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Heart disease remains an increasing major public health challenge in the United States
and worldwide. A common end-organ feature in diseased hearts is myocardial fibrosis,
which stiffens the heart and interferes with normal pump function, leading to pump
failure. The development of cells for regenerative therapy has been met with many
pitfalls on its path to clinical translation. Recognizing that regenerative cells secrete
therapeutically bioactive vesicles has paved the way to circumvent many failures of cell
therapy. In this review, we provide an overview of extracellular vesicles (EVs), with a
focus on their utility as therapeutic agents for cardiac regeneration. We also highlight
the engineering potential of EVs to enhance their therapeutic application.
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INTRODUCTION

Despite significant advances in science and medicine, heart disease remains an increasing public
health concern, and is a leading cause of morbidity and mortality worldwide (Roth et al., 2017).
In adult mammals, the default response to cardiac insults or disease is scar formation which
lowers myocardial compliance, decreases ventricular filling, interferes with electrical coupling,
and ultimately leads to depressed cardiac performance (Sharma and Kass, 2014). Conventional
therapies such as β-blockers are beneficial in patients with myocardial fibrosis; however, they do
not directly treat the underlying causes of fibrosis (Jameel and Zhang, 2009; Members et al., 2012).
There is ample evidence for the efficacy of cardiac cell therapy to treat myocardial fibrosis in
preclinical models (Zwetsloot et al., 2016) and, to a lesser extent, in patients (Nigro et al., 2018).
However, cells are fragile, living entities which can be difficult to manufacture and to handle
(Dodson and Levine, 2015).

In recent years, the emphasis has shifted away from cell therapy toward a cell-free therapeutic
paradigm. Although extracellular vesicles (EVs) have long been known to be produced by
eukaryotic cells, only recently were EVs implicated as mediators of the paracrine benefits of
cell therapy. Extensive evidence now supports the concept that EVs are vital for the benefits
of numerous therapeutic cells such as neural progenitors (Marzesco et al., 2005), mesenchymal
stem cells (Lai et al., 2010), CD34+ cells (Sahoo et al., 2011), and cardiosphere-derived cells
(CDCs; Ibrahim et al., 2014). Importantly, EVs offer the potential to overcome key limitations
of cell therapy. For example, advantages may include product stability (Akers et al., 2016),
immune tolerability (Gallet et al., 2017; Aminzadeh et al., 2018), flexibility of dosing (not limited
by microvascular plugging or loss of transplanted cell viability; Ibrahim and Marbán, 2016),
and the potential for engineering to enhance efficacy (Conlan et al., 2017). In this review, we
summarize EV biology, cellular and molecular players in myocardial fibrosis, the utility of EVs
as therapeutic agents, and conclude with the promise of engineered EVs as next-generation
therapeutic candidates.
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EXTRACELLULAR VESICLES DEFINED

Conserved through evolution, cellular release of EVs occurs in
bacteria, fungi, plants, and animals (Barile et al., 2017). Based
on studies of sheep reticulocytes, EV secretion was originally
postulated to be a mechanism for elimination of cell waste
including non-essential proteins (Johnstone et al., 1987). More
recently, EVs have come to be viewed as key mediators of
intercellular communication. EVs can deliver and exchange
bioactive components from donor to recipient cells, regulating
gene expression and altering cellular function (Stahl and Raposo,
2018). Several lines of evidence implicate EVs as important
signaling mediators that carry proteins, lipids, and nucleic acids
in physiological and pathophysiological conditions (Ibrahim
et al., 2014; Ibrahim and Marbán, 2016).

Classification of Extracellular Vesicles
In the classical sense, the term EVs refers to all cell-secreted
membrane vesicles. Based on their size, biogenesis, and secretory
pathway, EVs can be broadly classified into three major classes:
exosomes, microvesicles, and apoptotic bodies (Figure 1). The
primary focus here will be on the first two classes of EVs.

