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In his famous 1972 paper, Richard Lewontin used ‘classical’ protein-based
markers to show that greater than 85% of human genetic diversity was
contained within, rather than between, populations. At that time, these
same markers also formed the basis of forensic technology aiming to identify
individuals. This review describes the evolution of forensic genetic methods
into DNA profiling, and how the field has accounted for the apportionment
of genetic diversity in considering the weight of forensic evidence. When
investigative databases fail to provide a match to a crime-scene profile,
specific markers can be used to seek intelligence about a suspect: these
include inferences on population of origin (biogeographic ancestry) and
externally visible characteristics, chiefly pigmentation of skin, hair and
eyes. In this endeavour, ancestry and phenotypic variation are closely
entangled. The markers used show patterns of inter- and intrapopulation
diversity that are very atypical compared to the genome as a whole, and
reinforce an apparent link between ancestry and racial divergence that is
not systematically present otherwise. Despite the legacy of Lewontin’s
result, therefore, in a major area in which genetics coincides with issues of
public interest, methods tend to exaggerate human differences and could
thereby contribute to the reification of biological race.

This article is part of the theme issue ‘Celebrating 50 years since
Lewontin’s apportionment of human diversity’.
1. Introduction
When Richard Lewontin wrote his seminal 1972 article, ‘The apportionment of
human diversity’ [1], he had at his disposal extensive molecular population data
based on an array of 17 ‘classical’ polymorphisms (figure 1a), detectable by protein
electrophoresis or immunological methods, that allowed him to assess variation
within and between human groups. Lewontin found that 85.4% of total human
diversity was contained within populations, and he emphasizes his point that
‘less than 15% of all human genetic diversity is accounted for by differences
between human groups’ with an exclamation mark. However, in 1972, these
same polymorphic markers formed the basis of another field, with a different
aim: attributing a biological sample to an individual [2]. That field is now known
as forensic genetics. Taking Lewontin as a starting point, this review examines
how human individual identification evolved from ‘classical’ polymorphisms to
DNA, how it attempted to account for inter-population variation and population
structure, and how, in no-suspect cases where database searches draw a blank, it
has considered the apportionment of human diversity to make deductions about
the population of origin of a sample (‘biogeographic ancestry’; BGA).

The lens of Lewontin allows us to see how unchanging and intractable some
of the problems are: what characteristics we use to classify populations, how we
name them and how they should be grouped in higher level comparisons.
Lewontin’s reliance on proteins, rather than DNA, brings phenotypes into
play, and this leads to the uncomfortable intersection between genetic diversity
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Figure 1. Markers and populations used in Lewontin’s ‘The apportionment of human diversity’. (a) Lewontin’s [1] 17 ‘classical’ markers are shown in their approxi-
mate chromosomal locations (from www.omim.org) on a G-banded human karyotype. Thirteen of the markers were diallelic; for the remaining four, the number of
alleles analysed is given in parentheses after the marker name. All markers are also among those used in forensic serological analysis [2]. APh: acid phosphatase 1;
AK: adenylate kinase 1; PGM1: phosphoglucomutase 1; PGD: phosphogluconate dehydrogenase; Ag: β-lipoprotein, Ag system; Lp: β-lipoprotein, Lp system; Hp:
haptoglobin. (b) Lewontin’s [1] 169 populations are shown, with assignment to one of seven racial groups indicated by background colour (n indicates
number of populations per racial group). Not all populations were typed for all 17 markers shown in (a). Sets of populations are placed on the world map
to indicate approximate regions of origin; north and south Native Americans are distinguished here, though were considered as one ‘Amerind’ group by Lewontin.
For some populations, geographical location and racial group assignment indicate anthropological classifications and some examples (e.g. US Blacks, Turks) are placed
separately from the major sets. Names of populations and racial groups are those given by Lewontin [1]; the significance of inverted commas round some population
names is unclear.
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and natural selection, and the characteristics, such as pigmen-
tation, that are among the traditional racial classifiers. The
fact that forensic genetics exists to serve criminal justice sys-
tems, and that such systems fail to treat all ethnic groups
equitably, lends particular importance to this link with race.
2. The evolution of forensic genetics: from blood
groups to DNA profiles

