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Abstract

The explosive growth in the number of protein sequences gives rise to the possibility of using the natural variation in
sequences of homologous proteins to find residues that control different protein phenotypes. Because in many cases
different phenotypes are each controlled by a group of residues, the mutations that separate one version of a phenotype
from another will be correlated. Here we incorporate biological knowledge about protein phenotypes and their variability in
the sequence alignment of interest into algorithms that detect correlated mutations, improving their ability to detect the
residues that control those phenotypes. We demonstrate the power of this approach using simulations and recent
experimental data. Applying these principles to the protein families encoded by Dscam and Protocadherin allows us to make
testable predictions about the residues that dictate the specificity of molecular interactions.
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Introduction

Determining which residues of a protein control its biological

functions is a classical and unsolved problem in molecular biology.

For example the biochemistry of allosteric enzymes has long been

studied, but it is not in general known which residues produce the

allosteric response, even for proteins that have been exceedingly

well studied such as hemoglobin [1–3]. The growth in the number

of available sequences has given rise to the intriguing possibility of

using the phenotypic diversity contained in multiple sequence

alignments (MSAs) to address this question [4,5]. Given both a

sequence alignment containing a large number of homologous

proteins, and a phenotype of interest, can an algorithm be

developed to identify those residues that control this phenotype?

By phenotype we mean the functional properties of a protein, such

as melting temperature, interaction partners, or substrate speci-

ficity. Since protein phenotypes such as these are often controlled

by a collection of residues, it is unlikely that patterns of individual

mutations contain enough information to identify residues

controlling the functional variation between different members

of the same family [1,6–8].

A pair of algorithms, featured in a number of recent papers,

have provided compelling experimental evidence that detection of

correlated pairs of residues can identify groups of residues that

control different protein phenotypes [7–14]. Using statistical

coupling analysis (SCA) Halabi et al. identify groups of residues

that control the structural stability and enzyme activity of the

serine proteases [8]. SCA analysis was recently used to identify

residues involved in the control of allosteric regulation both within

and between protein domains [10,12] and residues important for

both function and adaptation [11]. In addition, using mutual

information (MI) Skerker et al. identify specificity-determining

residues in bacterial signal transduction proteins [7,9,13,14].

These sets of studies carry out extensive experiments to validate

their predictions, which are obtained using two different

algorithms to detect correlated residue pairs. To test the

importance of the choice of algorithm, we repeated the analyses

in [7,8] with the algorithms swapped, namely using mutual

information to analyze the serine proteases, and SCA to analysis

the signal transduction proteins. We find that the algorithms are

not interchangeable, implying that the ability to detect correlated

mutations in these studies depends on the details of each

algorithm. For such analyses to be applicable to other biological

datasets, we need to understand which properties of the algorithm

determine its effectiveness, and design a more general algorithm

based on these principles.

Both algorithms are based on the idea of detecting correlated

mutations between residues in sequence alignments. This is a

sound approach, because if a phenotype is controlled by a set of

residues, members of the set must mutate to change the

phenotype, and therefore, these residues can be detected by

looking for groups of sequence positions whose mutations are
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correlated. Many statistical measures have been suggested that

quantify the degree of correlation between sequence positions in a

multiple sequence alignment, and different authors have suggested

weighting these raw correlation scores in different ways [7,13,15–

22]. In particular, mutual information and SCA use different

metrics for measuring the raw correlation score, and in addition

these metrics are differently weighted.

This manuscript is organized as follows. We first identify the

critical difference that keeps SCA and mutual information from

being interchangeable algorithms, which turns out to be the

different weights applied to the raw correlation scores. To create

an algorithm that works more generally we propose using

biological information about the expected conservation level of

the phenotype in question to design context specific weighting

functions. This approach performs well on both original datasets,

so we turn to testing it in more general situations. We first

demonstrate that the algorithm performs well on artificial

sequences generated through simulations of a simple model of

molecular evolution, in which the conservation level of the

phenotype is systematically varied. We then demonstrate that it

performs well on a biological example (Dscam domains) in which

the phenotype controlling residues have been identified through

experiments. Finally, we make testable predictions by applying our

algorithm to Cadherins and Protocadherins for which the

phenotype-controlling residues have not yet been probed exper-

imentally.

