
Frontiers in Neuroinformatics www.frontiersin.org April 2009 | Volume 3 | Article 10 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 27 April 2009
doi: 10.3389/neuro.11.010.2009

A component-based extension framework for large-scale
parallel simulations in NEURON

James G. King1, Michael Hines2, Sean Hill1, Philip H. Goodman3, Henry Markram1 and Felix Schürmann1*

1 Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2 Department of Computer Science, Yale University, New Haven, CT, USA
3 Department of Medicine and Program in Biomedical Engineering, University of Nevada, Reno, NV, USA

As neuronal simulations approach larger scales with increasing levels of detail, the neurosimulator
software represents only a part of a chain of tools ranging from setup, simulation, interaction
with virtual environments to analysis and visualizations. Previously published approaches to
abstracting simulator engines have not received wide-spread acceptance, which in part may be
to the fact that they tried to address the challenge of solving the model specifi cation problem.
Here, we present an approach that uses a neurosimulator, in this case NEURON, to describe
and instantiate the network model in the simulator’s native model language but then replaces
the main integration loop with its own. Existing parallel network models are easily adopted
to run in the presented framework. The presented approach is thus an extension to NEURON
but uses a component-based architecture to allow for replaceable spike exchange components
and pluggable components for monitoring, analysis, or control that can run in this framework
alongside with the simulation.

Keywords: large-scale simulation, NEURON simulator, parallel, distributed

2006) participates in the development of the simulator NEURON
(Hines and Carnevale, 1997). Those efforts ensured the effi cient par-
allelization of the simulator software to thousands of processors as
well as model reproducibility throughout the parallelization process
(Migliore et al., 2006). Furthermore, features such as cache effi ciency,
spike compression, random number handling, or distributing indi-
vidual neurons for load-balance (Hines et al., 2008a,b) as well as ports
to modern platforms like IBM Blue Gene/L and IBM Blue Gene/P
have been integrated into the publicly available open-source version
of NEURON. NEURON, therefore, is well positioned as a primary
tool for large-scale detailed neuronal simulations.

While most simulators have means to extend the operations
performed during the integration time step of the compute engine
(in the case of NEURON through the NMODL interface, Hines
and Carnevale, 2000), for some extensions it might be desirable
or even required to sit outside of the compute engine. Interfacing
the simulation to an external entity, e.g. another simulation or
a virtual or real environment is such a scenario where the com-
munication handling requires access to the event information and
distribution. Similarly, online analysis, i.e. analysis that is running
during a simulation on the same hardware, or simulation-steering
scenarios either in analysis or visualization may also require access
to the fl ow control information of the simulation as well as access
to internal variables of the compute engine.

Here we present a new extension framework that encapsulates
NEURON as a compute engine while providing its own master
integration loop that permits calls to an arbitrary number of user
components and:

1. allows the execution of arbitrary parallel NEURON network
models;

INTRODUCTION
The growing interest in large-scale, detailed multi-compartment neu-
ronal simulations requires increasing parallelism in neurosimulator
software (Bhalla, 2008; Goddard and Hood, 1998; Hammarlund and
Ekeberg, 1998; Migliore et al., 2006). Large-scale detailed modeling
efforts, however, face two opposing challenges. On the one hand, the
high-level of biological detail in the models requires the feature sets
of a specialized simulator. On the other hand, simulation workfl ows
at this scale require integration with a variety of visualization and
analysis tools, virtual environments and the fl exibility to run the
simulations on either cluster-based or specialized high-bandwidth
supercomputer architectures and thus the actual simulator should
be abstracted to maintain sustainability of the investments.

Previous efforts to provide a standardized component frame-
work for neuronal simulations, namely the NeoSim project
(Goddard et al., 2001; Howell et al., 2003), have proposed to use
component-based concepts in neuronal simulations to provide an
abstraction of the specifi c compute engine and allow reusability of
components. At the same time the NeoSim project tried to address
the common model specifi cation problem through NeuroML. The
multitude of publications on that very topic though shows that
defi ning a standardized and general network description remains
a fi eld of active research (Cornelis and DeSchutter, 2003; Crook
et al., 2007; Davison et al., 2008). Trying to accommodate cutting-
edge network models while providing a stringent abstraction of the
software components and a common model specifi cation poses a
severe challenge and may effectively limit the applicability of such
a tool at the current stage of the research (Cannon et al., 2007).

In an effort to extend simulator technology to accommodate large-
scale, biologically models effi ciently, the Blue Brain Project (Markram,

Edited by:

Erik De Schutter, University of
Antwerp, Belgium; Okinawa Institute
of Science and Technology, Japan

Reviewed by:

Robert C. Cannon, Textensor Limited,
UK
Hugo Cornelis, University of Texas
Health Science Center at San Antonio,
USA

*Correspondence:

Felix Schürmann, Brain Mind Institute,
EPFL, AA/AA-VP/BBP Station 15, 1015
Lausanne, Switzerland.
e-mail: felix.schuermann@epfl .ch

Frontiers in Neuroinformatics www.frontiersin.org April 2009 | Volume 3 | Article 10 | 2

King et al. Component-based extension framework for NEURON

2. provides a replaceable message bus for alternative spike
exchange schemes;

3. provides user-specifi ed online monitoring, analysis, and con-
trol components.

We use a component-based architecture that encapsulates the neu-
rosimulator and provides components for spike event communi-
cation event and components that can perform online analyses.
In contrast to NeoSim, the presented framework does not address
the common model specifi cation, i.e. it leaves the complete model
 instantiation to the compute engine’s modeling language, and there-
fore imposes no constraints on the user model. The latter point makes
the framework immediately amenable to being used with existing
models while providing stable interfaces to components requiring
effi cient access to the inner compute loop of a parallel simulation.

