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The roughening kinetics of 
hydrogenated graphene
S. Son   1,2, J. Figueira Nunes3, Y. Shin3, J-H. Lee2,4 & C. Casiraghi3

The roughness is a common property of all growing surfaces – however, the way the roughness of a 
growing surface changes with time and space is uniquely related to the underlying growth process, i.e. 
to how the atoms stick to the surface during the first stage of nucleation. This concept allows getting 
insights on the nucleation process of a growing surface by measuring two scaling exponents, α and β, 
known as roughness and growth exponents, respectively. In this work, we studied hydrogenation of 
graphene using the roughening kinetics. The coverage of graphene will depend on how the H ions stick 
on the surface, giving rise to a unique roughness evolution in time and space. We measured a roughness 
exponent of ~0.5 (derived from a Fourier index of ~3), and a growth exponent of ~0.3. The values of 
the growth and roughness exponents are close to those reported for clustered carbon, suggesting 
a roughening mechanism by clustering, in good agreement with the theory. We also compared our 
coverage data with a different model, used to describe the dynamics of graphene coverage, during 
chemical vapour deposition. Our data are in agreement with a nucleation-dominated growth, further 
confirming that hydrogenation is happening by clustering.

Fractal geometry has been used to describe phenomena such as crystal growth, biological growth and rock frac-
ture, which are too disordered to be studied with other mathematical tools, but still hold a form of order in a 
scale-invariance1,2. This formalism has become a standard tool to study growing surfaces and interfaces3: films 
deposited under non-equilibrium conditions are expected to have surfaces that show different scale-invariant 
properties along different directions, as the growth process is determined by the competition between fluctuation 
and relaxation processes, allowing the surface roughness to be characterised by scale-independent parameters. 
In the framework of the fractal analysis concepts like roughness are replaced by exponents. These exponents do 
not refer to the roughness itself, but to the way in which the roughness changes when the observation scale itself 
changes. The knowledge of these scaling exponents allows one to get insights on the growth mechanism of thin 
films of metals and semiconductors4–10 because the evolution of the surface topography at the nucleation stage 
only depends on how and where a new particle is allowed to come to rest and stick to the existing deposit2. Thin 
films, for example, are expected to nucleate by islands, which then grow in size till reaching coalescence, after 
which the film roughness saturates, giving rise to the roughness time-evolution shown in Fig. 1.

Graphene is the most famous 2-dimensional crystal with outstanding physical properties11 that allows this 
novel material to be used in a wide range of applications12. One of the most attractive advantages of graphene is 
the possibility to finely tune its properties by covalent functionalization through chemical reactions or plasma 
exposure13–15. In particular, hydrogenation by plasma exposure has been one of the first approaches used to func-
tionalize graphene14. Theoretically, the hydrogenation of pristine graphene is not possible, as the elastic energy 
gain associated with moving atoms out of the graphene’s plane is too high14. The buckling deformation caused by 
the orbital geometry change from coplanar to tetrahedral involves a substantial energy gain to the system, making 
the re-hybridisation process energetically unfavourable. The C–H bond formation leads to a change in the local 
atomic structure, producing a strained and buckled surface around the C–H bond, lowering the activation energy 
to hydrogenation. This local area is considered the “nucleation point” for the hydrogenation to start: once a C–H 
bond is formed, this acts as a defect by seeding the occurrence of further hydrogenation events around the initial 
C–H bond. Therefore, hydrogenation is expected to happen by clustering16. However, this model has never been 
fully confirmed experimentally, and the exact hydrogenation mechanism is still under discussion17–21.
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Although the hydrogenation process is not comparable to the growth of a thin film, the mechanism of 
hydrogenation by clustering can be described within the thin films nucleation models at the very early stages. 
If hydrogenation happens by clustering, then the roughness time-evolution is expected to follow the behaviour 
shown in Fig. 1. In this work we study the hydrogenation process of graphene using the roughening theory. 
Because graphene is one-atom thick, its surface topography can be strongly affected by the substrate, leading 
to artefacts in the study of the roughness evolution. Therefore, two substrates have been investigated: silicon 
and hexagonal-Boron Nitride (h-BN). The ultra-smoothness of h-BN allowed us to analyse in details how the 
roughness of graphene changes as a function of hydrogenation coverage (in time and space), enabling the meas-
urements of the scaling exponents of hydrogenated graphene. We found a growth exponent of ~0.3 and a Fourier 
index of ~3, giving rise to a roughness exponent of ~0.5. Based on the Fourier index, the hydrogenation process 
can be described by the equilibrium between the chemical potentials of two clusters, which seems to be rea-
sonable as hydrogenation is driven by a chemical reaction. The growth and roughness exponents measured are 
close to those experimentally reported for clustered carbon, confirming a clustering-driven growth process. We 
finally compared our data with the model used to describe the growth of graphene by chemical vapour deposition 
(CVD), which is another process characterized by islands growth – we found that the data can be well described 
by the island nucleation model.