The very first known human genetic polymorphism, vari-
ation in the ABO blood group system, was identified by
Karl Landsteiner in 1900 [3] and formed part of Lewontin’s
marker set (figure 1a), providing him with an ‘embarras de
richesse’ of data [1]. From the outset, its potential in analysing
blood samples from crime scenes was recognized [4]. A
system such as this has low variability (few alleles and
high average allele frequencies), so its power to attribute a
biological sample to a particular person is correspondingly
low—samples from different individuals will often have
matching blood types. By contrast, a non-match is strong
evidence that can exclude a suspect at just this single locus,
as recognized by Landsteiner [4]: ‘to detect the non-identity
of blood samples’.

Forensic biologistswent on to combine sets of these classical
polymorphisms to reduce the randommatch probability (RMP;
figure 2), the chance that two different individuals have match-
ing genotypes [2], and exploited their Mendelian inherited
nature in kinship testing [7]. If genetic loci are unlinked and
the population is randomly mating, then independent inheri-
tance means that, in principle, their allele frequencies can be
multiplied in deriving genotype frequencies—this is known
as the product rule. As a consequence, RMPs fell to more
useful average levels of 1% or lower, but there remained practi-
cal problems of protein degradation, body fluid specificity and
the interpretation of mixed samples [8].

It was the development of DNA-based analysis in the
mid-1980s that relegated Lewontin’s classical polymorphisms
from forensics and began the modern era of robust individual
identification. Initially, this was via DNA fingerprinting [9],
based on length variation at multi-allelic autosomal minisa-
tellites, and by the 1990s DNA profiling [10], based on
length variation at short tandem repeats (STRs; also known
as microsatellites). Today, a combination of approximately
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Figure 2. Calculation of RMPs and the effect of different population databases. Bar charts show the allele frequencies for three forensic STRs in two population
databases [5], ‘Caucasian-Americans’ (n = 404 alleles typed) and African-Americans (n = 418). Note that ‘Caucasian’ is the term used by the authors but is no longer
favoured in many areas of human genetics [6]. Below is an evidence profile, heterozygous at each locus, and the corresponding allele frequencies, denoted p and q.
An individual can receive either allele from either parent, so the genotype probability is 2pq ( for homozygotes, the corresponding probability is p2). Assuming the
loci are independently inherited, the per-locus genotype frequencies can be multiplied together (the product rule) to give the profile frequency, which is equivalent
to the RMP (the chance that some random unrelated person in the population carries the same profile as the evidential sample). In practice, many more than three
STRs are analysed, giving much lower values than in this example. Given the different allele frequencies in the two databases, in this case, the profile frequency
when using the Caucasian-American database is about five times higher than that for the African-American database. Note that the calculation here assumes the
simplest of population genetic models (Hardy–Weinberg equilibrium) and typically in casework somewhat more complex models are used (see main text). (Online
version in colour.)
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20 independently inherited autosomal STRs can provide a
profile via multiplex polymerase chain reaction (PCR) from
trace material, yielding RMPs as low as 10−26 [11].

STR profiles are digital—each allele is designated by a
number reflecting its number of repeat units—and therefore
ideal for databasing. This allowed the development of large
investigative databases containing profiles obtained from con-
victed individuals, suspects and crime-scene samples. The first
national DNA database to be developed (in 1995) was that of
the UK [12], which by March 2020 contained 6.6 million pro-
files [13], the largest by proportion of population of any in
the world. It provides a ‘hit’ (a match between a crime-scene
profile and a stored subject profile) in 66% of queries and
thus represents an efficient tool for the detection of crime.
3. Forensic significance of intragroup and
intergroup variation

The forensic geneticist needs genotypes that provide robust
individual identification, an aim that emphasizes variation
within the population: calculating a RMP to evaluate the
significance of a match can then be done by compiling allele
frequency data from that population, and assuming homogen-
eity and random mating. However, this raises two issues:
which population is relevant to a particular case? And can
population substructure invalidate the assumptions made in
RMP calculations? These questions formed some of the
battle-lines in the so-called ‘DNA fingerprinting wars’ of the
1990s, in which Lewontin, together with Daniel Hartl [14],
was a vigorous combatant. The debatewas eventually declared
settled [15], although not at all to Lewontin’s satisfaction [16].

