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Abstract

Background: The biological regulatory system is highly dynamic. Correlations between functionally related genes
change over different biological conditions, which are often unobserved in the data. At the gene level, the dynamic
correlations result in three-way gene interactions involving a pair of genes that change correlation, and a third gene
that reflects the underlying cellular conditions. This type of ternary relation can be quantified by the Liquid
Association statistic. Studying these three-way interactions at the gene triplet level have revealed important
regulatory mechanisms in the biological system. Currently, due to the extremely large amount of possible
combinations of triplets within a high-throughput gene expression dataset, no method is available to examine the
ternary relationship at the biological system level and formally address the false discovery issue.

Results: Here we propose a new method, Hypergraph for Dynamic Correlation (HDC), to construct module-level
three-way interaction networks. The method is able to present integrative uniform hypergraphs to reflect the global
dynamic correlation pattern in the biological system, providing guidance to down-stream gene triplet-level analyses.
To validate the method’s ability, we conducted two real data experiments using a melanoma RNA-seq dataset from
The Cancer Genome Atlas (TCGA) and a yeast cell cycle dataset. The resulting hypergraphs are clearly biologically
plausible, and suggest novel relations relevant to the biological conditions in the data.

Conclusions: We believe the new approach provides a valuable alternative method to analyze omics data that can
extract higher order structures. The software is at https://github.com/yunchuankong/HypergraphDynamicCorrelation.

Keywords: Gene expression, Network analysis, Hypergraphs, Dynamic correlations, Liquid associations

Background

In the quantitative analysis of high-throughput omics
experiments, the gene transcript-, protein- or metabolite-
levels of abundance are profiled simultaneously. Examples
include high-throughput sequencing of mRNA (RNA-
seq) and high throughput mass spectrometry for quantita-
tive analysis of specific cellular proteome or metabolites.
The abundance levels of gene, transcripts or metabolites
are the outcome of complex biological regulatory net-
works, in which the links between the levels may be turned
on and off in response to certain biological conditions
[1-4]. As a result, many correlations are dynamic, shift-
ing between positive, negative and no-correlation states,
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triggered by certain biological conditions. Such condi-
tions may not exhibit prominent phenotypic changes, e.g.
disease/non-disease in case-control studies, but they may
be more subtle and often unobservable [5, 6].

Given the profiling data are essentially snapshots of
the system, it is challenging to extract higher order rela-
tions from the data, such as conditional correlations
and changes in variability. To explore patterns in high-
throughput expression data, methods that include clus-
tering, dimension reduction and sparse factorization have
been proposed. These methods are mostly based on static
pairwise relations between the biological units, and do not
capture dynamic relations [7, 8].

According to [5, 9, 10], the expression levels of certain
genes can be treated as indicators of cellular states, and
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correlation changes conditioned on such genes are com-
puted to measure dynamic correlations. The involvement
of such genes as dynamic correlation condition results in
three-way gene interactions, and quantitative measures
for the three-way interaction have been developed to
quantify the ternary relationship, such as the Liquid Asso-
ciation (LA) statistic proposed by [5], the Modified Liquid
Association (MLA) developed by [11], and the z-statistic
in [12]. These ideas have been demonstrated successfully
in practice showing interpretable biological findings at the
gene level. Biologically, it is plausible that a single gene
may not be a good proxy measure of the underlying con-
dition for the dynamic correlation. However measures
involving more than one gene as the conditioning variable
is difficult to design, and costly in computation. To address
this issue, a method treating the LA relation as latent fac-
tor model has been developed, where in stead of using
genes as proxy measures, the conditioning variable is esti-
mated from the data [13]. However such an approach can
only find dominating signals that control the dynamcic
correlations of large numbers of gene pairs. Some criti-
cal dynamic correlation may happen among a small group
of genes, yet play important biological roles. Hence an
unbiased examination of all gene triplets is valuable.

Currently, the existing methods suffer from computa-
tional scalability when examining the entire biological
system since it is difficult to examine gene-level three-way
interactions triplet-by-triplet as the amount of possible
combinations is extremely large. Efforts have been made
to focus on a smaller number of subsets, by consider-
ing consistent LA relations across multiple datasets [14],
focusing on subnetwork-level LA relations [15].

Meanwhile, it is desirable to view the complex interac-
tions of individual triplets jointly as a whole, since other-
wise it is hard to grasp the dynamic correlation behaviors
at the system level. Therefore, an aggregated representa-
tion is in need for ternary gene relationships, analogous
to the gene co-expression network for the pairwise static
correlation relationship. The gap resulted from this prob-
lem motivated the work in this paper, where we developed
a hypergraph-based approach constructing module-level
three-way interaction networks for ternary gene relation-
ship study.