Scaling Theory
One of the most used parameters, describing the properties of a surface, is the root mean square (RMS) rough-
ness, Rq, defined as22,23:
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where hi(x, y) is the profile function defined at the point of coordinates (x, y) on the surface, N is the number of 
points, and h is the average height value. Note that the roughness contains information about the height distribu-
tion, but it does not provide any information on the distance between the features on the surface. The scaling 
method, based on fractal theory, involves measuring the surface’s roughness at various times and at various radial 
lengths. This allows replacing the roughness with scale independent parameters, which show how the roughness 
changes as a function of space and time. This replacement eliminates instrumental dependences such as sampling 
interval, resolution and so on; indeed, the scaling exponents are determined only by the processes happening 
during nucleation of the film24.

In the framework of the scaling theory, the Rq of a sample of size L × L is expected to depend on the measure-
ments window size, l × l (assuming l << L) as2:

<α~R l l for l l( ) , (2)satq

where lsat is the window size at which the surface roughness does not change anymore because all surface features 
are correlated. The roughness exponent, α, is a number between 0 and 12, and can be calculated graphically from 
the slope of the logarithmic plot of the RMS roughness as a function of window size.

The time-dependent dynamics of the roughening process is described by2:

<β~R L t t t t( , ) , for (3)q sat

where tsat is the time required to reach full surface coverage, hence no roughness variation is expected after this 
time. Based on Eq. 3, the RMS roughness is expected to increase gradually as t increases, until it reaches satura-
tion. The growth exponent, β, can be calculated graphically from the slope of the logarithmic plot of RMS rough-
ness as a function of time for very small times (i.e. at the nucleation).  

Figure 1.  Schematic showing the evolution of the roughness as a function of time for thin films nucleation.



www.nature.com/scientificreports/

3SCiENtifiC REPOrTS |  (2018) 8:8771  | DOI:10.1038/s41598-018-27026-8

The scaling exponents α and β allow the definition of universal growing models. Four kinetic growth models 
have been theoretically studied for thin film growth, which depends on how and where particles approach, rest 
and stick to the surface and (or) to existing particle deposits, and how smoothing and fluctuation effects compete 
with each other in a particular surface1. Experimentally, the scaling parameters have been investigated in the case 
of few carbon-based materials, such as diamond-like carbons4,6 and clustered carbon25.