Exosomes are secreted and taken up by all eukaryotic cells
and have been found abundantly in nearly all biological fluids.
Exosomes are lipid-bilayer vesicles of endosomal origin that
arise from inward budding of multivesicular bodies, and range
in size from 30 to ∼100 nm in diameter. Multivesicular
bodies can fuse with the plasma membrane to release their
contents into the extracellular space, or can be trafficked to
lysosomes for degradation (Colombo et al., 2014). Exosomal
cargo contains non-random assortments of protein, RNA, and
lipids, differing substantially from the cytoplasmic contents of
the parent cells, but nevertheless reflecting the parent cell type
and its metabolic state. According to ExoCarta1, at least 9,769
proteins, 4,946 mRNAs, 2,838 miRNAs, and 1,116 lipids have
been identified in exosomes from various cell types. Though the
diversity of exosomal cargo is vast, exosomes share common
molecular markers including tetraspanins (CD9, CD63, and
CD81). However, diversity exists among the expression of these
tetraspanins – although the biological significance is currently
unclear (Bobrie et al., 2012).

In contrast to exosomes, microvesicles are generally larger
and range in size (100–1000 nm in diameter). The mechanism
of microvesicle biogenesis is not well understood; however,
it is thought to require cytoskeletal components such as
actin and microtubules (along with the respective molecular
motors), and fusion machinery (SNAREs and tethering proteins)
(Cai et al., 2007). Microvesicles arise by direct budding
from the plasma membrane and enter the extracellular space
(He et al., 2018). Accordingly, microvesicle contents closely
resemble the composition of the cytosol of the parent cell
(Mohammadi et al., 2019).

We next consider the biology of cardiac fibrosis, then return
to EVs as therapeutic candidates to offset fibrosis. For a detailed
review of cardiac regeneration and EV biology, the reader

1http://www.exocarta.org

is referred to recently published reviews (Balbi et al., 2020;
Tikhomirov et al., 2020).

ORIGIN OF CARDIAC FIBROSIS

The deposition of collagen occurs in three forms: replacement,
interstitial, and perivascular (Figure 2). As a result of
cardiomyocyte loss, replacement fibrosis ensues to fill
devoid space within the myocardium (Rogers and Otis, 2017).
Dominating in acute myocardial infarction (MI), replacement
fibrosis is critical to protecting the myocardium from rupture
and dilative remodeling by preserving structural integrity and
normalizing myocardial wall stress. Interstitial and perivascular
fibrosis develop as excess collagen deposits in the myocardial
interstitium and surrounding the peri-adventitia, respectively
(Frangogiannis, 2019). The latter two are the unfortunate
consequences of a number of insults, including myocardial
inflammation, which lead to chronic heart disease. The extent
of interstitial and perivascular fibrosis is closely associated with
adverse clinical outcomes (Berk et al., 2007; Kong et al., 2014).
As such, the development of therapeutic interventions to combat
myocardial fibrosis remain a major focus of current research.

Cellular and Molecular Players in
Cardiac Fibrosis
The hallmark of any cardiac insult remains the universal
activation of the innate and adaptive immune system.
For example, following acute myocardial infarction, dead
cardiomyocytes release DNA (Roers et al., 2016) and cellular
proteins (Scaffidi et al., 2002; Panayi et al., 2004) into the
extracellular space which serve as damage-associated molecular
patterns (Rubartelli and Lotze, 2007). These signals are sensed by
leukocytes (Tang et al., 2012) and activate nuclear factor kappa-
light-chain-enhancer of activated B cells (NFκB)-mediated
transcription of pro-inflammatory cytokines, chemokines, and
other mediators of the inflammatory response (Legrand et al.,
2019). Mounting evidence suggests infiltrating macrophages
are key mediators of the pro-fibrotic response to injury
(Frangogiannis, 2019). In animal models of pressure overload-
induced heart failure, recruited M1 macrophages communicate
with CD4+ T lymphocytes and perpetuate the pro-inflammatory
wave leading to fibrosis, cardiac dysfunction, and heart failure
(Nevers et al., 2015; Patel et al., 2018). Moreover, macrophages
can activate resident stromal cells which contribute directly to
collagen deposition. For example, in response to angiotensin-
induced hypertrophic cardiomyopathy, macrophages stimulate
cardiac fibroblasts to produce IL-6 leading to TGFβ1 production
and subsequent development of cardiac fibrosis (Ma et al., 2012).