Results

We start by focusing on two experimental studies: Skerker et al.

use mutual information (MI) to identify residues that control

interaction specificity between cognate histidine kinases (HKs) and

response regulators (RRs) [7], while Halabi et al. use statistical

coupling analysis (SCA) to identify groups of residues that control

the enzyme activity and structural stability of the serine proteases

[8]. In both cases extensive experimental work showed that the

predicted residues indeed control the phenotype of interest.

We examined whether the same predictions would be made if

the algorithms used by these two groups were swapped. We first

ran the original algorithms on the original alignments, that is SCA

for the serine proteases, and MI for the HK-RRs, and used

principal component analysis (PCA) to generate the plots shown in

Fig. 1A. In [8] it is argued that the principal components define

three groups of residues, distinguished by the coefficients of the

second and fourth principal component, as shown on the left of

Fig. 1A (colored according to [8]). Strikingly, one of these groups

contains the catalytic triad and associated residues. The right

panel of Fig. 1A shows our PCA analysis of the correlation matrix

from [7], verifying that the specificity determining residues found

in [7] and colored in red are grouped together, away from the

origin. Note that PCA was not used to identify residue pairs in [7].

Fig. 1B shows the result of switching the algorithms for these

two alignments. On the left we apply MI to the serine protease

alignment from [8]; the residues are colored as before. Many of

the colored residues shown to be functionally important in [8] lie

close to the origin of this plot; other PC combinations also fail to

recover the separation between the three functional sectors (Fig.

S1 in file S1). On the right of Fig. 1B we apply SCA to the HK-

RR alignment from [7]; the specificity determining residues,

validated in [7], are highlighted in red. This figure, together with

Fig. S2 in file S1, shows that SCA is unable to discriminate these

residues from others. Thus, each algorithm is only able to correctly

identify the important residues from one alignment.

There are two major differences between these two algorithms:

the change in statistical method for detecting correlation and the

weighting function used in SCA (see methods, Fig. S3A in file S1).

We write the covariance matrix as

Cij~w wi j
ij , ð1Þ

where wi,wj is a weighting function and ij a metric for the raw

correlation between residues i and j. The SCA algorithm uses a

weighting function wcons that upweights conserved residues (see

Figure 1. A) PCA of (left) the correlation matrix produced by
SCA v3.0 applied to the serine protease alignment and (right)
the correlation matrix produced by MI applied to the histidine
kinase - response regulator (HK-RR) alignment (see methods).
These plots largely recover the experimentally verified residues (red,
green and blue) that control the different phenotypes identified in [8]
and [7] respectively. B) (Left) Applying MI to the serine protease
alignment does not recover the functionally relevant residues, colored
as (A), they mostly cluster around the origin. (Right) Applying SCA to
the HK-RR sequence alignment also does not recover the relevant
residues. C) (Left) Applying MI combined with the SCA weighting
function to the serine protease alignment recovers the relevant
residues, compare with A. (Right) Application of unweighted-SCA to
the HK-RR alignment improves performance at detecting the relevant
residues.
doi:10.1371/journal.pone.0107723.g001
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methods) and correlation measure ij~
SCA
ij while the MI

algorithm uses a weighting function wvar that upweights variable

residues and ij~
MI
ij .

A critical test is whether applying the SCA weighting function to

MI, creating a hybrid ‘weighted-MI’ algorithm, can uncover the

sectors that were experimentally validated in [8]. Figure 1C shows

PCA of the correlation matrix generated by applying this new

algorithm to the serine protease alignment from [8]. Comparing

the left panel of Fig. 1C with that of Fig. 1A, we see both

algorithms are able to identify the groups of phenotype-controlling

residues verified in [8]. Similarly, the right panels of Fig. 1C and

Fig. 1A reveal that the hybrid ‘unweighted-SCA’ better identifies

the residues shown to control specificity in the HK-RR alignment

from [7], although unweighted SCA clearly performs worse than

MI on this alignment. In Fig. S3 in file S1 we further demonstrate

that changing the weighting function changes the set of residues

that are identified. Thus to a great extent the choice of weighting

function, rather than the statistical method used, determines

identification of the phenotype-controlling residues.

Our analysis finds that use of a weighting function specific to the

phenotype and sequence set of interest is crucial to successful

identification of phenotype-controlling residues. While perhaps

surprising, this observation has a natural theoretical basis. The

challenge is to identify residue pairs that are correlated to maintain

a phenotype such as binding specificity or tertiary structure

[4,7,8]. To first order, residues that control a phenotype will

change when the phenotype changes. Hence, these residues will

most likely have a similar conservation level to the phenotype itself

in the sequence alignment. By weighting the pairwise correlation

scores by a function of conservation that peaks at this level, our

approach allows biological information to be incorporated into a

correlated mutation analysis. This weighting function should thus

be tuned to the phenotype and set of sequences of interest.