Frequency analysis.  The surface properties can be analysed in the frequency space, e.g. by measuring the 
power spectra density, PSD(w), of the surface by Fourier transform, =PSD w C r t( ) ( ( , )), where C(r, t) is the 
autocorrelation function, given by an average value of the product of two height measurements at a distance r 
apart and at fixed time. Herring26 described four distinct surface transport mechanisms that reduce surface 
roughness by using the frequency analysis. These surface kinetic models come from an analysis of the time and 
amount of material needed to produce a geometrically similar change in two different clusters on the surface. The 
word “cluster” in Herring’s work refers to any particle or to a number of particles, which have started to grow 
together26 and we used the same definition in our work. Every growth mechanism leaves distinct fingerprints on 
the topography. We consider two spherical clusters of radius R1 and R2, respectively, where R2 = λR1 and λ is a 
scaling factor. For each growth mechanism there will be a relation between the time δt1, required to produce a 
certain change in the cluster 1, and the time δt2, required to produce a similar change in the cluster 2 of the form: 
δt2 = λiδt1, where i is an integer, called Fourier index. The dominant growth model depends on the Fourier index 
value. Four cases have been identified: i = 1 is associated to viscous flux of an amorphous material, i.e. it has been 
assumed that temperature is high enough so that the atoms are reasonably free to rearrange themselves. In the 
case i = 2, there is evaporation-condensation, i.e. the vapour pressure of the two clusters are different and the 
amount of material evaporated from a cluster and condensed to the other will be different from the amount pass-
ing in the reverse direction. When i = 3, there is bulk diffusion, where the equilibrium between the chemical 
potentials of the two clusters are considered. Finally, i = 4 is associated to surface diffusion, where the rate of 
migration over a certain type of surface is proportional to the gradient of the chemical potential.

In order to apply this analysis model, the surface profiles are Fourier analysed and the coefficients for the indi-
vidual profiles are averaged. If a log-log plot of the integrated power spectrum is a straight line, then the modulus 
of the slope gives i. Note that a correlation between the frequency analysis and the scaling approach is expected, 
as: i = 2(α + 1)27.

CVD Growth model.  The following kinetic model has been proposed to explain the possible mechanisms of 
graphene growth as a function of the nucleation density28. This model assumes that graphene growth takes place 
on a hexagonal grid of active sites for graphene formation that represents the active sites for graphene formation 
on a flat surface28. The binding of carbon atoms at the active sites occurs from reactive carbon intermediates CxHy 
( ≥x 1, ≥y 0) which are caused by the decomposition of CH4 molecules on the Cu surface29–31. The variation of 
the graphene coverage θ over time is given by28:

θ θ θ= −d dt sJ t/ [1 ( )] (4)

where J is the impingement rate at a single site and s is the sticking coefficient of reactive carbon species (i.e. the 
probability of binding at the grid sites). Experimentally, the variation in the graphene growth rate observed shows 
that s is not constant32. For this reason, two sticking coefficients need to be introduced: the first sticking coeffi-
cient, s0, describes the mechanism for capturing the active species at random vacant sites, and it is proportional to 
the fraction of empty sites given by s0(1 − θ(t))28. The second sticking coefficient, s1, describes the physisorption 
of active species on top of an already formed graphene island, and it is described by a coverage-dependent sticking 
coefficient as s1θ(t)[1 − θ(t)]28. By introducing these coefficients into Eq. (4), the graphene coverage variation with 
time is now given by:

θ θ θ θ= − + −d dt J s t s t t/ { [1 ( )] ( )[1 ( )]} (5)0 1

Equation 5 can be re-arranged as28:

θ θ θ θ τ θ= − + +d dt t t/ [1 ( )][ ( )]/[ (1 )] (6)0 0

where θ0 = S0/S1 defines the ratio of the sticking coefficients and describes the scaled binding time at a single 
adsorption site that depends on both sticking coefficients and the impingement rate, and τ = 1/J(S0 + S1) describes 
the scaled binding time at a single adsorption site that depends on both sticking coefficients and the impingement 
rate that is proportional to the concentration of active carbon species determined by the CH4 flow rate28. The 
solution of Eq. 6 is28:

θ θ τ= − + + −t t t( ) 1 (1 )/(1 exp[( )/ ]) (7)0 0

where t0 an integration constant given by θ(0) = 0. The solution corresponds to a family of sigmoidal S-shaped 
growth curves that describe the different growth regimes as a function of the flux of growth species given by τ and 
θ0. Therefore, the dominant growth mechanism can be inferred from the behaviour of the growth curves that is 
decided by the ratio of the sticking coefficients s0/s1. The two limiting cases of the solution of Eq. 7 occur for θ0 ≫ 1, 
corresponding to nucleation-dominated growth, and for θ0 ≪ 1, corresponding to island growth- dominated regime. 
In particular, for θ0 ≫ 1 the solution of Eq. 7 can be approximated to θ(t) = 1 − exp(−t/τ), resulting in a highly asym-
metric curve. As θ0 decreases, the growth curve becomes more symmetric, showing an inflection point at θ0 = 1, 
and finally gets a fully symmetric sigmoidal profile for θ0 ≪ 128. This method can be extended to hydrogenation of 
graphene, by measuring the H coverage as function of the time and looking at the shape of the growth curve.
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Results and Discussion
Figure 2(a) shows the RMS roughness of hydrogenated graphene and silicon as a function of the probe length (see 
Eq. 2). It is clearly seen that the RMS roughness remains constant with respect to the scan-probe length, regardless 
of the hydrogenation coverage. The same behaviour is observed for silicon. This means that the roughness expo-
nent, α, is zero or that the correlation on the surface can only be observed for probe lengths smaller than 200 nm. 
One can also see that the RMS roughness slightly changes with the hydrogenation time, from ~0.1 to 0.3 nm, 
once graphene starts to get hydrogenated, Fig. 2(b); this is expected, as the change from sp2 to sp3 hybridisation 
associated with the hydrogenation of graphene involves a planar to tetrahedral geometry rearrangement, with 
the hydrogen atoms sticking outside the graphene scaffold14. However, for increasing times, the RMS roughness 
oscillates with values all within the experimental error, so it is not possible to clearly see any change in rough-
ness. Figure 2(b) also shows the RMS roughness measured on the exposed silicon substrate, where the sample 
was transferred. Its RMS roughness remains constant with hydrogenation time: this is expected as the hydrogen 
plasma can only remove contaminants from silicon’s surface, hence not causing any significant variations in its 
roughness. More importantly, a part from the point corresponding to 20 minutes hydrogenation, there is no 
appreciable difference between the RMS of silicon and hydrogenated graphene. These results indicate that the 
silicon is likely to dominate graphene’s roughness profile, so the scaling exponents cannot be reliably measured. 
Therefore, a smoother substrate needs to be selected to apply the roughness kinetics. Thus, we replaced silicon 
with h-BN.

Figure 3(a) shows the evolution of the Raman spectrum of hydrogenated graphene on h-BN, obtained under 
different plasma treatment times. The intensity of the D peak increases with the exposure time, i.e. the intensity 
ratio between the D and G peaks [I(D)/I(G)] increases with increasing amount of defects, generated by the longer 
exposure to the plasma, as observed when low-defect concentrations are introduced in graphene33–35. Figure 3(b) 
shows representative AFM images of hydrogenated graphene obtained under different plasma treatment times.

Figure 4(a) shows a log-log plot of the RMS roughness of hydrogenated graphene as a function of scan probe 
length. As observed for silicon (Fig. 2(a)), we cannot observe any change in roughness and results were not repro-
ducible below 200 nm probe lengths in the case of h-BN.

Figure 4(b) shows a log-log plot of the RMS roughness of graphene as a function of hydrogenation time. The 
inset in Fig. 4(b) shows the same data on a linear scale to include the RMS roughness of pristine graphene. The 
RMS roughness of hydrogenated graphene increases in the first 15 minutes, but at longer times (>40 minutes) 
the RMS roughness seems to reach saturation, in agreement with Eq. 3. A linear regression function was applied 
to determine the slope of the plot at the initial stage of nucleation for time below 40 minutes. The slope of the 
plot was found to be ~0.3, which corresponds to the growth exponent β. If we compare Fig. 4(b) with Fig. 1, the 
increase in roughness could be associated to a clustering process; however, no coalescence is observed, i.e. the 
roughness does not reach a maximum, as shown in Fig. 1. This is in agreement with the clustering model, which 
does not allow full coverage for one-side hydrogenation (i.e. for supported graphene)14.