Perhaps the most widely known macrophage-secreted
cytokine to drive fibrosis is TGFβ, which binds to its cognate
receptors on cardiac tissue (TGFβR2, ALK, and others) and
mobilizes Smad2 and Smad3 transcription factors to initiate
myofibroblast differentiation (Khalil et al., 2017; Pardali et al.,
2017). The principal source of myofibroblasts in the heart
are resident fibroblasts, and to a lesser degree, endothelial
cells. However, not all macrophages are created equal. M2c
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FIGURE 1 | Extracellular vesicle biology. Schematic of extracellular vesicle biogenesis. Exosomes arise from the fusion of inward budding of multivesicular bodies.
The resulting vesicles are either degraded by lysosomes or secreted as exsomes. Microvesicles arise by direct budding from the plasma membrane and enter the
extracellular space. Apoptotic bodies arise from membrane protrusions fragmentation of an apoptotic cell. ER, endoplasmic reticulum; ILV, intraluminal vesicle; MVB,
multivesicular body.

macrophages, for example, phagocytose dead cells and debris and
secrete matrix metalloproteinases, which can reabsorb collagen
deposits and contribute to remodeling of the extracellular matrix
(Cheng et al., 2018; Krzyszczyk et al., 2018). The interplay
among macrophages, fibroblasts, and endothelial cells is now
understood to be a major driving force of myocardial fibrosis.
Thus, in the context of anti-fibrogenesis, EVs can intervene
by direct stimulation of pro-inflammatory M1 macrophages
to differentiate into an M2-like phenotype (Silva et al., 2017).
This step is important for the resolution of inflammation and
subsequent anti-fibrotic actions. We will next discuss, in more
detail, immunomodulatory actions of EVs.

EXTRACELLULAR VESICLES AS
THERAPEUTIC AGENTS

Recently, EVs (and exosomes in particular) are attracting much
interest – not only in physiological and pathological cell–
cell communication, but also as a platform for therapeutic
development (Sluijter et al., 2018). The recognition that
progenitor cells secrete EVs that are bioactive ushered in the

concept of EVs as cell-free therapeutic candidates (Figure 3).
As the holy grail of regenerative medicine, restoring both
cardiac structure and function are fundamental goals of any
therapeutic candidate. Indeed, EVs harvested from cardiac
stem/progenitor cells, mesenchymal stem/stromal cells (MSCs),
embryonic stem cells (ESCs), induced pluripotent stem cells
(iPSCs), and non-stem cell sources have demonstrated benefits
in cardiac regeneration (Alibhai et al., 2018; Figure 4). By
supplanting cell transplantation with administration of EVs,
many concerns and limitations regarding safety and feasibility
from cell therapy can be attenuated.

Production of EVs for Therapeutic
Applications
Therapeutic exosomes are of great potential interest, but it
should be noted that there are no FDA-approved EV products.
Nevertheless, some scholarship on the topic of isolating such
exosomes has appeared (for example, Marbán, 2018b). Briefly, we
start by culturing therapeutically potent cells in vitro in serum-
free media (to exclude contaminating exosomes naturally found
in serum), and allowing the cells to condition the media. The
conditioning phase is variable and can be as brief as 24 h or as
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FIGURE 2 | Manifestations of cardiac fibrosis. Schematic of the three main
types of cardiac fibrosis. Replacement fibrosis develops to fill necrotic lesions
within the myocardium as a result of ischemia, infection, or trauma. Interstitial
fibrosis develops in the interstitial space of the myocardium as a result of
non-ischemic cardiomyopathies. Perivascular fibrosis develops in the
peri-adventitial space as a result of non-ischemic cardiomyopathies.

long as 15 days under normoxic or hypoxic conditions. Varying
conditioning phase parameters can influence cargo loading
into exosomes, which may impact their disease-modifying
bioactivity. Conditioned media contains not only exosomes
but also other EVs, proteins, and products of metabolism. To
remove non-EV components, further processing by laboratory
personnel typically involves ultrafiltration (i.e., by molecular
weight exclusion). In order to separate exosomes from larger EVs
such as microvesicles or apoptosomes, ultracentrifugation or size
exclusion chromatography may be used (Baranyai et al., 2015).
Finally, the purified product is aliquoted into dosage-defined
units and packaged into vials for later use.