In the following, we describe the concept of such an extension
framework and demonstrate a prototype implementation running
at scale using the simulator NEURON, exchangeable spike event
distribution components, and a component capable of online moni-
toring, analysis, and control (MAC component) that can be used for
simulation steering. We demonstrate its usefulness in the context of
large-scale network simulations of the Blue Brain Project running
on 8192 processors of the EPFL Blue Gene/L supercomputer and
show the performance benefi ts of adapting the simulator com-
munication patterns to the underlying computer platform using
the Extension Framework. We furthermore show its generality by
applying it to a previously published model from ModelDB1.

MATERIALS AND METHODS
The goal of the Extension Framework design is to provide a fl exible
simulation system in which independently developed neurosimula-
tors may be utilized as part of a larger toolchain. To achieve this fl ex-
ibility, the Extension Framework encapsulates simulator functions
(Compute Engine) in a component-based architecture including
an Adapter Component, a Message Bus Component, and a MAC
Component (Figure 1). The Compute Engine is the neurosimulator
developed separately from the rest of the Extension Framework. The
Adapter Component provides a layer over the Compute Engine to
give it a consistent interface for all other components. Although the
current version of the extension framework includes an Adaptor
Component specifi c for NEURON, the concept should be readily
extensible to other simulator engines.

The Message Bus Component facilitates the communication
of spikes between neurons during the course of a simulation.
Communication between computing nodes is handled via the
Message Passing Interface (MPI) developed initially by Argonne
Labs (Gropp et al., 1999). The Message Bus Component can even
be used to manage spike exchanges via TCP/IP sockets with simu-
lators outside a running instance of the framework. The MAC
Component can be used to monitor the simulation as it progresses
and generate reports. Yet, the functionality of a MAC Component
is not limited to observing; rather, it can also do advanced analysis
and even control the simulation through an appropriate interface.
Specialized MAC Components, so-called Real-time Agents, fur-
thermore can provide external entities the capacity to interact
with the running simulation in real-time. Another type of MAC

FIGURE 1 | The structural organization of component-based Extension Framework. An instance of it running on a node consists of different components. One
component allows access to a Compute Engine, providing a common interface to other components. A Message Bus Component implements network connectivity,
handling the exchange of APs among nodes. A MAC (monitor, analyze, control) Component may perform simulation analysis or modify simulation parameters.

Extension Framework
Instance

Extension Framework
Instance

Adapter
Component

Compute
Engine

MAC
Component

Message Bus
Component

Adapter
Component

Compute
Engine

MAC
Component

Message Bus
Component

MPI Comm

MPI Comm

Node 2Node 1

1http://senselab.med.yale.edu/

http://senselab.med.yale.edu/

Frontiers in Neuroinformatics www.frontiersin.org April 2009 | Volume 3 | Article 10 | 3

King et al. Component-based extension framework for NEURON

Component could provide interactive visualization of a running
simulation.

Unlike previous efforts to abstract neurosimulators such as
NeoSim, the Extension Framework is not responsible for model
confi guration. Rather, it invokes the Compute Engine to instantiate a
model through the simulator engine’s means of model specifi cation
(e.g. HOC or Python in the case of NEURON, Hines et al., 2009) and
then queries the Compute Engine through the Adapter Component

for the information needed for the spike distribution. This design
decision positions the presented framework as a real extension to
NEURON as it is applicable to any preexisting model with essen-
tially no modifi cation to the model specifi cation. Consequently, the
framework does not address the distribution/load balancing issues
as it instantiates the models as described in their specifi cation.

The control fl ow in Extension Framework as the simula-
tion executes is shown in Figure 2. During initialization of

FIGURE 2 | Control fl ow in the Extension Framework.

Message Bus Component: Deliver Action
Potentials

Adapter Component: Tell Compute Engine to
integrate for fixed time increment

Message Bus Component: Spikes exchanged
across nodes

MAC Component: Data is collected, processed;
reports written

MAC Component: apply any state changes

Yes

No

Yes

No

No

Main Loop

Setup Phase

Message Bus Component: Retrieve Connection
Information

Adapter Component: Start Compute Engine,
pass in base hoc file.

MAC Component: Access memory location of
variables

Exit

Legend

Framework main

Adapter Component

Message Bus Component

MAC Component

Have APs

Minimum Synapse
delay elapsed?

to inject?

Simulation
duration expired?

Yes

Frontiers in Neuroinformatics www.frontiersin.org April 2009 | Volume 3 | Article 10 | 4

King et al. Component-based extension framework for NEURON

the framework, it passes the native model specifi cation to the
Compute Engine and then extracts the necessary distribution/
connection information through the Adapter Component. The
Message Bus Component is initialized for the data exchanges
that will occur whenever the minimum spike delay interval (as
e.g. defi ned in Morrison et al., 2005) has elapsed. The MAC
Component acquires the memory addresses of the variables
from the simulator engine it needs to read or modify during
the course of the simulation. Once all initializations have been
complete, the Extension Framework moves on to the simulation
loop where the main components operate.

ADAPTER COMPONENT
In order for a Compute Engine to be usable in the Extension
Framework, an Adapter Component must be created as a layer,
encapsulating the functionality of the Compute Engine and sup-
plying a consistent interface so that the framework can perform
necessary operations to execute a simulation. Table 1 shows all
functions the Adapter Component provides for the confi guration
and execution of a simulation. In principle, an Adapter Component
can be built for any kind of Compute Engine as long as it pro-
vides adequate functionality; details on how it is implemented for
NEURON is given in the Section ‘Technical Details’.