The main difficulty to analyze three-way interaction
for an entire system is the extremely large amount of
possible triplets at the gene level. For example, for a
gene-expression dataset with 20,000 genes, the number of
possible combinations would be around 1.33 x 10'2. Thus,
one can do little when trying to describe the entire system
while focusing on gene-level interactions. To resolve the
dilemma, we consider a bottom-up approach to bring the
ternary relationship to the module level, while preserving
partial information of gene-level three-way interactions.
This idea allows us to shrink the scale of the system and
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thus facilitate the aggregated representation. For this pur-
pose, it is covenient to use a hypergraph to present the
ternary relations.

A hypergraph G = (V, E) with V the set of vertices (or
nodes) and E the set of edges (or links), is a generaliza-
tion of a graph in the sense that an edge can connect any
number of vertices rather than just two [16]. A special case
when all the edges in E connect to a certain number of
vertices k, the hypergraph is called k-uniform hypergraph.
Therefore, a traditional graph or network is just a two-
uniform hypergraph, and it is obvious that in our case the
triplets compose of a three-uniform hypergraph.

We utilized Liquid Association (LA) [5], which is
the most computationally tractable among the methods
for the initial gene-level ternary relationship quantifi-
cation. Screening procedures using mixture models are
conducted to ensure the LA accurately detects sig-
nificant ternary correlation, according to [11]. Two
approaches of grouping genes are then introduced, one
of which involves a new clustering procedure based
on ternary relations. Using these approaches, three-
way interaction hypergraphs are constructed. The work-
flow of our analysis is demonstrated in Fig. 1. We
applied our methods to two real datasets, the TCGA
human cutaneous melanoma dataset [17] and the the
yeast cell cycle dataset [18]. For both datasets, module-
level three-way interaction networks were obtained,
exhibiting relations that conform to existing knowl-
edge, as well as pointing to new and plausible dynamic
correlations.

Results

Human cutaneous melanoma dataset

We applied our methods, which require an 7 x m matrix as
input, to the Cutaneous Melanoma RNA-seq dataset from
The Cancer Genome Atlas (TCGA) [17]. The original
dataset contains 20,530 genes and 474 samples (m=474).
After excluding genes with more than ten percent zero
values, 15,274 genes (n=15,274) were retained for testing
our method.

Each gene was first normalized using the normal score
transformation as recommended in [5]. Before calculat-
ing LA using Eq. 1 in “Methods” section, to satisfy the
sufficient condition described in the first sub-section of
“Quantifying the ternary relationship’, we calculated the
variance covariance matrix of all genes, obtaining a bell-
shaped unimodal empirical distribution of pairwise cor-
relations with mean © =~ 0 and standard deviation o.
Then, only pairs with a correlation contained in the inter-
val (u — co, u + co) were considered in LA calculation,
where ¢ is a small constant. In other words, no triplet
would contain a pair having a correlation coefficient more
than u + co or less than i — co. For this dataset, we have
(L — 0.50, 11 + 0.50) = (—0.079,0.112).
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Fig. 1 The flow chart of the analysis

Applying Eq. 1 along with the permutation selection
using Eq. 2 in the “Methods” section, a total of 203,330,269
triplets were selected for this dataset at fdr=0.01. Given
the information of the selected triplets, both supervised
grouping and unsupervised grouping were conducted. We
employed the GO term functional modules [19] as the
external information for supervised grouping. A subset of
informative GO terms with minimal overlap were selected
using the procedure described in [20]. The count matrix

A and its correlation matrix C, described in the third sub-
section of “Selecting gene modules using supervised and
unsupervised approaches’, were calculated, and the clus-
ters were chosen using the technique proposed by [21],
with the minimum cluster size of 100. The final num-
bers of modules for the two approaches were 423 and 77,
respectively.

Two three-uniform hypergraphs were constructed
corresponding to the two grouping results. For the
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hypergraph with supervised grouping, edges were filtered
with a minimum fold change of 2. The median number
of connections for all the nodes involved in the graph is
4 (Fig. 2a). Figure 2b is a more detailed sub-hypergraph
with the top 15 most connected vertices. The vertex color
represent the number of connections of a vertex, with the
most connected in red and least connected in yellow. The
sizes of the vertices represent the number of genes in each
module. Three types of edges were annotated correspond-
ing to the three cases discussed in the last sub-section of
“Methods” “Constructing the module-level hypergraph”.
The width of edges are proportional to their weights.

Among the top 15 most connected nodes, 5 were related
to the cell cycle and DNA metabolism, indicating the tight
regulation in cellular reproduction in cancer cells. Three
were related to lipid metabolism, the regulation of which
has been shown to play critical roles in cancer progression
and metastasis [22, 23], however traditional correlation-
based methods haven't shown their prominent role in
expression dynamics.

To facilitate detailed examination, we examined sub-
hypergraphs centered around a given vertex, together with
all vertices directly connected with this vertex. As an
example, Fig. 2c shows the sub-hypergraph centered at the
functional module “DNA damage response, signal trans-
duction by p53 class mediator” Its connections involve
both cell cycle modules and lipid metabolism modules.
The role p53 pathway plays in lipid metabolism was only
recently established [24]. Together with the fact that three
lipid metabolism modules were among the most highly
connected vertices, the results suggested a prominent role
of lipid metabolism pathways, including sphingolipid, gly-
colipid, and membrane lipid metabolism, in human cuta-
neous melanoma development. Interestingly, there were
three type 2 hyperedges in the subgraph, two of which
each had two connections to the p53 module, meaning an
excess of gene triplets having two genes falling into this
module.