Indeed, a direct examination of the conservation level, defined

by the function Di (Eqn. (4)), of phenotype determining residues

shows a substantial difference between the two examples. Fig. 2A

plots the conservation level of residues in the serine protease

alignment; on average those residues identified by SCA (red) are

more conserved than residues not included in any sector (blue,

overlap of red and blue is purple). In contrast, Fig. 2B shows that

residues that determine the specificity of HK-RR interaction,

identified by MI, are on average more variable than other

residues.

Importantly, these conclusions are as expected based on our

prior knowledge of the biology of these two protein families.

Because the serine protease alignment contains members of a well-

conserved family of enzymes, we expect the phenotype determin-

ing residues to be more conserved, on average, than other

residues. The weighting function wcons used in SCA highlights

these residues, identifying three groups in the serine proteases [8]:

(i) the catalytic triad, well conserved amongst the proteases but

absent from the haptoglobins, making up 5% of the alignment; (ii)

the catalytic site support network, which discriminates between

different enzyme types (trypsins, chymotrypsins, etc.) and requires

substantial coordination to keep the proteins catalytically active,

and (iii) the network suggested to form the essential core needed

for protein folding and stability, which is likely to require

conservation to allow the protein to achieve a unique, folded

structure. In contrast, the phenotype of interaction specificity

among the histidine kinase response regulator pairs is highly

variable, and wvar used by MI does not highlight conserved

residues. Here, the protein interaction interface lies at the surface

of two well-folded, globular proteins; its only role is to enable the

proteins to bind in the correct orientation for phosphate transfer.

Since different pathways in the same cell must avoid cross-talk,

there is selection for the different specificities to be well-dispersed

in sequence space [9].

The fact that biological knowledge about sequence alignments is

often available suggests a general method for using this informa-

tion to design weighting functions. Namely, since we want to focus

our analysis on the residues whose conservation level matches that

of the phenotype in the alignment of interest, we must choose the

weighting function to upweight the scores of these residues. If the

phenotype determining residues are expected to be highly variable

(conserved), the weighting function should focus on residues that

are correlated and highly variable (conserved). To implement this,

we propose that the weighting function (wvar) used for the response

regulator pairs is applied to cases where highly variable

phenotypes are expected, and similarly, the weighting function

(wcons) used for the serine protease is applied for more conserved

phenotypes.

We now test this algorithm in several different situations,

including simulations of artificial sequences and sequence align-

ments of protein domains for which the phenotype determining

residues are known.

Figure 2. Amino acid conservation measured using the function D (see methods). A) Residues identified by SCA analysis of the serine
protease alignment (red, labelled sector) are more conserved than the remaining residues (blue, labelled non-sector, overlap is purple). B) Residues
identified by MI analysis of the HK-RR family alignment (red, labelled sector) are less conserved than the remaining residues (blue, labelled non-
sector).
doi:10.1371/journal.pone.0107723.g002
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Tests with Simulation
We generated a set of test sequence alignments using a simple

molecular model of evolution. Most amino acids evolve indepen-

dently through a Markov model whose mutation matrix is derived

from BLOSUM90 [23], while we explicitly correlate the mutation

of a small set of residue pairs. We vary two alignment properties:

the average mutation rate and the phylogenetic tree according to

which the sequences are generated. This is parameterized by the

number of duplication events that occur, ranging from 1 for a star

phylogeny to 10 for a maximally branched tree. To quantify how

well each algorithm discriminates between correlated and

uncorrelated residues, we define a metric by dividing the lowest

correlation score assigned to a correlated pair by the highest score

assigned to a pair that mutates independently. In Fig. 3 low scores

indicate poor discrimination (dark blue), while high scores indicate

excellent discrimination (red).

As expected, the performance of algorithms using wvar increases

monotonically with mutation rate and decreases as the phylogeny

becomes more complicated. In contrast, the performance of

algorithms using wcons peaks when the number of duplication

events is small, but the mutation rate is intermediate. This

establishes (Figs. 3C and 3D) that the choice of weighting function,

rather than the formula used to measure correlation ( ) dominates

the algorithm performance. All algorithms perform worse as the

level of branching in the phylogeny rises because mutations in the

uncoupled residues that occurred on the same branch of a

phylogeny produce spurious correlations, and the strength of these

correlations increases with the depth of the branch.