Accustomed to the compendious collections of population
data on classical markers [17], Lewontin argued that a lack of
similarly detailed data on the new-fangled DNA markers
made RMP calculations unsound [14]. He also pointed out
that the major racial groups used in calculations (for example,
‘Caucasian’) likely harboured endogamous subgroups with
significantly divergent allele frequencies (sub-populations)
that violated the random mating assumption and made the
use of the product rule inappropriate. It was unclear whether
the product rule favoured the defence or the prosecution, but
in any case, it should not be applied until more detailed data
were available; instead, Lewontin suggested, the profile
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frequency in the population database should be used, and
when the profile was unobserved (i.e. in the majority of
cases), a frequency of 1/x should be assumed, where x is the
population database size [14]. However, clearly, without multi-
plication of allele frequencies at different loci, such assumed
genotype frequencies were problematically and implausibly
high, and undermined the utility of forensic DNA analysis
[18]. Lewontin therefore lost this battle.

When a crime-scene profile matches a suspect, but the only
information available about the perpetrator is the DNA profile
itself, then the choice of reference population for calculating the
RMP becomes particularly important. If there were major
differences in allele frequencies between different populations,
then a DNA profile might be very rare in one population,
strongly incriminating the suspect, but orders of magnitude
more common in another. TheUnited StatesNational Research
Council (NRC) 1996 report [19] made a number of recommen-
dations to deal with this issue that remain widely adhered to
today. One is the treatment of rare alleles: when an allele is
not represented in a database, or present only a few times,
any estimate of its frequency is inherently inaccurate. The rec-
ommendation is that each allele should be observed at least
five times if its frequency estimate is to be used in statistical cal-
culations, and that the frequency of any allele observed less
often than this should be inflated to this minimum, i.e. 5/2N,
where N is the number of individuals in the database (and
2N the number of genomes). A second NRC recommendation
was for an adjustment to account for population structure,
using a correction factor known as θ. ForUS populations, a con-
servative value of θ = 0.01 is recommended—this is at least an
order of magnitude higher than empirically measured values;
for ‘some small, isolated populations’, a higher value of 0.03
can be used. When factored into calculations [20], θ has the
effect of somewhat elevating genotype frequencies.

These kinds of compromises lack rigour but were justified
as part of a conservative approach to statistics that favoured
the defendant in a case [19]. However, declaring the end of
the ‘DNA fingerprinting wars’without solving the underlying
issues means that questions of inter-population variation and
population substructure have not disappeared and tend to
arise afreshwith each newdevelopment in forensic technology.
In today’s age of highly sensitive PCRmultiplexes, STR profiles
are often partial (missing a full set of loci, or alleles) or mixed,
which can increase RMPs and make interpretation more chal-
lenging. More rigorous approaches to calculating RMPs
under different models of mate-choice have been developed
[21–23]. As well as considering the significance of a match
between the profile of a known suspect and a crime-scene
sample, in the modern world of very large investigative data-
bases (such as those of the US and the UK) ‘cold hits’ are
often reported and evaluated. In these cases, a crime-scene pro-
file matches a profile in the database, sometimes from a case
occurring long ago, when other evidence may be scanty.
Here, the persuasive power of a low RMP may carry great
weight, so careful calculation of the chance of erroneous
matches becomes important [24].
4. No-suspect cases: DNA-based intelligence
on ancestry

No nation holds a ‘universal’ DNA database containing the
DNA profiles of all its citizens (although some have
considered building one [25]). A consequence of this is that
many crime-scene profiles entered into investigative data-
bases return no hits, and therefore no potential suspects.
This has led to attempts to produce intelligence from DNA
information that could facilitate suspect identification. One
indirect approach is the familial search [26,27]—seeking auto-
somal STR profiles in an investigative database that are
sufficiently similar to the crime-scene profile to suggest that
they could come from a close relative (parent, child or sib-
ling). The reliability of this endeavour, like that of profile
matching and database searching, is influenced by popu-
lation structure [28]. The reach of the method has recently
been extended to more distant relatives by generating
genomewide single-nucleotide polymorphism (SNP) geno-
types and using these to query publicly accessible data
generated by direct-to-consumer testing [29] (investigative
genetic genealogy).