As another example, (Fig. 2d) shows the sub-hypergraph
centered at the functional module “DNA dependent DNA
replication’, which is a key process in cancer cell division.
Besides other cell cycle related modules, those connected
with “DNA dependent DNA replication” included several
modules of organization of cellular organelles, as well as
several modules of transport, indicating the tight control
of the cell cycle process involves much of conditional cor-
relations between genes. Interestingly, the function “visual
perception” was at a central position in this subgraph,
sharing 10 hyperedges with “DNA dependent DNA repli-
cation” In the following analyses, we further explored the
gene level relations of some of the hyperedges.

Figure 3 shows the gene-level details of a triplet formed
by the two modules “DNA damage response, signal
transduction by p53 class mediator” and “sphingolipid
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metabolic process” in Fig. 2c. For each triplet, two of
the three genes are from “DNA damage response, signal
transduction by p53 class mediator” and the other one
belongs to “sphingolipid metabolic process’, thus all gene-
level hyperedges in Fig. 3 are type 2 edges. Among the
genes belonging to the p53 pathway, several were promi-
nent in terms of the number of hyperedge connections.
For example, GADD45A (Growth Arrest And DNA Dam-
age Inducible Alpha) is induced by stressful growth arrest
or DNA-damaging agent treatment. The gene mediates
stress response by activating the p38/JNK pathway. Down-
regulation of the gene increases the chemosensitivity of
melanoma [25]. SPRED2 (Sprouty Related EVH1 Domain
Containing 2) is a member of the Sprouty/SPRED family
of proteins that regulate growth factor-induced activa-
tion of the MAPK cascade, an apoptosis enhancer in
melanoma [26]. E2F7 (E2F Transcription Factor 7) is
among the transcription factors that regulate cell cycle
progression, DNA damage repair and genomic stability. It
plays a role in multiple types of cancers [27].

Among the highly connected genes that belong to
the sphingolipid metabolism pathway, three were sialyl-
transferases - ST3GAL4 (ST3GAL4 ST3 beta-galactoside
alpha-2,3-sialyltransferase 4), ST3GAL5, and ST3GAL6.
Increased level of ST3GAL4 mRNA in renal cell car-
cinoma (RCC) has been shown to be associated with
favorable prognosis [28]. In hepatocellular carcinoma
(HCC), the microRNA miR-26a can reduce tumor growth
by suppressing the Akt/mTOR pathway through target-
ing ST3GAL6 [29]. The role of the sialyltransferases in
melanoma is yet to be elucidated.

Beside the sialyltransferases, other highly connected
sphingolipid metabolism genes include ALDH5A1 (alde-
hyde dehydrogenase 5 family member Al), the reduced
expression of which in high-grade serous ovarian cancer
(HGSOC) causes the accumulation of hydroxybutyric acid
(HBA) [30], and HEXA (hexosaminidase subunit alpha),
the protein level of which was found to be increased
among metastatic uveal melanoma [31].

We further examined the gene-level hypergraph of the
triplet “visual perception’, “DNA-dependent DNA repli-
cation’, and “vacuole organization” (Fig. 4). Here we
focus on the discussion on genes from the first GO
term “visual perception’, as the other two play obvious
roles to melanoma development. The most highly con-
nected gene, BBS5(Bardet-Biedl syndrome 5) has not been
fully characterized, and its role in cancers not been well
studied. Among other highly connected genes belong-
ing to “visual perception”, GLRB (Glycine Receptor Beta)
is among the ion channel genes that is associated with
the clinical outcome in breast cancer [32]. GPR143 (G
protein-coupled receptor 143, or OA1l), codes a protein
for pigmentation. SNPs in this gene have been found
to be associated with the level of skin pigmentation
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Fig. 2 Visualization of the hypergraph for the TCGA melanoma dataset with supervised grouping. a The plot of the entire network, where
hyperedges were reduced to binary edges for visualization; b Detailed plot of the top 15 most connected vertices; € Sub-hypergraph centered at
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and sun tolerance [33]. The gene is highly expressed
in retinal pigment epithelium, as well as in melanoma
[34]. It is involved in melanoma cell migration through
the RAS/RAF/MEK/ERK signaling pathway [35]. PPT1
(palmitoyl-protein thioesterase 1), is involved in the lipid-
modified protein catabolism in lysosomal degradation.
Targeting PPT1 blocks mTOR signaling, which reduces
tumor growth of melanoma in mouse models [36].