The interface of the Adapter Component can essentially
be divided into setup phase commands and simulation phase
commands:

For the setup phase, the Adapter Component provides func-
tionality to initialize the Compute Engine (initializeCom-
puteEngine()) and to pass in the model description fi le for the
Compute Engine to parse and instantiate (setupSimulation()).
The model description fi le is in the Compute Engine’s natural form;
the Adapter Component passes the model fi le using a function that
allows the fi le contents to be processed by the interpreter of the
respective Compute Engine. Once the model has been interpreted
and instantiated, the Adapter Component allows other components
to make initial queries about the model.

Queries necessary for the Message Bus Component include
acquiring information about the connections between cells using
functions sendingGids() and arrivingGids(); here, a gid
refers to a global unique identifi er for a neuron in the simula-
tion regardless of which node it is assigned (Migliore et al., 2006).
Additionally, the function minDelays() is provided for decid-
ing on the timing of spike exchange; here, the delay refers to the
amount of time that has to exceed before a presynaptic cell fi ring
can trigger the synaptic mechanism in a postsynaptic cell. The
function targetNodes() can be used to create a Message Bus
with more specifi c send and receive capabilities. Whereas the MAC
Component gathers references to variables to be monitored during
simulation run using getVariableReferenceForReading()
and getVariableReferenceForWriting().

Once all variables are accessed, the Adapter Component has
the Compute Engine perform fi nal initialization steps using the

Table 1 | Interface functions of the Adapter Component during setup and simulation phase.

Function Parameters Description

SETUP PHASE COMMANDS

initializeComputeEngine() Environmental Have the Adapter Component take steps necessary to initialize the Compute

 Variables Engine prior to loading the model.

setupSimulation() Model Description The Adapter Component gives the initial Model Description File to the Compute

 File Engine so that it can instantiate the cells of the network and connect them.

sendingGids() Array Pointer Request for gids of cells on local node which send APs out. The gids are stored in

 the given Array Pointer. Used by Message Bus to coordinate spike exchange.

arrivingGids() Array Pointer Request for gids of cells on remotes nodes which deliver APs in. The gids are stored

 in the given Array Pointer. Used by Message Bus to coordinate spike exchange.

minDelays() NodeID Array, Request for the minimum spike delay of presynaptic objectsand which node they.

 Delay Array reside on. Used by Message Bus to coordinate spike exchange.

targetNodes() Gid, Array Pointer Request more specifi c information regarding which nodes a given gid sends spikes.

getVariableReferenceForReading() Gid, Variable Name Acquire access to cell values during simulation to be used for reporting or analysis.

getVariableReferenceForWriting() Gid, Variable Name Acquire access to variables from the simulator for the purpose of modifying the

 value during simulation.

completeInitialization() Once the Message Bus Component and MAC Component have completed their

 setup, have the Adapter Component execute any fi nal preparation steps on the

 Compute Engine so that it is ready to start simulating.

SIMULATION PHASE COMMANDS

integrateUntil() Time Stop Adapter Component has the Compute Engine execute solver until the specifi ed

 time is reached.

receiveFireEvent() Gid, Time of Event During the course of simulation,when a cell fi res, the event is recorded.

injectActionPotential() Gid, Time of Event, After spike exchange, deliver any action potentials from the indicated gid. Need

 Local Flag to also relay if the gid is local to this node or remote.

Frontiers in Neuroinformatics www.frontiersin.org April 2009 | Volume 3 | Article 10 | 5

King et al. Component-based extension framework for NEURON

function completeInitialization(), then the Extension
Framework proceeds onto the simulation phase.

The simulation phase requires functionality to extract/deliver
spikes and to advance the integration loop.

In order for the Extension Framework to implement a master
integration loop, the Adapter Component must provide a way to
control the duration of the integration in the Compute Engine;
this is provided through the function integrateUntil(). This
allows the Extension Framework to regain control after a span of
time so that it can let its other components execute, such as the
spike exchange via the Message Bus Component or examining states
and modifying them via the MAC Component.

Before the Extension Framework can invoke the Message Bus
Component, the spikes that occurred in that interval are que-
ried from the Compute Engine and for this purpose the Adapter
Component provides the function receiveFireEvent(). The
Message Bus Component operates on those spikes and distributes
them accordingly as described below; for the injection of the spikes
into the Compute Engine, the Adapter Component provides the
function injectActionPotential().

Once the Extension Framework has fi nished its tasks, it invokes
the Adapter Component to have the Compute Engine resume com-
putations from where it left off, to continue evaluating the state
variable equations for the next interval.

MESSAGE BUS COMPONENT
The Message Bus Component handles communications between
the neurons of the network. It stores spike messages that have
occurred within a current time frame that must be sent, exchanges
spike buffers with other processors, and queues up synapse ids
which will be activated after their spike delay has elapsed.

In the setup phase, after the model has been instantiated on the
compute nodes, the Message Bus Component of the Extension
Framework will be called to instantiate and confi gure itself using
information accessed from the Compute Engine through the
Adapter Component. First, the Message Bus requests information

on which gids on the local node will be propagating APs through
the function sendingGids(). Next, a list of remote gids which will
be delivering APs to the local node is acquired through a call to the
function arrivingGids(). Using these two lists, the communica-
tion patterns for sending and receiving data via MPI are established.
To reduce the number of MPI invocations, the Message Bus also
queries the minimum delay (minDelays()) on the destinations
and exchanges this information across all nodes. The minimum
spike delay interval determines the schedule for when the spike
exchanges take place (e.g. Morrison et al., 2005).

During simulation, the Message Bus monitors the generation
of spikes within any neurons on the local CPU via the Adapter
Component through the function receiveFireEvent(). The
Adapter Component needs a means to detect spikes as they hap-
pen on the Compute Engine. As these spike events occur, they are
stored locally until they are relayed to the Message Bus Components
on other CPUs such that the events arrive prior to the elapse of a
minimum spike delay for any destination neuron. Any synapses that
should be activated by the relayed spikes are queued into a message
ring buffer until their individual delays have elapsed. The Message
Bus then uses the Adapter Component’s function injectAction-
Potential() to access the Compute Engine’s facilities to inject
the spikes into any neurons that are connected to the originating
neuron once the spike delay has elapsed.