Intelligence can also be sought more directly by attempting
to infer characteristics of the suspect from the crime-scene
sample. Here, three areas have been focused upon: BGA,
externally visible phenotypes and age [30]. This review focuses
on the first of these and ignores the last, since age is unaffected
by variation in DNA and is more reliably assessed by measur-
ing epigenetic variation. Because the investigated visible
phenotypes show high inter-population variation and correlate
with ancestry (and indeed with traditional ideas of race in
contexts such as the US [31]), they intersect with the apportion-
ment of human genetic diversity and are also considered here.

If a population geneticist today wished to study the
ancestry of an unknown individual sample, they would
resort to genomewide analysis via a chip typing hundreds
of thousands of SNPs, or even whole-genome sequencing.
But forensic scientists do not usually have this luxury, since
the amount and quality of DNA available is often low
[32,33]. Furthermore, the need for methods to be forensically
validated, acceptable in the courtroom and compatible with
existing investigative databases limits the application of
genomewide techniques, and the number and type of mar-
kers that can be studied. Since standard forensic autosomal
STR profiles are generated routinely, many studies have
asked whether these contain any information about popu-
lation of origin. More targeted work has sought SNPs with
alleles that are highly differentiated between populations
and therefore can have predictive value in combination.

The autosomal STRs used in DNA profiling are multi-
allelic, with high mutation rates and high heterozygosity,
properties that suit them to individual identification. This
might be expected to make forensic STR profiles poorly dif-
ferentiated between populations [8], and indeed the 13
CODIS (Combined DNA Index System) loci have a global
FST of approximately 4.5%, measured in the highly diverse
Human Genome Diversity Project (HGDP) panel of indigen-
ous populations [34], about one third of the approximately
15% observed by Lewontin [1]. An FST-based analysis of a
large worldwide dataset based on the 13 CODIS loci indi-
cated that these STRs systematically underestimate inter-
population genetic variation [35]. However, application of
the model-based clustering algorithm STRUCTURE showed
that the CODIS loci give patterns of population clustering
like those of other similar but independent sets of STRs
[34]. This study concluded that although forensic STRs
do show relatively low FST (a measure that is depressed
for markers that are highly heterozygous [34,36]), their
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high heterozygosity actually strengthens ancestry inference
compared to less heterozygous STR sets.

It is worth noting that the correction factor for population
structure, θ (discussed in the section above), is equivalent to
FST if random mating is assumed within sub-populations.
The θ values recommended by the NRC (1% in general and
3% for ‘some small, isolated populations’) are considerably
smaller than the global CODIS data (4.5% [34]); such low
values are supported by analysis of forensic reference data-
sets [35,37], which could reflect relatively high degrees of
inter-population admixture in the underlying samples.

Forensic geneticists have investigated the ancestry
information contained in autosomal STR profiles and develo-
ped methods to apply this in practice. For example, a
machine-learning-based tool, PopAffiliator [38], claims
approximately 86% accuracy in classifying 17-locus profiles
to major regions essentially representing Europe, East Asia
and sub-Saharan Africa. As with many predictive methods,
the output of PopAffiliator provides probabilities of member-
ship of either three or five different large population groups,
and it is left to the user as to how to interpret or report
these. Among adjacent regions, classification is less reliable,
as illustrated by a STRUCTURE-based clustering analysis of
the HGDP panel using 15 or 20 STRs [39]: while European,
African and Native American populations were highly differ-
entiated, the HGDP populations of Europe, the Middle East
and South Asia were not, and assigning a profile to one of
these regions is inherently unreliable.