Cardiosphere-Derived Cell EVs
Cardiosphere-derived cells (CDCs) are stromal cells of intrinsic
cardiac origin (White et al., 2013), and are multipotent and
clonogenic (but not self-renewing; Davis et al., 2009). CDCs
uniformly express CD105 and are negative for CD45 and
other hematogenous markers. Since the isolation of CDCs was
first reported in 2007 (Smith et al., 2007), >200 papers have
been published using this cell type from >55 independent
labs worldwide. CDCs secrete EVs (CDC-EVs) which transfer
payloads into target cells, inducing epigenomic, transcriptomic,
and phenotypic changes that underlie the benefits of CDC
therapy (Marbán, 2018b). Indeed, therapeutic bioactivity by
CDC-EVs has been demonstrated in several animal studies
such as acute MI (Ibrahim et al., 2014; De Couto et al., 2017;
Gallet et al., 2017), non-ischemic cardiomyopathy (Aminzadeh
et al., 2015), and Duchenne muscular dystrophy (DMD)-related
cardiomyopathy (Aminzadeh et al., 2018; Rogers et al., 2019b).
In preclinical studies, CDC-EVs induce cardiomyogenesis and
angiogenesis, reduce fibrosis, modulate the immune response,

and generally improve cardiac function (Marbán, 2018b).
The mechanism of benefit appears to hinge on their cargo,
particularly non-coding ribonucleic acids (ncRNA). Of the
numerous RNA species, microRNAs (miRs) are the best-
described class of small ncRNA.

Several CDC-EV associated miRs impact on inflammation
and fibrosis including miR-146a (Barile et al., 2014; Ibrahim
et al., 2014), miR-210 (Barile et al., 2014), miR-181b (De Couto
et al., 2017), miR-148a (Aminzadeh et al., 2018), and miR-92a
(Ibrahim et al., 2019). miR-146a targets multiple pathways active
in cardiac disease including inflammation and fibrosis. Indeed,
miR-146a regulates NFκB (Saba et al., 2014) and TGFβ signaling
(Geraldo et al., 2012). Specifically, miR-146a inhibits Smad4-
mediated myofibroblast differentiation to attenuate myocardial
fibrosis (Liu et al., 2012). Delivery of a miR-146a mimic in
infarcted mouse hearts reproduced some, but not all the benefits
observed with CDC-EV treatment, suggesting cooperative effects
of other CDC-EV cargo in the overall benefits. Moreover, it is
unclear if other CDC-EV miRs share overlapping or synergistic
bioactivity. For example, miR-181b blunts pro-inflammatory
cytokine production by targeting protein kinase Cδ in a rat model
of acute MI (De Couto et al., 2017), while miR-148a attenuates
NFκB phosphorylation in the mdx mouse model of DMD
(Aminzadeh et al., 2018; Rogers et al., 2019b). We have recently
demonstrated CDC-EVs modulate the mdx mouse macrophage
toward a pro-regenerative phenotype with prominent secretion
of tissue inhibitor of matrixmetalloproteinase 2 (TIMP-2; Rogers
et al., 2019a). We speculate that enhanced TIMP-2 secretion may
contribute to the anti-fibrotic effect of CDC-EVs. In TIMP-2 null
mice, MI led to greater ventricular dilation and infarct expansion
(Kandalam et al., 2010). In contrast, TIMP-2 overexpression
reduced ventricular dilation and infarct expansion post-MI
(Ramani et al., 2011), and TIMP-2 inhibits human fibroblast
activation at high concentrations (Ngu et al., 2014).

