gene’s network layout. IBM developed 
Blue Gene’s implementation of MPI to minimize network traf-
fi c by having fewer nodes communicate redundant information 
(Almási et al., 2005).

A variant of the second message bus is depicted in Figure 3C; 
it extends the functionality by adding external communication 
with an external server via socket communication. The Extension 
Framework would send spike information to the server and receive 
back spike information from another application. It is not included 
in the current version of the Extension Framework.

MAC COMPONENT (MONITOR, ANALYZE, CONTROL)
The MAC Component gathers data from the simulation for either 
reporting or simulation management. The component acquires 
references to simulation parameters, periodically examines the con-
tents of those references, and may execute changes to the values 
in the references.

During the setup phase, the MAC Component has to do some 
preliminary preparation. It uses the Adapter Component to make 
requests to the Compute Engine for access to certain values in the 
simulation which are outside the Extension Framework’s memory 
space. Therefore, the Adapter Component provides the functions 
getVariableReferenceForReading() and getVariableRef-
erenceFor-Writing() with details listed in Table 1.

The MAC Component can monitor state variables or simula-
tion parameters in the Compute Engine. State variables repre-
sent the current state (including membrane potential, cellular 
currents, etc.) in the simulation at the current time, whereas 
simulation parameters are coeffi cients for the equations or heu-
ristics describing the biological processes. Beyond monitoring, 
MAC Components can perform advanced analysis themselves or 
collectively using separate communication. Furthermore, MAC 
Components can react to the observations and make changes 
to direct the course of the simulation; an example of such a 
component can be a plasticity algorithm. Lastly, in an example 
scenario in which the Extension Framework is coupled with a 
robot through its external message bus and real-time response 
is required, a specifi c kind of MAC Component, a Real-Time 
Agent, could act as the interface between the simulation and 
the robot.

During the simulation, as the Extension Framework advances 
the simulation in time, the MAC Component gathers information 
on the state of the simulation by examining the supplied references 
or examining the Extension Framework memory space, too. A MAC 
Component may respond by altering these states or parameters 
values. This response can require certain conditions be met before 
actually triggering any changes.

Multiple independent MAC Components may be implemented 
and inserted into the Extension Framework simultaneously, acting 
separately within the simulation. MAC Components may need to 
work either locally or globally. A local MAC Component needs to 
access only the observations made on the neurons of an individual 
CPU. A global MAC Component must communicate through MPI 
with the other components across the parallel computer in order to 
form a more complete picture of what is happening in the circuit 
before determining what responses to take.

TECHNICAL DETAILS
The current version of the component-based Extension Framework 
is developed in C++ using MPI. It provides implementations of an 
Adapter Component for NEURON as well as different implementa-
tions of Message Bus Components and MAC Components.

In order to make NEURON useable as a Compute Engine in 
the Extension Framework, the implementation of an Adapter 
Component is based on three technical concepts. Firstly, the Adapter 
Component uses NEURON’s function hoc_valid_stmt() as to 
be able to interface to arbitrary functions and model data structures 
through executing commands in NEURON’s native interpreter lan-
guage HOC or Python (Hines et al., 2009; Kernighan and Pike, 
1984). Secondly, the functions of the Adapter Component used 
to expose variables to MAC Components are interfaced through 
NEURON’s native mechanism extension language NMODL (Hines 
and Carnevale, 2000). Thirdly, to keep the connection query-
ing independent from the instantiated model during the setup 
phase and to improve performance during the simulation phase, 
the Extension Framework makes use of special hooks within the 
NEURON source code. The Extension Framework is thus a combi-
nation of the three methods of runtime interoperability mentioned 
in Cannon et al. (2007).

While for the fi rst and the second mechanism, no modifi cations 
to the NEURON source code are necessary, the third one requires 
NEURON to be confi gured and compiled with the fl ag – enable-ncs 
to activate certain portions of code. The functions can be cat-
egorized into two types: functions that are used during the setup 
phase to query the connectivity information from the NEURON 
compute engine; secondly, functions to extract and inject spikes 
during a simulation. Table 2 lists all functions in the NEURON 
source code used to implement the Adapter Component. The new 
version of the NCS interface will be available in the NEURON 7.1 
alpha distribution. The initial version of this interface has been in 
the NEURON source code since the publication of Migliore et al. 
(2006), yet for this publication, the setup phase functions were 
added as well as the inject mechanism modifi ed as the previous 
version relied on a proprietary layout of a certain address space. 
Lastly, modifi cations were made to nrn2ncs_outputevent() 
to better clarify how it interacts when NCS mode of NEURON 
is used alongside the MPI features. While the function’s original 
implementation was intended for only one parallel mode to be 
active at a time, either the NCS mode or the MPI mode, the updated 
function allows both to be used with the NCS part handling all 
spike delivery.