In the current version of the Extension Framework, two dis-
tinct Message Bus Components have been developed as shown
in Figures 3A,B. Each of these Message Bus Components has
distinct performance advantages depending on the computing
architecture.

The fi rst Message Bus of the Extension Framework was derived
from an implementation used by the NeoCorticalSimulator (Wilson
et al., 2001), a simulator designed for parallel communication on
a Beowulf cluster. This implementation performs point-to-point
communication such that a given node would communicate only
with those other nodes from which it sends or receives spikes. When
the simulation started, a node would use information from the

FIGURE 3 | Three possible implementations of the Message Bus. Each square represents a Node for computation, arrows indicate delivery of AP messages.
(A) Point–Point communications using MPI_Send and MPI_Recv. (B) Collective Communication using MPI_AllGather. (C) Extension to B featuring external socket
communication.

Point to Point
Message Bus

A Collective
Communication
Message Bus

B
External Socket

Message Bus

Ext.
App.

C

Frontiers in Neuroinformatics www.frontiersin.org April 2009 | Volume 3 | Article 10 | 6

King et al. Component-based extension framework for NEURON

network connectivity description to build send and receive lists
for the neurons instantiated on it to determine on which nodes to
perform MPI_Send commands and on which nodes to perform
MPI_Recv commands.

The second Message Bus performs collective communication,
using the MPI_AllGather command to allow all the nodes to broad-
cast those neurons that have fi red during the simulation time steps
since the last communication. The Collective Communication
Message Bus experienced improved performance since the ver-
sion of MPI running on Blue Gene was specifi cally designed to
take advantage of Blue Gene’s network layout. IBM developed
Blue Gene’s implementation of MPI to minimize network traf-
fi c by having fewer nodes communicate redundant information
(Almási et al., 2005).

A variant of the second message bus is depicted in Figure 3C;
it extends the functionality by adding external communication
with an external server via socket communication. The Extension
Framework would send spike information to the server and receive
back spike information from another application. It is not included
in the current version of the Extension Framework.

MAC COMPONENT (MONITOR, ANALYZE, CONTROL)
The MAC Component gathers data from the simulation for either
reporting or simulation management. The component acquires
references to simulation parameters, periodically examines the con-
tents of those references, and may execute changes to the values
in the references.

During the setup phase, the MAC Component has to do some
preliminary preparation. It uses the Adapter Component to make
requests to the Compute Engine for access to certain values in the
simulation which are outside the Extension Framework’s memory
space. Therefore, the Adapter Component provides the functions
getVariableReferenceForReading() and getVariableRef-
erenceFor-Writing() with details listed in Table 1.

The MAC Component can monitor state variables or simula-
tion parameters in the Compute Engine. State variables repre-
sent the current state (including membrane potential, cellular
currents, etc.) in the simulation at the current time, whereas
simulation parameters are coeffi cients for the equations or heu-
ristics describing the biological processes. Beyond monitoring,
MAC Components can perform advanced analysis themselves or
collectively using separate communication. Furthermore, MAC
Components can react to the observations and make changes
to direct the course of the simulation; an example of such a
component can be a plasticity algorithm. Lastly, in an example
scenario in which the Extension Framework is coupled with a
robot through its external message bus and real-time response
is required, a specifi c kind of MAC Component, a Real-Time
Agent, could act as the interface between the simulation and
the robot.

During the simulation, as the Extension Framework advances
the simulation in time, the MAC Component gathers information
on the state of the simulation by examining the supplied references
or examining the Extension Framework memory space, too. A MAC
Component may respond by altering these states or parameters
values. This response can require certain conditions be met before
actually triggering any changes.

Multiple independent MAC Components may be implemented
and inserted into the Extension Framework simultaneously, acting
separately within the simulation. MAC Components may need to
work either locally or globally. A local MAC Component needs to
access only the observations made on the neurons of an individual
CPU. A global MAC Component must communicate through MPI
with the other components across the parallel computer in order to
form a more complete picture of what is happening in the circuit
before determining what responses to take.

TECHNICAL DETAILS
The current version of the component-based Extension Framework
is developed in C++ using MPI. It provides implementations of an
Adapter Component for NEURON as well as different implementa-
tions of Message Bus Components and MAC Components.

In order to make NEURON useable as a Compute Engine in
the Extension Framework, the implementation of an Adapter
Component is based on three technical concepts. Firstly, the Adapter
Component uses NEURON’s function hoc_valid_stmt() as to
be able to interface to arbitrary functions and model data structures
through executing commands in NEURON’s native interpreter lan-
guage HOC or Python (Hines et al., 2009; Kernighan and Pike,
1984). Secondly, the functions of the Adapter Component used
to expose variables to MAC Components are interfaced through
NEURON’s native mechanism extension language NMODL (Hines
and Carnevale, 2000). Thirdly, to keep the connection query-
ing independent from the instantiated model during the setup
phase and to improve performance during the simulation phase,
the Extension Framework makes use of special hooks within the
NEURON source code. The Extension Framework is thus a combi-
nation of the three methods of runtime interoperability mentioned
in Cannon et al. (2007).