To test the impact of conservation on detecting coupling, we set

the mutation rate of the coupled residues to be either higher or

lower (Figs. S4A,B in file S1) than that of residues that are not

correlated. We find that algorithms using wcons detect correlated

pairs more reliably when they are more conserved than

uncorrelated pairs.

Tests with Biological Data
We now apply the method to a number of biological datasets.

We start with examples in which the phenotype determining

residues have been experimentally determined, and demonstrate

that the algorithm is able to recover these results. The Dscam gene

Figure 3. Comparison of algorithm performance on simulations of molecular evolution where 10 residue pairs are correlated while
80 residues mutate independently. (A) The MI algorithm, consisting of weighting function wvar and MI

ij ; (B) The unweighted SCA algorithm,

consisting of weighting function wvar and SCA
ij (we call this algorithm ‘‘unweighted’’ since wvar~1) (C) The weighted MI algorithm, consisting of

weighting function wcons and MI
ij ; and (D) The SCA algorithm, consisting of weighting function wcons and SCA

ij . Each figure shows the discrimination

ratio (the ratio of the lowest correlated score to the highest uncorrelated score) for each MSA analyzed, as a function of the mutation rate and
phylogeny. Note that the major difference between these algorithms is caused by the weighting function, not by the functional form of . (E) The
phylogeny was varied by changing the number of branching events that occurred. The star phylogeny has one branching event, while the branching
phylogeny displayed here has three.
doi:10.1371/journal.pone.0107723.g003
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gives rise to thousands of different protein isoforms whose ability to

homodimerize specifically guides neuronal wiring [24]. There are

12, 48, and 33 alternatives at Ig domains 2, 3, and 7 respectively

that can be included in any individual isoform. For both the Ig2

and Ig3 domains a group of residues has been experimentally

shown to determine homodimerization specificity, while for the

Ig7 domain specificity determining residues have been inferred

from the 3d structure [24–26]. We applied both weighting

functions to alignments of these three variable domains [27]. On

the basis of biological knowledge about the function of the

proteins, we expect that there is likely strong selection for diversity

at the residues that determine interaction specificity, and hence we

would expect a weighting function that preferentially detects

variable residues to best identify the specificity determining

residues.

In Fig. 4 we show the results of these analyses (see also Figs. S5–

7 in file S1). On the left we use the weighting function wvar to

analyze each of the three alignments, while on the right we apply

wcons to the same alignments. Residues that were shown

experimentally (Ig2, Ig3) or inferred from crystal structure data

(Ig7) to determine interaction specificity are colored red. Note that

these residues are grouped together and separated from the bulk

when wvar is used, but this is not the case when wcons is used.

We note that Ig2 residue E13, part of the beta strand shown to

determine specificity, is not identified by the algorithm with wvar

(Fig. 4A). Indeed, inspection of the crystal structure reveals that

the side chain of this residue faces away from the Ig2 dimer

interface (Fig. 4B). Within Drosophila melanogaster, E13 is

conserved in ten of the twelve Ig2 sequences suggesting it may

not contribute strongly to determining interaction specificity. In

contrast, residue L26 clusters with the residues shown to determine

interaction specificity (Fig. 4A), yet was not a member of the beta

strand shown experimentally to determine specificity. In the crystal

structure the side chain of residue 26 makes contact with the

equivalent residue across the dimer interface, supporting our

prediction that it may play a role in determining interaction

specificity. For Ig3 our analysis identifies the experimentally tested

residues (Fig. 4B). In the case of Ig7 (Fig. 4E), where 17 specificity-

determining-residues were predicted from the crystal structure,

our analysis based on wvar predicts that 14 of these residues are key

for specificity determination, and the remaining three residues are

close to our threshold.