To build panels of markers to predict the population of
origin more robustly, loci were sought that maximized allele
frequency differences between populations (ancestry infor-
mative markers; AIMs). As Lewontin observed [1], such
markers are atypical: the most highly differentiated example
in his set of classical markers was the Duffy blood group,
showing a mean of just 63.6% of its total diversity within
populations, compared to an average across loci of 85.4%.
The Duffy negative allele was at greater than 90% frequency
in sub-Saharan African populations, but at low frequency in
most others [1]. Such large differences are now taken as a sig-
nature of likely natural selection; in the case of Duffy, it was
not until 3 years after Lewontin’s paper that it was shown
that erythrocytes from Duffy negative (now designated
FYBES/FYBES homozygous) individuals were resistant to
infection by the malaria parasite Plasmodium vivax [40]. This
same strongly selected marker was also the most highly dif-
ferentiated locus in early AIM searches in the DNA era
[41], and today it persists (as the SNP rs2814778) into many
current BGA SNP multiplexes in forensic use [42].

Binary AIMs were defined as variants exceeding some
threshold, δ (the frequency of an allele in one population
minus that in another; e.g. 50% [41]) in pairwise comparisons.
Early on, both STRs and SNPs were included in AIM panels
([41]; with an adjustment of δ calculation for multi-allelic loci)
but today most sets are SNP-specific. One example designed
for forensic use at a global level is a panel of 55 AIM SNPs
[43] that is available as a sensitive PCR multiplex. These
SNPs were chosen based on their high allele frequency differ-
ences in various pairwise comparisons among a diverse
collection of 63 populations. In an analysis of 3884 individ-
uals from 73 populations using STRUCTURE, the most
likely number of clusters (K) was eight, and the pattern of
regional variation essentially resembled that observed for
larger numbers of genomewide markers [44,45]. Other AIM
sets have been developed for discrimination at more local
levels, for example Australia and the Pacific [46], and East
Asia [47]. At the individual level within populations, there
can be considerable variation in cluster membership pro-
portions so, in a likelihood-based approach, individuals can
often be misassigned. If a tested individual belongs
to a population that is not included in the reference set,
they tend to be assigned to some geographically allied
population—assignment is only as good as the reference
data. Notably, the development and testing of such SNP
panels is mostly based on indigenous populations that are
not believed to be admixed. These may be very different
from those seen in real forensic scenarios where, in urban
settings, complex admixture is commonplace.
5. No-suspect cases: DNA-based intelligence on
phenotype prediction

Traits that are forensically useful are those that a witness
might observe and are collectively known as externally vis-
ible characteristics (EVCs). EVCs that are predictable from
DNA variants need be largely genetically determined, and
to have relatively simple genetic architecture. One such phe-
notype that has long been incorporated into standard DNA
profiling is sex, predicted via a test for the presence or
absence of the male-determining Y chromosome [48].
Beyond this, research into the genetic basis of facial shape,
hair type and stature has generated long lists of variants
that contribute to these complex traits, but their predictive
value is too low to make them of practical forensic use [30],
despite commercial offerings that promise ‘photofits’ of indi-
viduals following DNA analysis [49]. The phenotype that has
received most attention is pigmentation, since this is rela-
tively well characterized at the genetic level and variants
are known that have large effects.