The Extension Framework requires NEURON to be compiled 
as a library in order to link it into one executable. NEURON’s 
confi gure option – enable-ncs compiles NEURON as a library 
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and declares the nrn2ncs_outputevent() function of the NCS 
interface with extern status, expecting the application it is linked 
with to provide the implementation. Additionally, the confi gure 
option – with-paranrn is needed to activate certain code por-
tions of NEURON that make it parallel aware. The Extension 
Framework has been tested on different hardware platforms from 
multi- processor machines, from a Beowulf cluster to an IBM Blue 
Gene/L (confi gure option – enable-bluegene). The source code will 
be made available on the Blue Brain website2.

RESULTS
The Extension Framework has been run successfully using NEURON 
as a Compute Engine with the framework handling spike injection 
on different network models and hardware platforms. Small differ-
ences in timing of spike injections may occur due to the accumula-
tion of fl oating point errors resulting from handling spike messages 
differently from a pure parallel NEURON simulation, but these 
minor differences have negligible impact on the inherent network 
spiking pattern. The time used to perform the simulation using the 
Extension Framework with no MAC Components is comparable 
to the time taken by a simulation run with pure NEURON. The 
additional time is taken up by overhead used to return control of 
the simulation to the Extension Framework and allow it to execute 
any MAC Components if they were enabled.

In the following, two network models are used. In order to dem-
onstrate the usefulness of the replaceable Message Bus Components 
as well as the MAC Components, an unpublished Blue Brain neo-
cortical column model with 10,000 neurons is used, which includes 
200 unique morphologies consisting of approximately 600 cylin-
drical elements, connected via 12,500,000 conductance-based syn-
apses, evaluated with an average of 300 electrical compartments and 

10 Hodgkin-Huxley style ionic conductances per compartment at a 
time step of 0.025 ms. For proving the applicability of the approach 
to an arbitrary parallel NEURON model, the Extension Framework 
was used to run a previously published network model (Bush et al., 
1999). Yet, instead of the originally serial version, the parallelized 
version used in (Migliore et al., 2006) accessible from the ModelDB 
model repository3 under the accession number 64,229 was used.

COMPARISON OF MESSAGE BUS PERFORMANCE
Optimizing performance of the Extension Framework for a particu-
lar architecture is made simpler given the modular object nature 
of the Message Bus – the component that handles the costly com-
munication during a simulation. We tested the point-to-point and 
collective Message Bus implementations in order to compare the 
difference in time consumed (Figure 4). Using the highly optimized 
collective communications developed for Blue Gene’s MPI version, 
the Message Bus using MPI_AllGather was able to out-perform 
the original Message Bus using point-to-point communications 
via MPI_Send and MPI_Recv. The reason for this is that the lat-
ter Message Bus saw the Blue Gene fl ood with messages since the 
number of connections between a single neuron reaches so many 
other neurons. With each neuron sending out so many messages, 
then waiting to receive an equivalent amount, the simulator would 
spend an excessive amount of time for communication.

This superior performance may not extend to all systems as 
observed by performance differences when using the two Message 
Buses on a Beowulf cluster. This cluster is made up of a mix of archi-
tectures: 32 Dual-Processor AMD Opteron Nodes and 32 Dual-
Processor Intel Pentium Xeon Nodes. The 64 Nodes are connected 
using Gigabit Ethernet. An Extension Framework simulation was 
run of shorter duration than the one Blue Gene because of the 

Table 2 | Interface functions provided by NEURON once confi gured and compiled with the option – enable-ncs.

Function Parameters Description

SETUP

ncs_gid_sending_info() Array Pointer Provide information about which gids on the local node send out APs, placing 

  info at the indicated memory space.

ncs_gid_receiving_info() Array Pointer Provide information about which remote gids will deliver APs to this local 

  node, placing info at the indicated memory space.

ncs_netcon_mindelays() Host Array, Delay Array Provide information about the minimum spike delays for a remote host to 

  deliver an AP to the local node.

ncs_target_hosts() Gid, Array Pointer Provide information about which nodes a gid needs to send messages.

SIMULATION

ncs2nrn_integrate() Time Stop Executes the solver until the indicated time has been reached

nrn2ncs_outputevent() Gid, Fire Time After a cell reaches threshold, this function is called to handle the event. With 

  option – enable-ncs, this function is not defi ned by NEURON so that another

  entity may defi ne it.

ncs_netcon_count() Source Gid, Local Flag Provide the number of netcons activated when the indicated gid fi res an AP. 