In a further example we use both weighting functions to analyze

an alignment containing 7829 classical Cadherin domain

sequences, members of the Cadherin superfamily [28]. The

variable weighting function wvar identifies a set of 12 residues, 11

of which are surface exposed (pdbID 1EDH) [29], and hence likely

more variable. In contrast wcons identifies 13 residues (Fig. 5); 11

located in the highly conserved calcium binding domain (red

spheres), of which 10 bind calcium ions. Indeed, it was recently

shown that while the majority of Cadherin domains have a

canonical calcium binding motif, calcium-free Cadherin domains

are necessary, for example to allow Drosophila N-Cadherin to

assume the kinked orientation necessary to fit into the invertebrate

intercellular space [30]. Bioinformatic analysis [30] found that

Cadherin domains that lack the calcium binding motif make up

around 10% of all Cadherin domains. The fact that the weighted

algorithm identifies residues involved in calcium binding and the

unweighted algorithm identifies surface exposed residues supports

our proposal that the weighting identifies correlated residues that

are highly conserved.

For our final example we construct an alignment of Proto-

cadherin (Pcdh) domains, for which those residues that determine

interaction specificity have not yet been identified. Protocadherins

are the largest group in the Cadherin superfamily, and in

vertebrates there are multiple isoforms of the clustered Pcdh-c
gene. It has been shown experimentally that individual neurons

express distinct repertoires of c-Pcdh isoforms [31], and that these

isoforms homodimerize specifically across the cell-cell interface

[32]. The specificity is dictated by the EC2 and EC3 domains

alone, independently of each other [32]. We used the sequenced

genomes of vertebrate species to construct alignments of just over

1000 sequences for each of c-Pcdh domains EC1–4. Our

assumption is that the specificity determining residues are highly

variable so we use wvar to identify putative specificity determining

residues.

The results of our analysis are shown in Fig. 6. We identify

small and largely distinct sets of residues within domains EC2 and

EC3. Mapping these residues onto the only solved crystal structure

of a Pcdh domain, Pcdh-a [33], reveals that they are surface

exposed, supporting our suggestion that at least some of these

residues may play a role in interaction specificity, as found for the

Dscam domains. In addition our analysis of domains EC1 and

EC4, which were experimentally shown not to determine

interaction specificity, highlights largely distinct sets of residues

from the analysis of the EC2 and EC3 domains (Fig. S8 in file S1).

Discussion

In this manuscript we compare two experimentally verified

algorithms for detecting phenotype-controlling residues from a

multiple sequence alignment, and observe that the performance of

the algorithms is alignment specific. We show that the difference

occurs because of the different levels of conservation in the

phenotype determining residues. We use this observation as the

basis for a more general method for detecting phenotype

determining residues in sequence alignments. We propose

incorporating biological knowledge about the expected conserva-

tion level of the phenotype of interest to choose the weighting

function: if the phenotype is expected to be highly variable, the

weighting function should resemble that used in the analysis of

response regulator pairs [7], while if the phenotype is expected to

be highly conserved, the weighting function should resemble that

used for the serine protease [8].

For a general protein family and phenotype of interest, with

some modest knowledge of the relevant phenotypes of sequences

in the MSA, a likely scenario for the conservation level of the

relevant residues can be formulated, and thus the appropriate

weighting function chosen. We demonstrate that this method

works both with simulations of artificial sequences and analysis of

sequence alignments from Dscam and Cadherin. It is worth noting

that the proposed methodology also implies that changing the

weighting function used for a single sequence alignment probes the

residues responsible for different phenotypes. For example, the

residues responsible for structural stability in the response

regulator are likely more conserved than those that determine

interaction specificity. Thus by using wcons, we identify candidates

for residues that determine structural stability (See Figs. S9, S10,

Text S1 in file S1). While we have restricted out attention to the

weighting functions used in [7,8], more generally there is a

continuum of possible weighting functions, and a valuable

direction for future study is to determine whether there are shapes

of weighting functions that give even greater discriminative power.

Materials and Methods

Statistical tests for detecting pairs of sequence positions in an

MSA that do not mutate independently compare amino acid
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frequencies in each column (p
(a)
i frequency of ath amino acid in

column i) with the distribution of amino acids in column pairs

(p
(ab)
ij frequency of the pair a and b in columns i and j respectively).

The results are organized into a matrix of correlation values Cij .

Many metrics for computing Cij have been proposed (see e.g.

