
Utilizing heart rate variability to predict ICU 
patient outcome in traumatic brain injury
Ping Zhang1*  , Tegan Roberts2, Brent Richards3,4 and Luke J. Haseler5

From 3rd International Workshop on Computational Methods for the Immune System Function (CM-
ISF 2019) San Diego, CA, USA. 18-21 November 2019

Background
Traumatic brain injury (TBI) is increasingly considered to be an important global health 
priority as it results in a large number of deaths and impairments leading to permanent 
disabilities [1, 2]. TBI patients are almost always admitted to an intensive care unit (ICU) 
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and receive high level life support and continuous monitoring. Prediction of clinical 
outcome in these patients, based on the continuous monitoring of physiological signals, 
may allow for early identification of injury severity and ultimately guide interventional 
strategies which may improve survivability rates, or in cases of poor outcome, inform 
end-of-life decisions. Currently, there are several ICU scoring systems in place to meas-
ure the severity of TBI including the Acute Physiology and Chronic Health Evaluation 
(APACHE II and the updated versions APACHE III/IV) [3–6], Simplified Acute Physiol-
ogy Score (SAPS II) [7], Multiple Organ Dysfunction Score (MODS) [8], the Sequen-
tial Organ Failure Assessment (SOFA) [9], and Injury Severity Score (ISS) [10, 11], with 
a  comprehensive  review of  ICU scoring systems  by Rapsang and Shyam  [12]. These 
scores correspond to risk of death, and are commonly used to predict TBI patient out-
comes. The scores are calculated based on patient characteristics, including age, chronic 
health status, major medical and surgical disease categories, acute physiologic abnor-
malities, pre-existing functional limitations, major comorbidities and ICU admission 
variables (with a slight difference of variables used in each scoring system). Strong corre-
lation between these scores may exist [12, 13]. The predictive ability of these scoring sys-
tems on ICU patient outcome has been evaluated previously [14, 15], and the APACHE 
and SAPS scoring systems have been prospectively verified [16, 17]. Recent investiga-
tions attempted to expand APACHE III with additionally available clinical records, how-
ever only the potential to improve was reported [18]. None-the-less, these scores do not 
take into account the heterogeneity that exists between patients due to the discrepancies 
in initial TBI presentations and the evolution of secondary brain injurie.

Heart rate variability and traumatic brain injury

The Electrocardiogram (ECG) is a non-invasive measure of the heart’s overall electrical 
activity and is measured continuously during a patient’s stay in the ICU. ECG waveform 
interpretation has provided the basis for clinical diagnosis of progressive heart disease 
and lethal arrhythmias. A novel extension of ECG monitoring is assessing the beat-to-
beat variation in heart rate (HR) termed Heart Rate Variability (HRV). In a healthy indi-
vidual, autonomic nervous system (ANS) activity is a key regulator of HR; changes in 
parasympathetic and sympathetic nervous system during normal circadian rhythm lead 
to HR fluctuations. HRV is a correlate of cardiac autonomic regulation and has been 
identified as a promising ‘electronic biomarker’ of disease severity and predicting patient 
outcomes. The Chinese physician, Wang Shu-he (265–317 A.D), noted the variability of 
the heart as an indicator of the critically ill: “If the pattern of the heart beat becomes as 
regular as the tapping of a woodpecker or the dripping of rain from the roof, the patient 
will be dead in 4 days” [19].

HRV is the variation in time between consecutive heart beats (RR interval) and can 
be analysed in both time and frequency domains. Time domain analysis calculates and 
assess the overall RR interval time series and frequency domain analysis quantifies the 
overall variability as frequency of ANS function.