For the hypergraph with unsupervised grouping, edges
were filtered with a minimum fold change of 10, which
yielded a hypergraph with a median of 22 connections per
node. Figure 5a is the plot of the entire hypergraph, and

Fig. 5b is a more detailed sub-hypergraph with the top 15
most connected vertices. Figure settings are identical to
those in the supervised case except for the vertex names.
Similar to the supervised approach, the graph is also of
scale-free structure, i.e. relatively few nodes were highly
connected, while most nodes were connected to few other
nodes.

With the unsupervised approach, functions of each
cluster of genes were unknown. Thus, only the cluster
IDs are shown in the plots. To further assess the meaning
of each cluster, GO enrichment analysis was conducted
to determine the relevant biological functions for the
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” o«

clusters using GOstats [37]. The corresponding gene cytoskeleton organization’, “translational elongation’, and

set enrichment results for the top 15 most connected
clusters are shown in Table 1. The gene set enrichment
analysis was limited to GO biological processes with 5 to
500 genes. For each cluster, two significant gene set that
included the most number of genes in the cluster, after
manual removal of obvious overlapping biological pro-
cesses, are shown in Table 1. The results largely agreed
with the supervised grouping approach to some extent.
Some of the terms were related to the cell cycle and lipid
metabolism themes represented by the top 15 terms
in the supervised approach, e.g. “double-strand break
repair’, “actin filament bundle assembly’, “regulation of

“steroid metabolic process” At the same time, more terms
in Table 1 point to some other general themes including
stress response (e.g. “endoplasmic reticulum unfolded
protein response” and “proteasome-mediated ubiquitin-
dependent protein catabolic process”), small molecule
metabolism (e.g. “cellular amino acid catabolic process”
and “water-soluble vitamin metabolic process”), struc-
ture developments (e.g. “blood circulation” and “cell-cell
adhesion via plasma-membrane adhesion molecules”),
and signal transduction (e.g. “adenylate cyclase-
activating G-protein coupled receptor signaling pathway”
and “signal transduction by p53 class mediator”).
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The full list of the enrichment results are listed in
Additional file 1.

In the unsupervised approach, genes are grouped based
on their LA relation patterns with other genes. Thus
genes annotated to different biological processes can be
grouped together. At the same time, genes in the same bio-
logical pathway could have diverse expression activities,
and be separated into different groups. Thus unsuper-
vised approach can complement the supervised approach,
painting a more complete picture of the global dynamic
correlation activities.

Yeast cell cycle dataset
We also applied our methods to the yeast cell cycle
microarray dataset [18]. The yeast dataset contains 6178
genes (n=6178), and 73 samples in four short time series
and 4 control samples (m=77). For the yeast cell cycle
dataset, we have restricted the pairwise correlation inter-
val (u — o, + o) = (—0.180,0.210), and a total of
3,782,460 triplets were selected for this dataset at fdr=0.2.
Again both supervised grouping and unsupervised group-
ing were conducted. Given the smaller number of genes,
for the dynamic tree cut method we used a minimum clus-
ter size of 20. The final numbers of modules for the two
approaches were 251 and 53, respectively.

For the hypergraph with supervised grouping, edges
were filtered with a minimum fold change of 8. The

median number of connections for all the nodes involved
in the graph is 4 (Fig. 6a). Figure 6b is a more
detailed sub-hypergraph with the top 15 most connected
vertices. Beside some cell-cycle related modules, the
majority of the top 15 connected modules were related
to small molecule metabolism and membrane organiza-
tion (Fig. 6b). Although the dataset was generated from
synchronized cell cycles, the results suggested that much
of the conditional correlations happened in metabolism,
which was consistent with findings of the original LA
paper [5].