While for the fi rst and the second mechanism, no modifi cations
to the NEURON source code are necessary, the third one requires
NEURON to be confi gured and compiled with the fl ag – enable-ncs
to activate certain portions of code. The functions can be cat-
egorized into two types: functions that are used during the setup
phase to query the connectivity information from the NEURON
compute engine; secondly, functions to extract and inject spikes
during a simulation. Table 2 lists all functions in the NEURON
source code used to implement the Adapter Component. The new
version of the NCS interface will be available in the NEURON 7.1
alpha distribution. The initial version of this interface has been in
the NEURON source code since the publication of Migliore et al.
(2006), yet for this publication, the setup phase functions were
added as well as the inject mechanism modifi ed as the previous
version relied on a proprietary layout of a certain address space.
Lastly, modifi cations were made to nrn2ncs_outputevent()
to better clarify how it interacts when NCS mode of NEURON
is used alongside the MPI features. While the function’s original
implementation was intended for only one parallel mode to be
active at a time, either the NCS mode or the MPI mode, the updated
function allows both to be used with the NCS part handling all
spike delivery.

The Extension Framework requires NEURON to be compiled
as a library in order to link it into one executable. NEURON’s
confi gure option – enable-ncs compiles NEURON as a library

Frontiers in Neuroinformatics www.frontiersin.org April 2009 | Volume 3 | Article 10 | 7

King et al. Component-based extension framework for NEURON

and declares the nrn2ncs_outputevent() function of the NCS
interface with extern status, expecting the application it is linked
with to provide the implementation. Additionally, the confi gure
option – with-paranrn is needed to activate certain code por-
tions of NEURON that make it parallel aware. The Extension
Framework has been tested on different hardware platforms from
multi- processor machines, from a Beowulf cluster to an IBM Blue
Gene/L (confi gure option – enable-bluegene). The source code will
be made available on the Blue Brain website2.

RESULTS
The Extension Framework has been run successfully using NEURON
as a Compute Engine with the framework handling spike injection
on different network models and hardware platforms. Small differ-
ences in timing of spike injections may occur due to the accumula-
tion of fl oating point errors resulting from handling spike messages
differently from a pure parallel NEURON simulation, but these
minor differences have negligible impact on the inherent network
spiking pattern. The time used to perform the simulation using the
Extension Framework with no MAC Components is comparable
to the time taken by a simulation run with pure NEURON. The
additional time is taken up by overhead used to return control of
the simulation to the Extension Framework and allow it to execute
any MAC Components if they were enabled.

In the following, two network models are used. In order to dem-
onstrate the usefulness of the replaceable Message Bus Components
as well as the MAC Components, an unpublished Blue Brain neo-
cortical column model with 10,000 neurons is used, which includes
200 unique morphologies consisting of approximately 600 cylin-
drical elements, connected via 12,500,000 conductance-based syn-
apses, evaluated with an average of 300 electrical compartments and

10 Hodgkin-Huxley style ionic conductances per compartment at a
time step of 0.025 ms. For proving the applicability of the approach
to an arbitrary parallel NEURON model, the Extension Framework
was used to run a previously published network model (Bush et al.,
1999). Yet, instead of the originally serial version, the parallelized
version used in (Migliore et al., 2006) accessible from the ModelDB
model repository3 under the accession number 64,229 was used.

COMPARISON OF MESSAGE BUS PERFORMANCE
Optimizing performance of the Extension Framework for a particu-
lar architecture is made simpler given the modular object nature
of the Message Bus – the component that handles the costly com-
munication during a simulation. We tested the point-to-point and
collective Message Bus implementations in order to compare the
difference in time consumed (Figure 4). Using the highly optimized
collective communications developed for Blue Gene’s MPI version,
the Message Bus using MPI_AllGather was able to out-perform
the original Message Bus using point-to-point communications
via MPI_Send and MPI_Recv. The reason for this is that the lat-
ter Message Bus saw the Blue Gene fl ood with messages since the
number of connections between a single neuron reaches so many
other neurons. With each neuron sending out so many messages,
then waiting to receive an equivalent amount, the simulator would
spend an excessive amount of time for communication.

This superior performance may not extend to all systems as
observed by performance differences when using the two Message
Buses on a Beowulf cluster. This cluster is made up of a mix of archi-
tectures: 32 Dual-Processor AMD Opteron Nodes and 32 Dual-
Processor Intel Pentium Xeon Nodes. The 64 Nodes are connected
using Gigabit Ethernet. An Extension Framework simulation was
run of shorter duration than the one Blue Gene because of the

Table 2 | Interface functions provided by NEURON once confi gured and compiled with the option – enable-ncs.

Function Parameters Description

SETUP

ncs_gid_sending_info() Array Pointer Provide information about which gids on the local node send out APs, placing

 info at the indicated memory space.

ncs_gid_receiving_info() Array Pointer Provide information about which remote gids will deliver APs to this local

 node, placing info at the indicated memory space.

ncs_netcon_mindelays() Host Array, Delay Array Provide information about the minimum spike delays for a remote host to

 deliver an AP to the local node.

ncs_target_hosts() Gid, Array Pointer Provide information about which nodes a gid needs to send messages.

SIMULATION

ncs2nrn_integrate() Time Stop Executes the solver until the indicated time has been reached

nrn2ncs_outputevent() Gid, Fire Time After a cell reaches threshold, this function is called to handle the event. With

 option – enable-ncs, this function is not defi ned by NEURON so that another

 entity may defi ne it.

ncs_netcon_count() Source Gid, Local Flag Provide the number of netcons activated when the indicated gid fi res an AP.

 A fl ag indicates if the source gid is local to the node or remote.

ncs_netcon_inject() Source Gid, NetCon Index, Inject an AP into the indicated destination NetCon for a cell which fi red.

 Fire Time, Local Flag Requires the time of the event and a fl ag for whether the source gid is local to

 the node or remote.

2http://bluebrain.epfl .ch 3http://senselab.med.yale.edu/

http://bluebrain.epfl .ch
http://senselab.med.yale.edu/

Frontiers in Neuroinformatics www.frontiersin.org April 2009 | Volume 3 | Article 10 | 8

King et al. Component-based extension framework for NEURON

greater resource limitation, but during this shorter simulated
period, it can be observed that collective communication calls of
MPI performed worse than the targeted calls using MPI_Send and
MPI_Recv.