[4,6,18,19]). The raw correlation score computed using mutual

information (MI) is given by

MI
ij ~

X20

a~1

X20

b~1

pab
ij log

pab
ij

pa
i pb

j

, ð2Þ

whereas the raw correlation score introduced by Ranganthan and

co-workers in SCA [8,16] is given by

SCA
ij ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20

a~1

X20

b~1

(pab
ij {pa

i pb
j )2

vuut : ð3Þ

In [8], Ranganathan and co-workers showed that a simpler

formulation of this raw score correlation score produces results

that are largely equivalent; here, scores for SCA are computed

using a binary approximation, in which only the most prevalent

amino acid in the MSA is considered. To be consistent with the

literature, we use this simpler approximation throughout when

computing SCA; though we note that making a binary

approximation is particularly relevant when a column of residues

is dominated by a single amino acid, as then it makes sense to

distinguish between that residue and all others. When a column is

Figure 4. A) PCA of the correlation matrix produced by (left) MI (weighting function wvar and MI
ij ) and (right) SCA (weighting

function wcons and SCA
ij ) applied to the Dscam A) Ig2 C) Ig3, and E) Ig7 domain alignments. The plots produced by MI analysis in each of

A, C and E largely recover the experimentally verified residues (red) identified in [24,25]. B), D), F) Experimentally verified residues (red in monomer
one, and orange in monomer two) mapped onto the corresponding domain dimer interface from crystal structure 3DMK [26]. Those residues
identified in [24,25] that fall inside our threshold circle on the MI plots are colored cyan in B and F. The calibration of the circle radii in these plots are
explained in the methods section.
doi:10.1371/journal.pone.0107723.g004
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highly variable, the binary approximation is not appropriate,

because there are more than two relevant states of the system. For

that reason, using a non-binary approximation for , i.e. Eq. (2),

does not favor conserved columns over variable ones.

The conservation of column i can be measured by the entropy

Di~
X20

a~1

p
(a)
i log

p
(a)
i

q(a)
: ð4Þ

The weighting function wi
cons for column i used in SCA, is given

by

Figure 5. A) PCA of the correlation matrix produced by (left) wvar and M
ij , and (right) wcons and SCA

ij applied to the Cadherin
alignment. B) Residues identified by wcons and SCA

ij and colored as in (A) shown on crystal structure 1EDH, note that the red sector residues form

the calcium binding site; calcium ions colored yellow [29].
doi:10.1371/journal.pone.0107723.g005

Figure 6. A) PCA of the correlation matrix produced by (left) wvar and MI
ij and (right) wcons and SCA

ij , applied to the Pcdh-ª EC2
alignment. B) Residues identified and colored as in (A) mapped onto the crystal structure 1WUZ of Pcdh-a [33]. C) PCA of the correlation matrix

produced by (left) wvar and MI
ij , and (right) wcons and SCA

ij applied to the Pcdh-c EC3 alignment. D) Residues identified and colored as in (B) mapped

onto the crystal structure 1WUZ of Pcdh-a [33].
doi:10.1371/journal.pone.0107723.g006
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wi
cons~ log

pa
i (1{qa)

(1{pa
i )qa

� �
: ð5Þ

where a is the most common amino acid in column i. Here qa is

the background frequency of amino acid a in proteins, corrected

for the fraction of gaps occurring in the alignment [8]. This

weighting function was motivated by a perturbation analysis of the

sequence alignment and previously implemented via a bootstrap

procedure [8,16,34]. In contrast, [7] did not apply a weighting

function to the mutual information scores, which we have

described as a constant function

wi
var~1Vi: ð6Þ

In [8] principal components analysis (PCA) is used to identify

groups of residues that control different phenotypes. The

significance threshold circles in Figs. 4, 5 and 6 provide a guide

to the null distribution of residue scores that are likely due to finite

sample effects, if we assume that the sampling noise is provided by

independent draws from identical Gaussian distributions. The

radius of this distribution depends on (n), the number of residues

in the protein domain, the number of sequences in the alignment

and the appropriate noise model. In Fig. 4, partly guided by the

experimental data, the radius is 1:25=
ffiffiffi
n
p

(see Text S1 in File S1

for further details).

Supporting Information

File S1 Supporting files. Figure S1, The results of (A)

unweighted MI and (B) weighted SCA analyses of the the

alignment of serine protease sequences from [8]. The residues

colored in red, green and blue are those identified in [8] as being

members of intra-protein pairs that have high SCA scores. Figure
S2, The results of (A) unweighted MI and (B) weighted SCA

analyses of the the alignment of concatenated HK-RR cognate

pair sequences from [7]. The residues colored in red and green are

those identified in [7] as being members of inter-protein pairs that

have high MI scores. The red groups contains residues shown

experimentally to determine interaction specificity together with

residues with high MI scores that are structurally contiguous to the

experimentally tested residues. Figure S3, A) Weighting function

wconserved used in [8] to analyze the serine protease family

sequence alignment. B) An alternative weighting function,

walternative , which maximally weights a different range of

conservation values to the function in A. C) The sectors for the

serine proteases established using twconserved via principal

components analysis (PCA). D) PCA applied to the coupling

matrix constructed using walternative . Residues are colored

according to the color scheme in C. Note that while the blue

and red sectors are largely recovered with this analysis, the green

sector, which defines the catalytic heart of the protein, is not.