Figure 6¢ shows an example sub-hypergraph centered
at the functional module “Single organism membrane
budding”. Besides membrane and cell wall organization
terms, most of the terms were related to small molecule
metabolism terms. Figure 6d shows the gene-level details
of the dynamic correlations of the triplet “Single organ-
ism membrane budding’, “G2M transition of mitotic cell
cycle’;, and “pyruvate metabolism” It is interesting that
PIN4 (YBLO51C) played a central role in the graph. PIN4
functions in G2/M phase transition and DNA damage
response. Its expression level didn’t simply track the pro-
gression of cell cycle. In fact it was not one of the periodic
genes found in the original study of [5]. Hence its cen-
tral role in the gene-level graph was not caused by it
being a proxy indicator of the cell cycle. Rather, PIN4
expression tend to be lower at the start of three of the
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Table 1 Enrichment analysis of the human dataset for the top 15 most connected clusters
Group label  Group size  Hyperedges involved  GOBPID Term P-value
67 109 210 G0:0030968  endoplasmic reticulum unfolded protein response 3.39E-05
GO:0008015  blood circulation 3.81E-03
73 104 170 GO:0008202  steroid metabolic process 6.38E-04
GO:0009063  cellular amino acid catabolic process 2.38E-03
60 114 142 GO:0007189 adenylate cyclase-activating G-protein coupled receptor signaling pathway  2.55E-05
GO:0015698 inorganic anion transport 3.83E-04
70 104 120 G0:0072330 monocarboxylic acid biosynthetic process 3.21E-03
GO:0019730 antimicrobial humoral response 6.04E-03
55 123 96 GO:0031349 positive regulation of defense response 3.26E-03
GO:0043161 proteasome-mediated ubiquitin-dependent protein catabolic process 7.11E-03
15 266 83 GO:0006022  aminoglycan metabolic process 1.70E-03
GO:0090066  regulation of anatomical structure size 2.31E-03
69 105 81 GO:0006302  double-strand break repair 1.47E-03
GO:0001701  in utero embryonic development 2.93E-03
72 104 77 G0:0098742  cell-cell adhesion via plasma-membrane adhesion molecules 5.97E-03
G0O:0031365 N-terminal protein amino acid modification 7.54E-03
68 108 76 GO:0048608 reproductive structure development 2A43E-03
GO:0008015  blood circulation 3.81E-03
77 100 71 GO:0051493  regulation of cytoskeleton organization 1.02E-03
GO:0060560 developmental growth involved in morphogenesis 3.71E-03
48 138 68 GO:0051640 organelle localization 2.60E-04
GO:0006767  water-soluble vitamin metabolic process 2.21E-03
54 129 56 GO:0051017  actin filament bundle assembly 1.26E-03
GO:0009100 glycoprotein metabolic process 3.50E-03
4 385 51 GO:0016569  covalent chromatin modification 3.52E-03
G0O:0072331  signal transduction by p53 class mediator 4.46E-03
22 233 51 GO:1901655  cellular response to ketone 2.65E-03
GO:0010035  response to inorganic substance 8.21E-03
50 136 49 GO:0006414  translational elongation 1.45E-03
GO:0002791  regulation of peptide secretion 4.27E-03

For each cluster, the enriched term that include the most number of genes in the cluster is shown

four time series, except in the cdcl5 time series. The
cell cycle synchronization was conducted by blocking the
cells at a certain phase of the cell cycle, which under-
standably put the cells in a stress state and cause irreg-
ularities in metabolism. The expression of PIN4 likely
represents part of the recovery mechanism to normal
growth state.

Conditioned on the level of PIN4, the correlation pat-
tern changed between genes involved in budding and
pyruvate metabolism. Three of the budding genes were
prominent, SNF7 (YLR025W, vacuolar-sorting protein),
VPS4 (YPR173C, vacuolar protein sorting-associated pro-
tein) and COX12 (YFL038C, cytochrome c oxidase sub-
unit). Both SNF7 and VPS4 are involved in protein sort-

ing [38], and both VPS4 and COX12 are involved in
energy production [39]. Pyruvate is at a key intersection
in metabolic network. It can be converted into carbohy-
drates, fatty acids, amino acid, or ethanol [40]. A num-
ber of the genes involved in pyruvate metabolism show
dynamic correlations, either between themselves, or with
the budding genes, indicating a change of production
and utilization of pyruvate that is dependent on the cells’
recovery from the unnatural blockage state as indicated
by PIN4 levels. An example gene pair PFK1 (YGR240C,
Alpha subunit of heterooctameric phosphofructokinase)
and VPS4 are shown in Fig. 7. We can observe a strong
inverse correlation between the low-PIN4 and high-PIN4
states.
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For the hypergraph with unsupervised grouping, edges
were filtered with a minimum fold change of 4, which
yielded a median of 20 connections per node involved
in the graph (Fig. 8a). Figure 8b is a more detailed sub-
hypergraph with the top 15 most connected vertices. The
enrichment results for the top 15 most connected clus-
ters are shown in Table 2. Four of the top 15 clusters
were dominated by cell cycle processes (e.g. “mitotic

cell cycle” and “regulation of cytokinesis”). In addition,
three of the terms were dominated by protein synthe-
sis (e.g. “translation” and “ribosome biogenesis”). The
other clusters were mostly dominated by small molecule
metabolism/transport (e.g. “oxidation-reduction process”
and “organic acid catabolism”), especially in relation to
carbohydrate and energy (e.g. “regulation of glycogen
biosynthetic process” and “monosaccharide metabolic
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process”). These results largely agreed with those from the
supervised approach. The full list of the enrichment test
can be seen in Additional file 2.