As the log-log plot of the RMS roughness as a function of the probe length (Fig. 4(a)) could not provide any 
relevant result, regardless of selected substrates, we then applied the frequency analysis (see the Introduction). 
Figure 5 shows the PSD of hydrogenated graphene obtained under 5 different plasma exposure time conditions. 
The Fourier index i has been calculated by linear fit of the PSD at large frequency. We found that the value of i is 
between 2.8 and 3.0, giving an average Fourier index of 2.9. The Fourier index of ~3 indicates that the initial stages 
of hydrogenation are driven by the chemical potential equilibrium, which seems to be reasonable as the hydro-
genation process involves a chemical reaction. The Fourier index of ~3 gives α .~ 0 5. The closest exponents α and 
β to those we have measured have been reported for clustered carbon25, suggesting a clustering-driven mecha-
nism for hydrogenated graphene.

Figure 2.  RMS roughness as a function of: (a) the probe length for hydrogenated graphene and (b) the 
hydrogenation time for graphene and silicon.
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We finally applied the CVD coverage model (see the Introduction). There are two prominent peaks in the 
Raman spectrum of graphene, known as the G peak and the 2D peak, at ~1580 cm−1 and ~2700 cm−1, respec-
tively36. Raman spectroscopy is strongly sensitive to defects in graphene, as they activate characteristic modes, 
called D and D′ peaks, at ~1340 cm−1 and ~1620 cm−1, respectively33,34. The Raman spectrum of defective 
graphene can be described with a phenomenological three-stage amorphization trajectory7,33,34. In stage 1, start-
ing from pristine graphene, the Raman spectrum evolves as follows: the D peak appears and I(D)/I(G) increases; 
the D′ appears; all the peaks broaden and G and D′ begin to overlap. In this stage, I(D)/I(G) can be used to 
estimate the amount of defects33,35, while the intensity ratio between D and D′, I(D)/I(D′), can be used to distin-
guish between different type of defects37. At the end of Stage 1, the G and D′ peaks are no more distinguishable, 
and I(D)/I(G) starts decreasing. As the number of defects keeps increasing, the Raman spectrum enters Stage 2,  
showing a marked decrease in the G peak position and increase broadening of the peaks; I(D)/I(G) sharply 
decreases towards zero and second-order peaks are no longer well defined. Stage 3 describes amorphous materials 

Figure 3.  (a) Evolution of the Raman spectrum of hydrogenated graphene under different plasma treatment 
times; (b) AFM images of the samples measured by Raman spectroscopy. Scale bar is 300 nm.

Figure 4.  (a) A log-log plot of RMS roughness as a function of probe length and (b) hydrogenation time for 
hydrogenated graphene deposited on h-BN. The dotted line is a linear fit between 5 and 15 minutes.
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with increasing sp3 content38. For supported graphene, where only one side of the crystal is available for function-
alization, hydrogenation is obtained in stage 1, therefore I(D)/I(G) increases with increasing amount of defects 
(i.e. H coverage); this allows us to use I(D)/I(G) to measure the hydrogenation coverage. Ref.33 proposed a relation 
between defect concentration (n) and I(D)/I(G) as:

λ= . ± . × × ×− −L I I(nm ) (1 8 0 5) 10 [ (D)/ (G)] (8)D
2 2 9

L
4 1

and nD(cm−2) = 1014/(πLD), where LD is separation between defects, λL is the laser wavelength and nD is the 
number of defects/cm2. However, this relation was found for ion-bombarded graphene samples33. Assuming that 
hydrogenation is happening by clustering, then this equation needs to be modified, as shown in ref.33, by multiply-
ing nD by a correction factor, which takes into account of the clusters formation. By calculating the total number 
of carbon sites available for hydrogenation as a function of the cluster size (assumed circular in shape and smaller 
than the defects distance of ~5 nm, which sets the crossing between Stage 1 and 2, a correction factor of ~175 is 
found18, in good agreement with previous works39,40.

First, we convert I(D)/I(G) into coverage, using Eq. 8 and the correction factor. After 5 minutes of hydro-
genation, we found that defects are spaced by 54 ± 6 nm; however, after 80 minutes this distance decreased to 
30 ± 4 nm, so Stage II is never reached (the distance between defects must be below 3~5 nm33). A linear rela-
tionship between I(D)/I(G) and the hydrogenation time was observed in Fig. 6(a). The inset in Fig. 6(b) shows 
the coverage, extracted from I(D)/I(G), as a function of the hydrogenation time: this results in a highly asym-
metric curve with no inflection point, corresponding to nucleation-dominated growth. Under this regime, the 
time-dependence coverage should be approximated to: θ(t) = 1 − exp(−t/τ). This is confirmed in Fig. 6(b), where 
the data have been well fitted by the exponential decay.