MAC COMPONENT EXAMPLE
Three MAC Components have been developed for monitoring
and controlling a network simulation (King et al., 2006). The fi rst
MAC Component developed for the Extension Framework simply
monitors the fi ring rates, f, of each neuron over a confi gurable time
window (Gerstner and Kistler, 2002). The second MAC Component
monitors the fi ring rate over a confi gurable amount of time but
increases the synaptic conductance, g, for all synapses onto the
neurons that fall below the target fi ring rate, F ′, by amount Δg. The

third MAC Component extended the second MAC Component to
monitor when the fi ring rate of a neuron exceeds a limit rate and
lower the synaptic conductance for all synapses onto that neuron
accordingly.

A series of simulations of the test network have been run using
each of the three MAC Components (Figure 5). The time window
used to determine the fi ring rate was 500 ms (Gerstner and Kistler,
2002). The fi rst MAC Component simply monitors the simulation
and computes the fi ring rate, which serves as a control condi-
tion. The second MAC Component monitors the fi ring rate and
increases the synaptic conductances for the low-fi ring rate neu-
rons. This results in a gradual increase in fi ring rates throughout
the network, ultimately reaching and exceeding the targeted fi ring
rate. In the case of the third MAC Component, the component
increases the synaptic conductances until the targeted fi ring rate
is reached, and as it exceeded the component acts to decrease
the synaptic conductances. This results in a low frequency oscil-
lation around the target fi ring rate in the network behavior as
the component dynamically regulates the fi ring frequency of the
network activity. The frequency of this oscillation depends on
the monitoring window used to determine the fi ring rate where
larger windows allow for fi ner grain control, reducing the degree
of oscillations.

ADOPTING AN EXISTING PARALLEL MODEL FROM MODELDB
To demonstrate the simplicity of using arbitrary parallel network
models specifi ed in NEURON’s HOC interpreter language, the
parallel version of the model by Bush et al. (1999) was down-
loaded from ModelDB4 (accession number 64,229) and run in
the Extension Framework. The only necessary modifi cation to the
original model fi les was in the main run script init.hoc and con-
cerned the commenting out of the parallel run command (as well as
parallel run statistics) as this function is provided by the Extension
Framework. All other fi les and the main body of the init.hoc script
remain unchanged as illustrated in Figure 6. The spike pattern of
a pure NEURON simulation and the simulation in the Extension
Framework are identical.

CONCLUSIONS
The component-based Extension Framework for large-scale
simulations in NEURON allows for a more fl exible simulation
environment where the application responsible for biophysical
computations is developed separately from the details of network
communication and analysis. We have presented an architecture
that encapsulates the neural network simulator NEURON using an
abstraction layer (Adapter Component), which permits the simu-
lator to be extended with tailored communication components
(Message Bus Components) and an on-line analysis and control
framework (MAC Component). Furthermore, we demonstrated
that it is possible to achieve increased communication performance
during a network simulation by selecting an appropriate Message
Bus for the underlying communication network. Finally, we devel-
oped an example of a MAC Component, which monitors, analyzes,
and modifi es an ongoing simulation providing a mechanism for
dynamic control of large-scale network behavior. We demonstrated

FIGURE 4 | Comparison of Message Bus performance. (A) Blue Gene
collective calls (using MPI_AllGather) performance exceeds that of point-to-
point (using MPI_Send and MPI_Recv) (B) on a Linux cluster, point-to-point
version of the Message Bus achieves greater performance than collective
calls.

32 64 128
104

105

CPUs

T
im

e
R

at
io

 (
E

xe
cu

tio
n

T
im

e/
S

im
ul

at
ed

 T
im

e)

Message Bus Performance • Linux Cluster

Point to Point
Collective Communication

256 512 1024 2048 4096 8192
102

10 3

CPUs

T
im

e
R

at
io

 (
E

xe
cu

tio
n

T
im

e/
S

im
ul

at
ed

 T
im

e)

Message Bus Performance • Blue Gene

Point to Point
Collective Communication

A

B

4http://senselab.med.yale.edu/

http://senselab.med.yale.edu/

Frontiers in Neuroinformatics www.frontiersin.org April 2009 | Volume 3 | Article 10 | 9

King et al. Component-based extension framework for NEURON

Firing Window
500 ms

-100

0

100

0

20

40

f

-2

0

2

•g

C
Increase / Decrease Max Conductance

Time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-100

0

100

0

20

40

f

-2

0

2

•g

B

Time (s)

Increase Max Conductance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-100

0

100
V

m

0

20

40

f

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

ControlA

Cell Threshold Network AvgSingle Cell Target Freq

Legend

Compute
(f)

f < F' ?g = g+ g

Yes

 cell c

No

do
ne

Compute
(f)

f < F' ?

No

g = g+ g
Yes

f > F' ?g = g- g

Yes

 cell c

No

do
ne

Compute
(f)

 cell c

do
ne

V
m

V
m

FIGURE 5 | Example MAC Component monitoring, analyzing, and

controlling simulation behavior with accompanying fl ow diagrams

illustrating component’s logic. (A) Control simulation where the fi rst graph
shows the voltage trace, Vm, for one cell in the network, the second graph
shows the fi ring rate, f, for this cell as well as the mean fi ring rate for the
network. (B) MAC Component monitors fi ring rate and increases maximum

conductance, g, for afferent synapses on neurons below a minimum rate, F′, by
an amount Δg; the fi rst and second graphs correspond with those of A and the
third graph shows the Δg for synapses for the selected cell as well as the mean
Δg for all cells in the network. (C) Revised MAC Component still monitoring for
minimum fi ring rate but also monitoring for maximum fi ring rate, scaling back
maximum conductance as needed; all three graphs correspond to those of B.