  A fl ag indicates if the source gid is local to the node or remote.

ncs_netcon_inject() Source Gid, NetCon Index,  Inject an AP into the indicated destination NetCon for a cell which fi red. 

 Fire Time, Local Flag Requires the time of the event and a fl ag for whether the source gid is local to 

  the node or remote. 

2http://bluebrain.epfl .ch 3http://senselab.med.yale.edu/

http://bluebrain.epfl .ch
http://senselab.med.yale.edu/
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greater resource limitation, but during this shorter simulated 
period, it can be observed that collective communication calls of 
MPI performed worse than the targeted calls using MPI_Send and 
MPI_Recv.

MAC COMPONENT EXAMPLE
Three MAC Components have been developed for monitoring 
and controlling a network simulation (King et al., 2006). The fi rst 
MAC Component developed for the Extension Framework simply 
monitors the fi ring rates, f, of each neuron over a confi gurable time 
window (Gerstner and Kistler, 2002). The second MAC Component 
monitors the fi ring rate over a confi gurable amount of time but 
increases the synaptic conductance, g, for all synapses onto the 
neurons that fall below the target fi ring rate, F ′, by amount Δg. The 

third MAC Component extended the second MAC Component to 
monitor when the fi ring rate of a neuron exceeds a limit rate and 
lower the synaptic conductance for all synapses onto that neuron 
accordingly.

A series of simulations of the test network have been run using 
each of the three MAC Components (Figure 5). The time window 
used to determine the fi ring rate was 500 ms (Gerstner and Kistler, 
2002). The fi rst MAC Component simply monitors the simulation 
and computes the fi ring rate, which serves as a control condi-
tion. The second MAC Component monitors the fi ring rate and 
increases the synaptic conductances for the low-fi ring rate neu-
rons. This results in a gradual increase in fi ring rates throughout 
the network, ultimately reaching and exceeding the targeted fi ring 
rate. In the case of the third MAC Component, the component 
increases the synaptic conductances until the targeted fi ring rate 
is reached, and as it exceeded the component acts to decrease 
the synaptic conductances. This results in a low frequency oscil-
lation around the target fi ring rate in the network behavior as 
the component dynamically regulates the fi ring frequency of the 
network activity. The frequency of this oscillation depends on 
the monitoring window used to determine the fi ring rate where 
larger windows allow for fi ner grain control, reducing the degree 
of oscillations.

ADOPTING AN EXISTING PARALLEL MODEL FROM MODELDB
To demonstrate the simplicity of using arbitrary parallel network 
models specifi ed in NEURON’s HOC interpreter language, the 
parallel version of the model by Bush et al. (1999) was down-
loaded from ModelDB4 (accession number 64,229) and run in 
the Extension Framework. The only necessary modifi cation to the 
original model fi les was in the main run script init.hoc and con-
cerned the commenting out of the parallel run command (as well as 
parallel run statistics) as this function is provided by the Extension 
Framework. All other fi les and the main body of the init.hoc script 
remain unchanged as illustrated in Figure 6. The spike pattern of 
a pure NEURON simulation and the simulation in the Extension 
Framework are identical.

CONCLUSIONS
The component-based Extension Framework for large-scale 
simulations in NEURON allows for a more fl exible simulation 
environment where the application responsible for biophysical 
computations is developed separately from the details of network 
communication and analysis. We have presented an architecture 
that encapsulates the neural network simulator NEURON using an 
abstraction layer (Adapter Component), which permits the simu-
lator to be extended with tailored communication components 
(Message Bus Components) and an on-line analysis and control 
framework (MAC Component). Furthermore, we demonstrated 
that it is possible to achieve increased communication performance 
during a network simulation by selecting an appropriate Message 
Bus for the underlying communication network. Finally, we devel-
oped an example of a MAC Component, which monitors, analyzes, 
and modifi es an ongoing simulation providing a mechanism for 
dynamic control of large-scale network behavior. We demonstrated 

FIGURE 4 | Comparison of Message Bus performance. (A) Blue Gene 
collective calls (using MPI_AllGather) performance exceeds that of point-to-
point (using MPI_Send and MPI_Recv) (B) on a Linux cluster, point-to-point 
version of the Message Bus achieves greater performance than collective 
calls.
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FIGURE 5 | Example MAC Component monitoring, analyzing, and 

controlling simulation behavior with accompanying fl ow diagrams 

illustrating component’s logic. (A) Control simulation where the fi rst graph 
shows the voltage trace, Vm, for one cell in the network, the second graph 
shows the fi ring rate, f, for this cell as well as the mean fi ring rate for the 
network. (B) MAC Component monitors fi ring rate and increases maximum 