HRV analysis in time domain is the simplest quantification method of HRV, calculated 
on a beat-to-beat basis. In the literature, RR intervals of normal sinus rhythm are denoted 
as normal-to-normal (NN) beats. Standard deviation of the NN interval (SDNN) reflects 
all the cyclic components responsible for variability within the recording time period, 
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for example a 24-h period. The square root of the mean square differences of successive 
NN intervals (RMSSD) reflects high frequency variations in heart rate. RMSSD is highly 
correlated with both NN50, the number of successive NN beats that differ by more than 
50  ms and pNN50 the percentage of NN50 over the entire NN series. The statistical 
properties of RMSDD are preferred to pNN50 and NN50 (Fig. 1). Whilst time domain 
methods can be calculated from short 5 min signals to entire 24 h signals, it is recom-
mended that comparisons between different recording lengths in the time domain be 
avoided as HRV is not a stationary process.

Frequency domain measurements estimate the distribution of absolute or relative sig-
nal energy into four frequency bands. Frequency Domain Analysis shows how much of a 
signal lies within one or more frequency bands (ranges). The Task Force of the European 
Society of Cardiology and the North American Society of Pacing and Electrophysiology 
[20] divided HR oscillations into ultra-low-frequency (ULF), very-low-frequency (VLF), 
low-frequency (LF), and high-frequency (HF) bands. The power within these frequency 
ranges represents the overall variance, expressed as milliseconds squared (ms2), imply-
ing the greater the power, the greater variation (Fig. 1). Total Power (TP) is a measure 
of overall variance in RR intervals accounting for all sources, nervous, hormonal and 
circadian. It is a measure of overall variation in HR—the greater the TP the more vari-
ance there is within the time series, therefore the heart can adapt quicker to stimulus. LF 
and HF may also be measured as normalised (nu) (LFnu, HFnu) representing the relative 
value of each power whilst correcting for TP. This allows comparison between individu-
als as it accounts for their individual variance. Additional details about HRV measures in 
both time and frequency domains can be found in reference [21].

Traumatic brain injury (TBI) is a sub-category of patients admitted to ICU for criti-
cal care. The latest annual incidence of TBI worldwide indicated that incidence is cur-
rently 295/100,000 for all ages [22]. By 2030, brain injuries due to traffic accidentals 

Fig. 1  Example of RR time series analysis in the Time and Frequency domains. The RR time series are derived 
into the time and frequency domains. Time domain calculates overall variability within the sample, and 
frequency domain calculates autonomic modulation. (Kubios software, version 2.2, Biosignal Medical Group, 
Kupio, Finland)



Page 4 of 11Zhang et al. BMC Bioinformatics 2020, 21(Suppl 17):481

are expected to rise to the 7th leading cause of death [23]. Treatment of TBI is con-
founded by the wide heterogeneity between patient presentations, extensive comor-
bidities and the widespread secondary complications that evolve from the primary 
damage. This diversity between patients makes injury severity difficult to gauge, thus 
clinicians are always looking for newer, patient specific indicators of secondary brain 
injury evolution and outcomes. A method of predicting patient outcome may assist 
in clinical decisions and allow for more informed discussions in family meetings. 
Thus, a model of patient outcome would be a useful tool if incorporated into the ICU 
workflow.

Autonomic impairment after acute TBI has been associated independently with 
increased morbidity and mortality [24, 25]. HRV, as a correlate of ANS regulation of 
HR, provides an ideal physiological marker to form the basis of a prediction model. 
Changes in HRV for brain injured patients have been reported in several studies [26–
30]. In these studies, both time and frequency domains of ECG signals were analysed. 
Winchell et al. [31] studied the effect of alterations in HRV on mortality in a surgical 
ICU population, and reported that low TP (reduced autonomic tone) and high HF/
LF ratio (relative lack of sympathetic tone) were associated with increased mortality. 
A low HF/LF ratio (relatively high sympathetic tone) was also found to be associated 
with increased survival, especially in patients with low autonomic tone. Sykora et al. 
[26] reported that over long term-indiscriminate averaging, autonomic impairment 
was associated with increased HF powers and decreased LH/HF ratio, as measured by 
HRV. This was significantly associated with increased mortality after TBI, independ-
ent of intracranial pressure and cerebral perfusion pressure. For every increase in 
relative HR power, the odds for mortality increased by 4.6%. Haji-Michael et al. [32] 
showed that brain injured patients had reduced HRV, such as a lowered total power 
variability of RR and a lowered LF/HF ratio, whereas recovery of HRV was associ-
ated with an improved outcome. Kox et  al. [33] also investigated the association of 
HRV and the innate immune system response in brain injured patients. They found 
that higher levels of HFnu were correlated with attenuated levels of plasma Tumour 
Necrosis Factor Alpha (TNF-α), indicating a reduction in inflammatory mediators 
and thus demonstrating an immune-suppressive mechanism of action. In the sub-
group of patients with intracranial haemorrhage, increased intracranial pressure was 
correlated to an even higher degree of HFnu and immune suppression. Association of 
brain death with HRV responses was reported in the study of Baillard et al. [34], and 
Piantino et al. [35] also reported that children who progressed to brain death exhib-
ited lower HRV in both time and frequency domains. These findings suggest ANS 
dysfunction may be implicated with poor outcomes and indicate that HRV may be a 
promising predictor of adverse outcomes in TBI patients.