Frontiers in Neuroinformatics www.frontiersin.org April 2009 | Volume 3 | Article 10 | 10

King et al. Component-based extension framework for NEURON

the simplicity of adopting the Extension Framework for a pre-
 existing parallel NEURON model from ModelDB, where not a
single line in the model description had to be changed and only
the run command and run statistics had to be disabled (this could
even be done automatically). Thus, other parallel network models

executed in the Extension Framework can immediately take advan-
tage of its additional functionality such as replaceable Message Bus
and online MAC components.

The presented component-based Extension Framework rep-
resents a publically available version of a simulator environ-
ment Neurodamus developed within the Blue Brain Project (Frye
et al., 2006). The design of the Extension Framework resembles
some of the component-based modularity of the NeoSim project
(Goddard et al., 2001; Howell et al., 2003), but the distinguish-
ing feature is that it does not address the problem of a common
model specifi cation, which possibly impedes using state-of-the
art functionality of neurosimulators. By allowing models to be
specifi ed in the simulator’s specifi cation language it allows utiliz-
ing a particular simulator’s cutting edge feature set while gaining
extensibility and tool chain stability. In a similar fashion, the
MUSIC project (MUlti-SImulation Coordinator) seeks to cre-
ate a generic interfaces between simulator cores such that the
simulators can execute while under the control of a managing
entity (Ekeberg and Djurfeldt, 2008). The MUSIC effort rep-
resents a project under development that also follows the idea
of modularizing a simulation as described in NeoSim to allow
component interaction and leaving the model specifi cation to
the respective compute engines.

While the current implementation of the Extension Framework
provides an Adapter Component specifi c for the NEURON simu-
lator, it should be possible to implement Adapter Components
for other neurosimulators in the future. It should be noted the
published version of the Extension Framework does not address
the distribution of the network model on the parallel hardware
architecture. It thus is targeted at models that already address the
distribution in the model specifi cation. It is conceivable that as the
common model specifi cation approaches such as NeuroML, PyNN,
Neurospaces (Cornelis and DeSchutter, 2003; Crook et al., 2007;
Davison et al., 2008) mature, a future extension to the Extension
Framework could use a more general setup mechanism which
would allow load distribution and balancing to be handled by the
Extension Framework.

As large-scale detailed simulation projects go beyond the envi-
ronments provided by publically available neurosimulators, the
simulator engine itself needs to be integrated into a complete chain
of tools. Those workfl ows may include powerful analysis and visu-
alization environments (interactively and in post processing) as well
as interconnects to virtual and real environments such as robotic
devices and laboratory experiments. All those tools represent major
developments and need to be made as independent of the simulator
as possible while retaining maximum performance. The presented
component-based Extension Framework for NEURON represents
a working step in this direction.

ACKNOWLEDGMENTS
This work was supported by the Blue Brain Project. We thank James
Frye for his initial contributions. We thank Dr. Fred Harris for his
thoughtful comments on the manuscript and his work on NCS.
A portion of the original NEOSIM API was reused by Michael
Hines to create the prototype NCS interface to NEURON and that
work was supported in part by NINDS grant NS11613.

//init.hoc
// Taken from http://senselab.med.yale.edu/modeldb
// Accession 64229 (Migliore et al 2006)

{load_file("nrngui.hoc")}
setuptime = startsw()
create acell_home_
access acell_home_
objref pnm, pc
{load_file("netparmpi.hoc")}
pnm = new ParallelNetManager(0)
pc = pnm.pc
myid = pnm.myid
objref somatrace, somafile, cellObj
strdef commstr

ncell = 500
{load_file("prebatch_.hoc")}
{load_file("parnqsnet.hoc")}
{load_file("geom.hoc")}
{load_file("parnetwork.hoc")}
{load_file("params.hoc")}
{load_file("run.hoc")}

{load_file("perfrun.hoc")}
want_all_spikes()
mkhist(50)
if (myid == 0) {printf("scale = %g\n", scale) }
tstop = 500

setuptime = startsw() - setuptime
if (myid == 0) { print "\nSetupTime: ", setuptime }

/*
prun()
if (myid == 0) { print "RunTime: ", runtime }

{pnm.pc.runworker()}

{pnm.prstat(1)}
getstat()
{pnm.gatherspikes()}
prhist()
print_spike_stat_info()

pnm.pc.done()

perf2file()
spike2file()
{printf("ncell = %d tstop = %g\n", ncell, tstop)}
quit()
*/

Executes Normally

Disabled

FIGURE 6 | Modifi cations to the hoc fi le from ModelDB. Setup remains
normal while run is disabled to allow control to return to the Extension
Framework layer.

http://senselab.med.yale.edu/modeldb

Frontiers in Neuroinformatics www.frontiersin.org April 2009 | Volume 3 | Article 10 | 11

King et al. Component-based extension framework for NEURON

REFERENCES
Almási, G., Archer, C., Castaños, J. G.,

Gunnels, J. A., Erway, C. C.,
Heidelberger, P., Martorell, X.,
Moreira, J. E., Pinnow, K., Ratterman, J.,
Steinmacher-Burow, B. D., Gropp, W.,
and Toonen, B. (2005). Design and
implementation of message- passing
services for the Blue Gene/L supercom-
puter. IBM J. Res. Dev. 49, 393–406.

Bhalla, U. S. (2008). ‘MOOSE – Multiscale
O bject-Or iented Simulat ion
Environment’. Available at: http://
moose.sourceforge.net/ (Retrieved
April 10, 2008).

Bush, P. C., Prince, D. A., and Miller, K. D.
(1999). Increased pyramidal excit-
ability and NMDA conductance can
explain posttraumatic epileptogen-
esis without disinhibition: a model.
J. Neurophysiol. 82, 1748–1758.