conductance, g, for afferent synapses on neurons below a minimum rate, F′, by 
an amount Δg; the fi rst and second graphs correspond with those of A and the 
third graph shows the Δg for synapses for the selected cell as well as the mean 
Δg for all cells in the network. (C) Revised MAC Component still monitoring for 
minimum fi ring rate but also monitoring for maximum fi ring rate, scaling back 
maximum conductance as needed; all three graphs correspond to those of B.
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the simplicity of adopting the Extension Framework for a pre-
 existing parallel NEURON model from ModelDB, where not a 
single line in the model description had to be changed and only 
the run command and run statistics had to be disabled (this could 
even be done automatically). Thus, other parallel network models 

executed in the Extension Framework can immediately take advan-
tage of its additional functionality such as replaceable Message Bus 
and online MAC components.

The presented component-based Extension Framework rep-
resents a publically available version of a simulator environ-
ment Neurodamus developed within the Blue Brain Project (Frye 
et al., 2006). The design of the Extension Framework resembles 
some of the component-based modularity of the NeoSim project 
(Goddard et al., 2001; Howell et al., 2003), but the distinguish-
ing feature is that it does not address the problem of a common 
model specifi cation, which possibly impedes using state-of-the 
art functionality of neurosimulators. By allowing models to be 
specifi ed in the simulator’s specifi cation language it allows utiliz-
ing a particular simulator’s cutting edge feature set while gaining 
extensibility and tool chain stability. In a similar fashion, the 
MUSIC project (MUlti-SImulation Coordinator) seeks to cre-
ate a generic interfaces between simulator cores such that the 
simulators can execute while under the control of a managing 
entity (Ekeberg and Djurfeldt, 2008). The MUSIC effort rep-
resents a project under development that also follows the idea 
of modularizing a simulation as described in NeoSim to allow 
component interaction and leaving the model specifi cation to 
the respective compute engines.

While the current implementation of the Extension Framework 
provides an Adapter Component specifi c for the NEURON simu-
lator, it should be possible to implement Adapter Components 
for other neurosimulators in the future. It should be noted the 
published version of the Extension Framework does not address 
the distribution of the network model on the parallel hardware 
architecture. It thus is targeted at models that already address the 
distribution in the model specifi cation. It is conceivable that as the 
common model specifi cation approaches such as NeuroML, PyNN, 
Neurospaces (Cornelis and DeSchutter, 2003; Crook et al., 2007; 
Davison et al., 2008) mature, a future extension to the Extension 
Framework could use a more general setup mechanism which 
would allow load distribution and balancing to be handled by the 
Extension Framework.

As large-scale detailed simulation projects go beyond the envi-
ronments provided by publically available neurosimulators, the 
simulator engine itself needs to be integrated into a complete chain 
of tools. Those workfl ows may include powerful analysis and visu-
alization environments (interactively and in post processing) as well 
as interconnects to virtual and real environments such as robotic 
devices and laboratory experiments. All those tools represent major 
developments and need to be made as independent of the simulator 
as possible while retaining maximum performance. The presented 
component-based Extension Framework for NEURON represents 
a working step in this direction.
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//init.hoc
// Taken from http://senselab.med.yale.edu/modeldb
// Accession 64229 (Migliore et al 2006)

{load_file("nrngui.hoc")}
setuptime = startsw()
create acell_home_
access acell_home_
objref pnm, pc
{load_file("netparmpi.hoc")}
pnm = new ParallelNetManager(0)
pc = pnm.pc
myid = pnm.myid
objref somatrace, somafile, cellObj
strdef commstr

ncell = 500
{load_file("prebatch_.hoc")}
{load_file("parnqsnet.hoc")}
{load_file("geom.hoc")}
{load_file("parnetwork.hoc")}
{load_file("params.hoc")}
{load_file("run.hoc")}

{load_file("perfrun.hoc")}
want_all_spikes()
mkhist(50)
if (myid == 0) {printf("scale = %g\n", scale) }
tstop = 500

setuptime = startsw() - setuptime
if (myid == 0) { print "\nSetupTime: ", setuptime }

/*
prun()
if (myid == 0) { print "RunTime: ", runtime }

{pnm.pc.runworker()}

{pnm.prstat(1)}
getstat()
{pnm.gatherspikes()}
prhist()
print_spike_stat_info()

pnm.pc.done()

perf2file()
spike2file()
{printf("ncell = %d tstop = %g\n", ncell, tstop)}
quit()
*/

Executes Normally

Disabled

FIGURE 6 | Modifi cations to the hoc fi le from ModelDB. Setup remains 
normal while run is disabled to allow control to return to the Extension 
Framework layer.

http://senselab.med.yale.edu/modeldb
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