In addition to miRs, other less described ncRNAs, such as
Y-RNAs, have been shown to influence the transcriptome
in cardiac tissue. Y-RNAs are components of the Ro60
ribonucleoproteins and play a key role in DNA replication
by interacting with chromatin and replication initiation proteins
(Christov et al., 2006; Zhang et al., 2011). EV-YF1, a Y-RNA
fragment found abundantly in CDC-EVs, skews macrophage
polarization toward a pro-regenerative phenotype, which
provides cardioprotection against ischemia/reperfusion injury
in rats (Cambier et al., 2017). Moreover, in a mouse model of
angiotensin-induced hypertrophic cardiomyopathy, EV-YF1
treatment attenuated myocardial hypertrophy, inflammation,
and fibrosis, which were mediated by IL-10 (Cambier et al.,
2018). While much work has focused on well-known ncRNAs
such as miRs, it is clear that other RNA species contained within
EVs are therapeutically bioactive. Further work will be required
to better understand the role other lesser-known ncRNAs play in
the mechanistic basis of EV-based therapeutics.

Mesenchymal Stem Cell-Derived EVs
MSCs are multipotent stem/stromal cells found in loose
connective tissue (e.g., areolar, reticular, and adipose), bone
marrow, and lymph tissue (Bianco et al., 2008; Choi et al., 2019).
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FIGURE 3 | Extracellular vesicle-mediated communication. Schematic of release and uptake of extracellular vesicles. Therapeutic cells secrete bioactive extracellular
vesicles, which are taken up by diseased cells to alter cell function.

While initial enthusiasm regarding MSCs originated from their
capacity to differentiate into various cell types, it is now widely
accepted that their engraftment and differentiation are negligible,
and do not account for the therapeutic effects of MSC infusions
(Iso et al., 2007; Leiker et al., 2008; Keating, 2012; Tokita et al.,
2016). In congruency with CDCs (though a distinctly different
cell type), MSCs mediate their disease-modifying bioactivity
through the secretion of paracrine factors including EVs (MSC-
EVs). Moreover, like CDC-EVs, MSC-EVs contain a plethora
of RNA species, including miRs. For example, MSC-EVs from
bone marrow-derived MSCs are enriched with miR-22, which
confers anti-apoptotic and anti-fibrotic properties in a mouse
model of acute MI (Feng et al., 2014). Further, cardioprotective
miRs miR-19a and miR-221 are commonly found in MSC-
EVs (Yu et al., 2013; Yu et al., 2015; Shi et al., 2018). Unlike
MSCs, MSC-EVs are said to have no risk of tumorigenicity or
extraosseous calcification, and a lower possibility of immune

rejection following in vivo allogeneic administration (Stoltz et al.,
2015). These features further support the notion of EVs as next-
generation therapeutic candidates.

Embryonic Stem Cell- and Induced
Pluripotent Stem Cell-Derived EVs
Embryonic stem cells (ESCs) and induced pluripotent stem
cells (iPSCs), like CDCs and MSCs, secrete bioactive EVs
against cardiac injury and fibrosis, although they are traditionally
believed to work by engraftment and differentiation rather
than by paracrine mechanisms (Marbán, 2018a). ESC-EVs are
enriched in the miR-290/295 cluster; one member, miR-294,
promotes cardiomyocyte survival and attenuates fibrosis in MI
(Khan et al., 2015). Similarly, iPSC-EVs have also demonstrated
cardioprotective properties, mediated in part by miR-21 and
miR-210 (Wang et al., 2015).
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FIGURE 4 | Therapeutic functions of extracellular vesicle cargo. Schematic of therapeutically active cargo found inside extracellular vesicles. Defined molecules exert
specific biological functions in target tissues. EV, extracellular vesicle; ESC, embryonic stem cell; iPSC, induced pluripotent stem cell; miR, microRNA; EV-YF1,
extracellular vesicle Y-RNA fragment.

Peripheral Blood-Derived EVs
Secreted mostly by platelets and the vascular endothelium,
peripheral blood-derived EVs (PB-EVs) exhibit tissue-protective
bioactivity. PB-EVs from healthy humans or rodents exert anti-
oxidant (Vicencio et al., 2015), anti-apoptotic (Minghua et al.,
2018), and anti-fibrotic (Yamaguchi et al., 2015) effects in animal
models of MI. These therapeutic benefits appear to be, in part,
mediated by miRs. The anti-fibrotic effects appear to be largely
driven by miR-29, which has been validated to target col1a1,
col1a2, col3a1, fbn1, and eln1 transcripts (Van Rooij et al.,
2008). Moreover, PB-EVs were demonstrated to attenuate fibrosis
and cardiac dysfunction in a streptozotocin-induced diabetic
cardiomyopathy model, which was mediated, in part, by HSP20
(Wang et al., 2016).