Discussion
The method involves several hyper-parameters. To
calculate the LA score of a triplet, we tried to create

a sufficient condition according to Theorem 1 of [11],
to discover “real” dynamic correlation. It requires that
any pair of genes should not be linearly associated in a
triplet. Thus, the threshold c is a hyper-parameter con-
trolling how strict the user wants to obey the sufficient
condition. If ¢ is too small, one can hardly find triplets
as few pairs would have strictly zero correlation from
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sizes reflect the module sizes. The width of each edge is the rescaled edge weight. Three types of hypergraph edges are presented: type 1 edge
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Table 2 Enrichment analysis of the yeast dataset for the top 15 most connected clusters

Group Group Hyperedges GOBPID Term P-value
label size involved
5 180 432 GO:0005979 regulation of glycogen biosynthetic process 1.34E-03
GO:0016052 carbohydrate catabolic process 5.17E-03
28 46 85 GO:0032543 mitochondrial translation 2.28E-03
G0:0072329 monocarboxylic acid catabolic process 6.64E-03
2 237 82 GO:0030154 cell differentiation 2.15E-03
GO:0030435 sporulation resulting in formation of a cellular spore 5.63E-03
21 60 69 GO:0006259 DNA metabolic process 1.10E-09
GO:1903047 mitotic cell cycle process 7.00E-06
12 114 61 GO:0022613 ribonucleoprotein complex biogenesis 4.25E-13
GO:0034660 ncRNA metabolic process 1.97E-10
7 168 59 GO:0005996 monosaccharide metabolic process 7.62E-03
34 38 55 GO:0016236 macroautophagy 4.56E-03
GO:0048193 Golgi vesicle transport 9.15E-03
22 59 52 GO:0055114 oxidation-reduction process 3.84E-05
GO:0071822 protein complex subunit organization 2.70E-04
32 41 48 GO:0042254 ribosome biogenesis 2.77E-15
GO:0034470 ncRNA processing 1.02E-09
53 20 48 GO:0032465 regulation of cytokinesis 1.28E-03
GO:0045839 negative regulation of mitotic nuclear division 9.30E-03
31 43 40 GO:0000278 mitotic cell cycle 5.15E-07
G0:0007010 cytoskeleton organization 3.73E-04
45 28 39 GO:0016054 organic acid catabolic process 1.21E-03
GO:0015074 DNA integration 2.56E-03
29 44 36 GO:0034637 cellular carbohydrate biosynthetic process 243E-03
GO:0055114 oxidation-reduction process 6.09E-03
14 96 35 GO:0006412 translation 1.64E-32
GO:0022613 ribonucleoprotein complex biogenesis 2.99E-16
18 75 35 GO:0007030 Golgi organization 5.04E-04
GO:0051784 negative regulation of nuclear division 2.15E-03

For each cluster, the enriched term that include the most number of genes in the cluster is shown

the sample correlation perspective. However, if ¢ is too
large, the sufficient condition for real LA would be vio-
lated too much, leading to false discovery for the entire
downstream analysis. Therefore, the constant ¢ can be set
partially heuristically to decide the trade-off. On the other
hand, the sample size of the data determines the sam-
pling variation of the Pearson’s correlation between pairs
of genes that are truly uncorrelated. The TCGA melanoma
data contains 474 samples. Based on Fisher’s transforma-
tion of the Pearson’s correlation, if two genes are truly
uncorrelated, by random sampling variation, the standard
deviation of their correlation value is 0.046. Thus if two
genes are uncorrelated, the 95% confidence interval (CI) of
their sample correlation is (-0.09, 0.09) without adjusting

for multiple testing. For this dataset, as the actual average
of correlation values was not exactly zero, we used ¢ = 0.5
and the corresponding interval of (-0.079, 0.112), which
roughly matched that of the 95% CI. Similarly, the yeast
cell cycle data contains 77 samples, which means if two
genes are truly uncorrelated, by random sampling varia-
tion, the standard deviation of their correlation value is
0.114. Hence the 95% CI of the sample correlation coeffi-
cient if two genes are uncorrelated is (-0.22, 0.22). We used
¢ = 1 that yielded an interval of (-0.18, 0.21), which again
roughly matched the 95% CI while allowing the mean to
be non-zero.

Another important parameter is the selection of fold
change threshold to generate the module-level graph. As
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the fold change threshold increases, more connection
information would be lost, though the hypergraph would
be less dense and easier to investigate. Hence, similar
to the correlation threshold ¢, the fold change threshold
is also a user-specified parameter to balance the trade-
off between information cleanness and completeness. In
practice, we selected fold change thresholds such that the
median of the degrees of the modules was 4 in the super-
vised case, where hundreds of modules were involved.
For the unsupervised results, as roughly 50 modules were
involved, we selected fold change thresholds such that the
median degree was around 20. These choices made it easy
to visually inspect the resulting graphs.

In this manuscript, we proposed two routes of data
analysis, the supervised approach and the unsupervised
approach. The supervised approach relies on existing
annotations of the genes to determine the modules, while
the unsupervised approach uses the gene-level connection
patterns to group genes into modules. As we have seen
in the results, the two approaches generated results that
largely agree, while each provided insights that comple-
ment the other approach. The supervised approach was
generally easier to interpret. It allowed us to focus on
important biological processes, such as the p53 pathway
in the melanoma data. For a poorly annotated species,
the unsupervised approach will help group genes that
share similar LA relations. If genes are poorly annotated,
this grouping can potentially shed light on their func-
tional relations, and may help their functional annotation
based on other genes in the same module that are well
annotated.