Figure S4, Simulations of molecular evolution in which

correlated residues evolve at a different rate to uncorrelated

residues. A) Correlated residues are more conserved, the

correlated mutation rate is 0.06 while the uncorrelated mutation

rate 0.12. B) Correlated residues are less conserved, the correlated

mutation rate 0.06 and the uncorrelated mutation rate 0.03. The

histograms on the left show the distribution of scores attained by

the SCA algorithm, consisting of weighting function wconserved and
SCA
ij , while the right panel shows the distribution of scores

attained by applying the MI algorithm, consisting of weighting

function wvariable and MI
ij , to the same data. These simulations

find that SCA is able to detect correlated pairs with greater

reliability when they are more conserved than uncorrelated pairs,

while the reverse is true of MI. Figure S5, MI and SCA analyses

of the Dscam Ig2 domain alignment. Those amino acids that were

experimentally shown to be involved in determining homodimer-

ization specificity in [24] are colored in red. The circle of radius

1:25=
ffiffiffi
n
p

, where n is the number of aligned residues, indicates the

extent of points that might occur due to noise under a null

hypothesis. Figure S6, MI and SCA analyses of the Dscam Ig3

domain alignment. Those amino acids that were experimentally

shown to be involved in determining homodimerization specificity

in [24] are colored in red. The circle of radius 1:25=
ffiffiffi
n
p

, where n is

the number of aligned residues, indicates the extent of points that

might occur due to noise under a null hypothesis. Figure S7, MI

and SCA analyses of the Dscam Ig7 domain alignment. Those

amino acids that were inferred based on their structural locations

to be involved in determining homodimerization specificity in [26]

are colored in red. The circle of radius 1:25=
ffiffiffi
n
p

, where n is the

number of aligned residues, indicates the extent of points that

might occur due to noise under a null hypothesis. Figure S8, MI

analysis of c-Pcdh domains (A) EC1 and (B) EC4. The circle of

radius 2=
ffiffiffi
n
p

, where n is the number of aligned residues, indicates

the extent of points that might occur due to noise under a null

hypothesis. The amino acids that lie outside the threshold circle in

the PC1-PC2 plot are colored in red on the structure 1WUZ of the

homologous Pcdh-a [33]. Figure S9, The results of (A) MI,

consisting of weighting function wvariable and MI
ij , and (B) SCA,

consisting of weighting function wconserved and SCA
ij analyses of

the the alignment of concatenated HK-RR cognate pair sequences

from [7], as in Fig. S2 in file S1. However, here the residues are

colored according to their position in the SCA PC2-PC3 plot,

these principal components were chosen arbitrarily from combi-

nations of the top few principal components, note that largely the

same residues would be chosen using the other PC combinations.

Figure S10, Analysis of the serene protease domain alignment

using (A) MI, consisting of weighting function wvariable and MI
ij ,

and (B) SCA, consisting of weighting function wconserved and SCA
ij .

In each case a group of residues that includes members of the S1

substrate binding pocket (purple dots) and the L1 (blue dots) and

L2 (light blue dots) selectivity determining loops is identified by the

algorithm indicated. Here we compare the groups of residues

identified by each algorithm by showing them as solid spheres on

the experimentally determined crystal structure 1YF4 [35] of

trypsin (green cartoon) in complex with the inhibitor peptide

vasopressin (shown as dark blue sticks). Those residues shown in

red are identified by MI (A) or SCA (B) but are not part of the S1/

L1/L2 features. C) Analysis of the HK-RR domains. The yellow

sector, colored as in Fig. S3 in file S1 on crystal structure 1F51

[36], which avoids the N-terminal helix (see supplementary text).

This sector is identified largely intact by both the weighted SCA

and the unweighted MI analysis of the HK-RR alignment. Text
S1.

(PDF)

Sequence Alignments S1 Sequence alignments built for
this work and analysed in the main text.

(ZIP)
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