THE PROMISE OF EXTRACELLULAR
VESICLE ENGINEERING FOR
NEXT-GENERATION THERAPEUTICS

The nature and the physiological state of the EV-secreting cell
affects the tropism and therapeutic bioactivity of the produced
vesicles (Wiklander et al., 2015; Lai et al., 2016). In the circulation,
the balance between EV production and clearance reflects the

steady-state level. Upon systemic delivery, the detection window
of labeled EVs is typically very short (Yáñez-Mó et al., 2015).
Generally speaking, EVs are distributed to many body tissues
including the liver, bone, skin, muscle, spleen, kidney, and
lung. EV-specific expression of selective adhesion molecules
may influence biodistribution. For example, CD169-expressing
macrophages in the spleen and lymph nodes capture B cell-
derived EVs. In contrast, EV trafficking to the lymphoid system
is dysregulated in CD169 knockout mice (Saunderson et al.,
2014). Other insights into cell-specific EV uptake indicate
the potential influence of saccharides. In the presence of D-
mannose or D-glucosamine, EV uptake by dendritic cells was
blunted, suggesting an EV uptake mechanism based on C-type
lectin interaction (Hao et al., 2007). However, other studies
have demonstrated sugars do not seem to play a significant
role in EV-cell interaction and uptake (Escrevente et al.,
2011), suggesting cell- or condition-specific difference in EV
uptake mechanisms.

Given the identification of EV-derived biomolecules that
mediate many of the therapeutic benefits associated with EV
therapy, selectively loading EVs with defined biomolecules is
one goal which can be achieved using various approaches
reviewed elsewhere (Kenari et al., 2020). Briefly, a non-
invasive method for loading therapeutic molecules into EVs is
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via co-incubation (Zhuang et al., 2011). This method allows
hydrophobic biomolecules to enter the EV lumen through passive
diffusion without disrupting the lipid membrane. Other methods
include, but not limited to, electroporation or sonication (Tian
et al., 2014; Kim et al., 2016). Although these methods have
been successfully used to load exogenous biomolecules into EVs,
they disrupt the lipid membrane and may result in EV damage
or lysis. Further research will be required to determine if these
are viable methods to produce clinical-grade therapeutic EVs.
In addition to loading defined molecules into EVs, engineering
their delivery to specific target tissues would be a significant
enhancement to such a therapeutic. As such, we have recently
developed a platform using membrane cloaking and surface
display technology to direct EVs to target tissues. Cloaking lends
itself to utilizing any biotinylated antibody – to which countless
are commercially available for testing. For example, we previously
demonstrated that CDC-EV uptake by cardiac fibroblasts, which
is ordinarily minimal, could be augmented in vitro by ligating
a DDR2 antibody (Antes et al., 2018). Addition of an ischemic
targeting peptide to the surface of CDC-EV conferred enhanced
in vivo targeting to the myocardium. Such an advent may
provide significant therapeutic value to target a major cell source
contributing to the development of myocardial fibrosis.

CONCLUSION

Extracellular vesicles represent a mode of intercellular
communication near and far. These tiny vesicles carry messages
in the form of biomolecules to inform recipient cells of

the current (patho)physiological state and direct the cell to
respond appropriately. The recognition that EVs secreted from
stem/progenitor cells are therapeutically bioactive when given to
animals with heart disease represents a paradigm shift away from
cell therapy toward a cell-free platform. Such a paradigm shift
overcomes many key concerns and limitations of cell therapy,
while conferring the amendable ability to modify vesicle cargo
and tissue targeting. Indeed, we and others have demonstrated
that payload RNAs, notably miRs, long non-coding RNAs,
Y-RNAs, and piRNA, produce transcriptomic and epigenomic
modifications that impart lasting effects on recipient cells. By
targeting key cellular and molecular players in cardiac fibrosis,
these defined molecules contained within therapeutically potent
EVs provide insight into avenues for bioengineering. Time will
certainly tell if EV-based therapeutics live up to their promise.
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