The global apportionment of diversity in skin colour dif-
fers from that of hair and eye colour, reflecting differing
evolutionary histories. Skin colour in indigenous populations
shows a globally non-random geographical distribution, with
people having the darkest skin in the tropics, and those with
lighter skin in more northerly regions. The most widely held
theory to explain the pattern of depigmentation from the
human ancestral state of dark skin is the need to synthesize
vitamin D in regions of low UV radiation [50]. Following a
similar methodology to Lewontin [1], Relethford quantified
the apportionment of skin colour diversity [51], finding that
just 9% of variation exists within populations—a reversal of
the pattern found for classical markers [1], and underscoring
the fact that skin colour has not evolved neutrally. By con-
trast, most of the global variation in hair and eye colour is
among Europeans, with non-Europeans tending to show
low variation; this has been taken to reflect a lack of a role
for natural selection, and sexual selection has been proposed,
though not proven, to be involved [50]. The different histories
and patterns of these pigmentation traits have influenced
the search for underlying genetic variants: since variation in
hair and eye colour is maximal within a relatively homo-
geneous European metapopulation, association studies
have been productive [52]; however, association studies for
skin colour cannot easily be done across populations with
different phenotypes, since the signal of ancestry obscures
the phenotypic signals.
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Many years of research into the genetic basis of human pig-
mentation [52] have yielded a collection of genes whose
products govern the abundance, properties and distribution
of melanin pigments, giving rise to natural variation in the
colour of skin, hair and eyes. A set of 41 SNPs in a total of
19 genes (the HIrisPlex-S system [53]) now allows estimation
of individual probabilities for five skin, four hair and three
eye colour categories from genotypes. The predictive models
were developed and validated in a set of individuals (80% of
them European) from indigenous populations [53–55]; in
admixed populations, while SNP-based eye and hair colour
prediction perform well [56,57], skin colour prediction is less
accurate [57,58], reflecting the more complex nature of this
trait, and possible epistatic interactions between alleles [56].
il.Trans.R.Soc.B
377:20200422
6. The entanglement of population classification,
ancestry and phenotype

In order to consider the apportionment of diversity among
groups, we first need to define the groups. Lewontin’s list
of 169 populations [1] today has a retro feel to it
(figure 1b), involved some rather arbitrary choices [59], and
raises questions about how we label and classify our fellow
humans. Some terms are now regarded as derogatory or pol-
itically incorrect: there are Lapps (today, Saami), Eskimos
(Inuit), Gypsies (Roma) and Hottentots (probably equivalent
to Khoisan). Among the Amerinds are the Blackfoot, the
Bloods, the Flathead and the Nez Percé. There are labels of
language (speakers of Hindi and Urdu), religion (Oriental
Jews) and skin colour (US Blacks). Lewontin’s seven racial
classifiers (figure 1b) include Caucasian and Mongoloid,
two of Blumenbach’s eighteenth-century races.

As well as using an SNP chip, today’s population geneticist
would also be likely to use a classification scheme informed
by ethnolinguistic affiliation, geography and subject self-
definition: the 1000 Genomes Project [60] provides examples.
However, in forensic practice, by contrast, analysis is carried
out within the socio-political frameworks of national criminal
justice systems that are rooted in their own different census
populations, and often reach back into the past. Thus, the battle-
ground of the US-focused ‘DNA fingerprinting wars’ took
place among the unhelpful confusion of Caucasian, Black and
Hispanic categories [61]. The first two are sometimes recast as
European- andAfrican-American; the last (derided byLewontin
as ‘a biological hodgepodge’ [14]) includes adiverse collectionof
Mexican, Puerto Rican, Guatemalan, Cuban, Spanish and other
peoples with differing proportions of European, Native Ameri-
can and African ancestry. In the UK, six ‘ethnic appearance’
categories have been used [37,62]: pale-skinned Caucasian,
dark-skinned Caucasian, African/African-Caribbean, Indian
subcontinent, East Asian and North African/Middle Eastern.
Where the lines are to be drawn between these is far from
clear, and they must contain endogamous sub-populations
and varying degrees of admixture. In Malaysia, there are separ-
ate population reference databases for Malay, Chinese, Indian
and Orang Asli indigenous people [63]. Racial categories are
context-dependent [31], rather than universal.

Pigmentation phenotypes are a hallmark of many tra-
ditional race-based classifications [64], and in forensic
genetics, the conflation of pigmentation and ancestry persists
not only through the way population groups are labelled but
also in the markers used in ancestry testing. Two SNPs in the
55-SNP AIM set described above [43] are also part of the HIr-
isPlex-S prediction set [53], and two more are pigmentation
associated. Other SNPs are associated with less obviously vis-
ible phenotypes: Duffy has already been mentioned, and
other examples include a variant in the EDAR gene associ-
ated with thicker hair in Asians and a variant in the
acetaldehyde dehydrogenase gene responsible for Asian alco-
hol flush reaction [43]. A move away from EVCs in ancestry
SNP panels might help, but in practice ancestry and pheno-
types are inexorably linked because the information that a
DNA sample came from a European, an East Asian or an
African raises expectations about the appearance and social
identity of that person [65].