Cannon, R. C., Gewaltig, M. O.,
Gleeson, P., Bhalla, U. S., Cornelis, H.,
Hines, M. L., Howell, F. W., Muller, E.,
Stiles, J. R., Wils, S., and De Schutter, E.
(2007). Interoperability of neuro-
science modeling software: cur-
rent status and future directions.
Neuroinformatics 5, 127–138.

Cornelis, H., and DeSchutter, E. (2003).
NeuroSpaces: separating modeling
and simulation. Neurocomputing
52–54, 227–231.

Crook, S., Gleeson, P., Howell, F., Svitak, J.,
and Silver, R. (2007). MorphML:
level 1 of the NeuroML standards
for neuronal morphology data and
model specifi cation. NeuroInformatics
5, 96–104.

Davison, A., Brüderle, D., Kremkow, J.,
Muller, E., Pecevski, D., Perrinet, L.,
and Yger, P. (2008). ‘PyNN – a Python
package for simulator- independent

specification of neuronal net-
work models’. Available at: http://
neuralensemble.org/trac/PyNN
(Retrieved April 10, 2008).

Ekeberg, Ö., and Djurfeldt, M. (2008).
MUSIC-Multisimulation Coordinator:
Request For Comments. Available from
Nature Precedings <http://dx.doi.
org/10.1038/npre.2008.1830.1>

Frye, J., Schürmann, F., King, J. G.,
Ranjan, R., and Markram, H. (2006).
Neurodamus: a framework for large
scale and detailed brain simulations. In
5th Forum of European Neuroscience
(Vienna). FENS Abstract Vol. 3,
A037.21, p. 99.

Gerstner, W., and Kistler, W. M. (2002).
Spiking Neuron Models: Single
Neurons, Populations, Plasticity,
1st edn. Cambridge: Cambridge
University Press.

Goddard, N., Hood, G., Howell, F.,
Hines, M. L., and De Schutter, E.
(2001). NEOSIM: portable large-
scale plug and play modeling.
Neurocomputing 38, 1657–1661.

Goddard, N. H., and Hood, G. (1998).
Large-scale simulation using parallel
GENESIS. In The Book of GENESIS,
Bower, J. M. and Beeman, D. 2nd edn
(Berlin, Springer), pp. 349–380.

Gropp, W., Lusk, E., and Skjellum, A.
(1999). Using MPI: Portable
Parallel Programming with the
Message-Passing Interface, 2nd edn.
Cambridge, MA, MIT Press.

Hammarlund, P., and Ekeberg, O. (1998).
Large neural network simulations
on multiple hardware platforms.
J. Comput. Neurosci. 5, 443–459.

Hines, M. L., and Carnevale, N. T. (1997).
The NEURON simulation environ-
ment. Neural Comput. 9, 1179–1209.

Hines, M. L., and Carnevale, N. T. (2000).
Expanding NEURON’s repertoire of
mechanisms with NMODL. Neural
Comput. 12, 995–1007.

Hines, M. L., Davison, A. P., and Muller, E.
(2009). NEURON and Python. Front.
Neuroinformatics 3, 1.

Hines, M. L., Eichner, H., and
Schürmann, F. (2008b). Neuron
splitting in compute-bound par-
allel network simulations enables
runtime scaling with twice as many
processors. J. Comput. Neurosci. 25,
203–210.

Hines, M. L., Markram, H., and
Schürmann, F. (2008a). Fully implicit
parallel simulation of single neurons.
J. Comput. Neurosci. 25, 439–448.

Howell, F., Cannon, R., Goddard, N.,
Bringmann, H., Rogister, P., and
Cornelis, H. (2003). Linking compu-
tational neuroscience simulation tools:
a pragmatic approach to component-
based development. Neurocomputing
52–54, 289–294.

Kernighan, B. W., and Pike, R. (1984). The
Unix Programming Environment, 1st
edn. Eaglewood Cliffs, NJ, Prentice
Hall, Inc.

King, J. G., Schürmann, F., Hill, S.,
a n d Ma r k r a m , H . (2 0 0 6) .
BlueEnvironment: Enabling Real-
Time Interactions with Biologically
Complex Models of the Neocortical
Column. In 5th Forum of European
Neuroscience (Vienna). FENS Abstract
Vol. 3, A037.15, p. 98.

Markram, H. (2006). The blue brain
project. Nat. Rev. Neurosci. 7,
153–160.

Migliore, M., Cannia, C., Lytton, W. W.,
Markram, H., and Hines, M. L. (2006).
Parallel network simulations with

NEURON. J. Comput. Neurosci. 21,
119–129.

Morrison, A., Mehring, C., Geisel, T.,
Aertsen, A. D., and Diesmann, M.
(2005). Advancing the boundaries of
high-connectivity network simulation
with distributed computing. Neural
Comput. 17, 1776–1801.

Wilson, E. C., Goodman, P. H.,
and Harr is , F. C. Jr (2001).
Implementation of a biologically
realistic parallel neocortical-neural
network simulator. In Proceedings
of the 10th SIAM Conference on
Parallel Process for Sci. Comput.
Philadelphia, USA.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 10 December 2008; paper pend-
ing published: 18 December 2008; accepted:
08 April 2009; published online: 27 April
2009.
Citation: King JG, Hines M, Hill S, Goodman
PH, Markram H and Schürmann F (2009)
A component-based extension framework
for large-scale parallel simulations in
NEURON. Front. Neuroinform. (2009)
3:10. doi: 10.3389/neuro.11.010.2009
Copyright © 2009 King, Hines, Hill,
Goodman, Markram and Schürmann.
This is an open-access article subject to
an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

http://moose.sourceforge.net/
http://neuralensemble.org/trac/PyNN
http://dx.doi.org/10.1038/npre.2008.1830.1