Conclusions

We presented a method to examine dynamic correlations
in an unbiased manner at the transcriptomic scale. It uses
an inference framework to defend against false positives,
and reduces the large amounts of triplets into a manage-
able hypergraph that can be visually examined relatively
easily. Complimenting existing correlation-based and par-
tial correlation-based network construction methods, the
new method provides a useful tool for users to study
dynamic relations in gene expression profiling datasets.

Methods

Quantifying the ternary relationship

The input of our analysis is an ordinary n x m gene
expression data matrix, with rows representing genes and
columns representing specific samples. The ternary rela-
tionship is quantified by the statistic Liquid Association
(LA) proposed in [5]. The LA statistic measures the extent
to which the correlation of a pair of variables (X,Y)
depends on the value of a third variable Z. Thus, the pair-
wise correlation is dynamic in the sense that it is affected
dynamically according to the third variable. Based on this
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property, the LA statistic is therefore a suitable tool to
quantify the ternary relationship for triplets of variables.

Specifically, according to [5], suppose we are interested
in measuring the ternary correlation among X, Y and Z.
Without loss of generality, we can regard the ternary cor-
relation as the dynamic pairwise correlation between X
and Y given the third variable Z. The LA statistic is three-
way symmetric regardless which variable is treated as the
conditioning variable, or “scouting gene” Now let g(Z) be
the conditional expectation of the correlation between X
and Y, namely, g(Z) = Exy(XY|Z). Then, the LA statis-
tic is defined as the expected changes of the correlation
between X and Y: LA(X,Y|Z) = Ez(¢(Z)). When the
variables are normalized with mean zeros, it is proved
in [5] that LA(X,Y|Z) = E(XYZ), which means the LA
statistic of X and Y given Z is just the expectation of the
product XYZ. Therefore, the LA statistic can be estimated
simply by calculating the sample mean of the product
XYZ:

1
EXYZ) = — 5%, XiYiZ; (1)
where m is the dimension of the variables. Note that fol-
lowing this definition, LA is invariant of which variable
(X, Y, or Z) we treat as the dynamic correlation condition,
hence gives a measure of the ternary correlation.

Straightforward as the LA is, [11] points out that for
the quantity E(XYZ) to reflect the true dynamic corre-
lation of X and Y given Z, certain conditions must be
met. They therefore developed the Modified Liquid Asso-
ciation (MLA) statistic to detect the dynamic correlation
more accurately, which incurs a much higher computing
cost. Also, in [11], the authors proved that the MLA of
X and Y given Z (denoted as MLA(X, Y|Z)) is equivalent
to E(XYZ) as well when certain conditions are satisfied
(Theorem 1, [11]). These conditions include the normality
of the “third variable” Z and the distributions of X|Z and
Y'|Z have constant mean and variance.

In our analysis, the n x m gene expression data matrix is
normalized using normal score transformation for every
row following [5], and we are interested in the ternary
correlation among three variables. In the initial phase
of selecting related gene triplets, which specific variable
serves as the dynamic condition is less important. Also,
Li’s original approach is computationally better suited for
transcriptome-scale scans. Thus, the invariant property
regarding the dynamic condition variable of E(XYZ) is
desirable. To preserve this property, we restrict the mutual
pairwise correlations within a triplet to be small, creat-
ing a sufficient condition for Theorem 1 in [11]. To see
how this is achieved, if X, ¥ and Z are marginally nor-
mally distributed, and all the three pairwise correlations,
corr(X,Y), corr(X,Z) and corr(Z,Y) =~ 0, then X, Y and
Z are three independent normal variables. Hence, if the
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sequence U, Uy, U3 is any permutation of X, Y, Z, then
E(th|U3) = E(Uy) = 0, Var(Uy|U3) = Var(Uy) = 1,
E(lb|U3) = E(Up) = 0, Var(lUa|U3) = Var(lh) = 1,
and Us ~ N(0,1) are satisfied. Hence, the ternary corre-
lation of a triplet (X, Y, Z) satisfies the condition in [11],
and can be quantified by Eq. 1. Notice this requirement of
low pairwise correlations also satisfy Li’s original setup of
Liquid Association [5].

Selecting significant triplets using permutation and
mixture models

The ternary correlation is calculated gene by gene, namely
for each gene Z, the sample product mean of Z and
all possible gene pairs (X, Y) are calculated, for all the
triplets satisfying the condition discussed in the above
sub-section. We expect only a small portion of the triplets
to have true ternary relationship. The ternary correla-
tion of triplets with insignificant relationship approxi-
mately follow a normal distribution [11]. We employ a
permutation procedure to estimate the parameters of the
distribution.