Figure 5.  A log-log plot of power spectra density (PSD) of hydrogenated graphene obtained at different 
hydrogenation times. The slope (dotted line) of the PSD at large frequency gives a Fourier index of ~3.

Figure 6.  (a) A log-log plot of I(D)/I(G) as a function of the hydrogenation time. The full line is a linear 
fit of the points obtained between 5 and 15 minutes, giving a slope of 0.48. (b) Coverage as a function of 
hydrogenation time. The dotted line is a guide for the eyes. The inset shows that the experimental data well fit 
the equation: θ(t) = 1 − exp(−t/τ), which is expected for nucleation-dominated growth.
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In conclusion, we applied the roughening theory of thin film to hydrogenated graphenes, in order to get 
insights on the process driving hydrogenation. A clustering process has been theoretically predicted - this should 
reflect in a characteristic evolution of the surface properties of graphene for increasing hydrogenation time, as it 
has been observed for the nucleation of thin films. By looking at how the roughness changes in space and time, 
we measured a roughness exponent of ~0.5 (derived from the Fourier index of ~3), and a growth exponent 
of ~0.3. The Fourier index of 3 is associated to a roughening model driven by the chemical potential equilib-
rium between clusters on the surface. The values of the growth and roughness exponents are very close to those 
reported for clustered carbon, suggesting a roughening mechanism by clustering. We also compared our data to 
another model, used to describe the dynamics of the CVD graphene coverage as a function of different experi-
mental parameters. Our data are in agreement with the nucleation-dominated growth, further confirming that 
hydrogenation is occurring by clustering, without reaching full coverage (for one side hydrogenation).

Method
The graphene crystals (a few hundreds of microns in size) and thin flakes of h-BN were produced by mechanical 
exfoliation on a standard silicon substrate with 290 nm SiO2

41. The silicon was cleaned by ultrasonic bath in ace-
tone. The graphene flakes were transferred on silicon and h-BN by using a dry-peel transfer42.

The samples were exposed to hydrogen plasma made by using a modified Edwards E306A coating system 
chamber. A hydrogen-argon mixture (10% H2) at a pressure of ~0.1 mbar was employed and a dc plasma ignited 
between two aluminium electrodes. The samples were placed about 30 cm away from the discharge zone in order 
to minimise any possible damage due to energetic ions. Each graphene sample was hydrogenated separately at a 
central position in the sample holder. Thus, all flakes were hydrogenated at the same distance from the hydrogen 
plasma. Hydrogenation was performed in timescales ranging from 5 to 80 minutes. Note that those experimental 
conditions were selected in order to have slow hydrogenation to allow us to fully investigate the very first stages of 
hydrogenation, where the scaling theory can be applied.

Atomic Force Microscopy (AFM) was performed using a Veeco Dimension V in order to investigate the sur-
face properties of the sample. Tapping mode scan over 512 lines was used to collect height information of ranging 
from ~500 × 500 nm2 to ~250 × 250 nm2. The Nanoscope Analysis roughness calculator was used to determine the 
RMS roughness of various areas of graphene. The RMS of silicon and h-BN is ~0.12 nm and ~0.07 nm (Figure S1  
in the Supplementary Information). The RMS of pristine graphene on silicon and h-BN (Figure S1 in the 
Supplementary Information) is 0.17 nm and 0.1 nm, respectively, measured on an area of 500 × 500 nm2.

A Renishaw Raman spectrometer, equipped with an excitation lines of 514.5 and 633 nm, was used to identify 
graphene36 and to determine hydrogenation conditions14. In all cases, a 100× objective giving a laser spot size of 
~400 nm was used. The incident power was maintained below 1 mW during the measurement to avoid any possi-
ble damage and heating of samples, which may lead to hydrogen removal.
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