As well as robust prediction, an EVC has utility if it is
generally rare in a population [66], since it can substantially
narrow a pool of suspects. In the UK, a red hair test [67] has
been available for many years and is useful because the popu-
lation frequency of the trait is just 5% or so [68]. Predicted
phenotypes that characterize minority ethnic populations can
therefore be seen as valuable in a similar way, but are proble-
matic in that they focus attention on groups that are often
already the target of excessivepolice attention [69–71]. In provid-
ing a probability of belonging to a particular group or having a
particular appearance, these kinds of tests point not to an indi-
vidual suspect, but a pool or collective of similar suspects [72],
and thus to the potential victimization of a community.
7. Conclusion
Lewontin [1, p. 397] notes in his 1972 paper that ‘our percep-
tion of relatively large differences between human races and
subgroups, as compared to the variation within these groups,
is … a biased perception and … based on randomly chosen
genetic differences, human races and populations are remark-
ably similar to each other’. By focusing on variants that are
far from random and that exaggerate the differences between
populations, and by conflating ancestry and phenotypes, for-
ensic BGA testing and the prediction of EVCs have the effect
of reinforcing a link between ancestry and racial divergence
that is not systematically present in the genome otherwise.
Thus, despite the profound legacy of Lewontin’s 1972 study
[59], in a major area in which genetics coincides with issues
of public engagement and interest, methods in the field
tend to emphasize human differences beyond the picture
that generally emerges from genetic and genomic evidence.

Itwould be naïve to imagine that forensic scientistswill give
up their efforts to maximize intelligence from DNA evidence.
However, it is also important to remember that these creative
endeavours are undertaken because of the absence of universal
forensic DNA databases. Indeed, the biases, ethical problems
and invasions of privacy that the armoury of investigative
methods present have been used to bolster the arguments
for universal databasing. It has been argued that universal
databases would be fairer to all citizens than the current discri-
minatory investigative databases, would aid exonerations of
innocent people, would deter crime and would eliminate the
invasion of privacy represented bymass-screens (or ‘dragnets’)
and familial searching [73]. The rise of investigative genetic gen-
ealogy and the use (and abuse) of publicly accessible genetic
data by law enforcement has been used to further strengthen
arguments in favour of universal forensic databases [74].
Problems with BGA testing and the prediction of EVCs could
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be marshalled as yet an additional justification. Given
Lewontin’s own social activism and his commitment to build-
ing a better world [75], as well as his general scepticism
about forensic genetics [14,76], it seems most unlikely that he
would have signed up to universal databases, and there are cer-
tainly powerful arguments to be made against them [25]: they
would be expensive, place disproportionate restrictions upon
individual rights to privacy, treat the population as suspects
(rather than citizens presumed innocent) and raise serious pro-
blems in navigating consent and its inevitable refusal by some.
Since forensic databases operate at the level of nations, there
would be thorny issues around the DNA profiling of visiting
workers and tourists, and no doubt different nations would
behave differently in this respect [25]. There is no reason to
believe that the creation of universal databases would make
criminal justice systems fairer for ethnic minorities [77].

How can the current situation be mitigated? There is a
clear need for good practice in considering human classifi-
cations in imperfect but important forensic probability
estimates. Labels matter, and should be used more carefully;
this should include a nuanced consideration of admixture,
rather than the shoe-horning of DNA donors into individual
groups. It is promising that the field has woken up recently to
the issue of ethics, and in particular to the question of the
informed consent of participants in forensic population
studies [78]. This suggests that the broader questions
around how forensic genetics interacts with racial classifi-
cations and a public view of human difference should also
be the subject of consideration and regular re-evaluation,
rather than relying on tablets of stone from a previous era
[19] representing empirical and arbitrary standards.

Finally, as with those who study and write about popu-
lation genetics and genomics, there is a responsibility for
the scientist who uses and reports on forensic prediction of
ancestry and phenotypes to think carefully about the
language, the narrative, and the message that they convey
to the public [79].
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