To simplify our illustration, we define AEIZI)), i,)) €
{all possible pairs for Z} as the ternary correlation associ-
ated with the given gene Z with the other two genes X and
Y varying, and % the sample product mean. The permuta-
tion selection is conducted as following: after calculating
the ternary correlation A of all possible triplets for a
gene Z, an empirical distribution of (%) is obtained. We
then randomly permute the sample labels of Z and calcu-
late all ternary correlations with all the {X, Y’} pairs again,
obtaining another empirical distribution of 47, which is
considered as the null distribution where X, Y and Z have
no ternary relationship. We estimate the two densities
of the distributions using the kernel density estimation
technique [41]. Then, the ratio between the estimated
permutation empirical density and the estimated actual
empirical density, at a given value of ternary correlation A,
serves as the false discovery rate, i.e. the posterior proba-
bility that a A at this value belongs to the null distribution:

1426y =2 W FOw). 2)

Setting a small number of false discovery rate, say 0.1,
we are able to obtain the corresponding threshold on the
value of 1. Triplets with a false discovery rate lower than
the threshold are selected. The calculation and selection
procedure is repeated for every gene in the dataset. Finally
we obtain the entire list of triplets with significant ternary
correlation. We note that the fdr estimate doesn’t inflate
in theory due to the large number of Z’s being considered,
because the null density doesn’t change shape with more
null A values being calculated.
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Selecting gene modules using supervised and
unsupervised approaches

As mentioned in the “Background” section, given the
large amount of gene-level triplets, it is impractical to
present the three-way interactions of the system as a
whole. Therefore, it is necessary to “build up” the sys-
tem structure to a gene module level by dividing genes
in a dataset into different modules. To achieve this, two
options are available. The first choice, which we refer
to as supervised grouping, is to borrow external biolog-
ical information such as gene functional modules from
gene ontology (GO) terms [42]. We follow a procedure of
selecting a subset of informative GO terms [43]. While
some genes in the dataset may not be included in the func-
tional modules, other genes may appear in more than one
modules. In the first case, the genes are ignored since they
do not contribute to module-level information according
to the external information. In contrast, in the latter case,
the duplication of a certain set of genes across multiple
modules is preserved as the set of genes contribute to
multiple module level information.

The alternative way of grouping genes is clustering
based on the gene level hypergraph structure, which is
correspondingly an unsupervised grouping approach. In
this study we base our clustering on the marginal rela-
tions between pairs of genes. To utilize the information
of ternary relationship provided by the triplets selected
in the above sub-section “Selecting significant triplets
using permutation and mixture models’, we first construct
an n x n matrix A recording the number of involve-
ment of pairs in triplets, where # is the total number
of genes in the dataset. Specifically, for example, if a
triplet of genes (i,/, k) is selected after the procedure
described in the above two sub-sections “Quantifying the
ternary relationship” and “Selecting significant triplets
using permutation and mixture models’, then according
to the existence of this ternary correlation, the elements
Aijy Ajis Ai ko Aki» Aj o Ak are all added by one to receive a
“count”. This counting procedure is repeated for the entire
triplet list. Finally, the A matrix contains the amount of
connections between any pair of genes when they jointly
appear in a triplet. The diagonal elements of A are all set
to zero since it is meaningless to consider self-connection
here, and it is easy to see A is symmetric.

Given the matrix A, one can calculate the correlation
matrix C for 4, as it measures the similarity of the involve-
ment in triplets among genes. Thus, using either the
similarity matrix C or the corresponding distance matrix
1,xn — C, where 1,, is an n x n matrix with all ele-
ments equal to one, traditional distance-based clustering
methods such as hierarchical clustering can be applied
to cluster genes in the dataset. Essentially, the unsuper-
vised grouping approach clusters genes according to their
similarities of involvement in triplets.
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Constructing the module-level hypergraph

Using either supervised or unsupervised approach, the
module memberships of genes are obtained. The next step
is to replace each gene in the triplet list by its module label.
In the case that some genes may have multiple module
labels due to multi functionality in supervised grouping,
the involved triplets are duplicated in order to preserve
the multi-functional information as discussed in the above
sub-section “Selecting genemodules using supervised and
unsupervised approaches”.

At this stage, the module-level triplet list forms an edge
list for a 3-uniform hypergraph, in which modules are
vertices and triplets are hyperedges. The three-uniform
hypergraph is undirected but weighted, as there can be
many gene triplets establishing the connections between
three modules. Consequently, three types of edges - those
connecting three different modules, two different mod-
ules or only one module, exist in the hypergraph. These
correspond to cases that the original three genes in a
triplet are divided into three modules, two modules or
a single module. Therefore, the 3-uniform hypergraph
allows self-loops. Summing up all identical module-level
triplets, the counts for each unique module-level triplet
can serve as the weight of the corresponding hyperedge.
Given the size difference of the modules, we transform
the edge weights from simple counts to fold changes over
the expected number of links if all edges are placed ran-
domly. We then threshold the fold change to get a sparsely
connected network.

Additional files

Additional file 1: Enrichment test results for the TCGA melanoma data.
List of full GO terms for all the 77 groups resulted from the unsupervised
approach. (CSV 139 kb)

Additional file 2: Enrichment test results for yeast cell cycle data. List of
full GO terms for all the 53 groups resulted from the unsupervised
approach. (CSV 72 kb)
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