The findings of the above studies were based on univariate analysis. In addition, 
most research regarding TBI and HRV was only carried out with periodic calculations 
(5 min or 10 min recordings), within the acute phase of brain injury (72 h post ictus) 
and free of interventions and confounding medication. This study aimed to investigate 
the aspects of continuous HRV collection from admission across the first 24 h of stay 
in the ICU in severe TBI patients and utilize the continuous HRV measurement to 
develop a patient outcome prediction system. The advantages of using HRV analysis is 
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that it utilises cardiovascular bio-signals that are readily available, pre-existing stand-
ards of care, patient specific and inexpensive, which means that earlier identification 
of outcome in these patients may be improved without an increase in cost of care.

Methods
The goal of this study was to utilize the 24 h continuous HRV measurement and develop 
a surviving prediction system applied to ICU TBI patients. For this study, the model 
development can be described as 3 parts: data collection, feature extraction and building 
of prediction models. See Fig. 2.

Data collection

Electrocardiogram (ECG), mechanical ventilation parameters, medication and the Glas-
gow Coma Scale (GCS) are standards of care that are continuously monitored through-
out a patient’s Intensive Care Unit (ICU) stay. For this study, 26 ICU patients with 
diagnosed TBI were sampled [36]. Medical records and 24 h ECG data were collected 
from the patient bedside GE monitor via a separate output at 300  Hz. Twenty-one of 
these patients survived ICU admission to be discharged to the ward without compli-
cations (survivors); while five patients did not survive ICU (non-survivors). Age, gen-
der, etiology of injury and diagnosis were also recorded upon admission to the ICU and 
inclusion to the study.

Feature extraction

Based on the patient medical records, APACHE II [4], APACHE III [5], and SAPS II 
[7] scores were calculated for each patient. The 24-h ECG signals were analysed using 
Kubios HRV software [37] (version 2.2), and HRV parameters were calculated over con-
secutive 30-min epochs in both the time and frequency domains. The parameters cal-
culated based on time domain included: SDNN, RMSSD and CVRR (the coefficient of 
variation of R-R intervals). Frequency analysis included LF, HF and LF/HF ratio, repre-
senting sympathetic, parasympathetic and sympathovagal balance respectively. Normal-
ised units, LFnu and HFnu were calculated taking into account TP.

To utilize the consecutive HRV parameters calculated on both time domain and fre-
quency domain, Euclidean distance between a time series and a uniformed distribution 

Feature extraction

GA LR

APACHE II
APACHE III

SAPS

HRV
DistHRV

APACHE II
APACHE III
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HRV

Data
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Fig. 2  A diagram of the proposed method. APACHE II, APACHE III and SAPS scores were calculated based on 
medical records. HRV parameters were calculated based on the patient ECG data, and these parameters and 
the distribution of each of the HRV parameters across each of 8 continuous time points were used as the 
input variables (features) to the classification model. The classification model used here is logistic regression. 
A genetic algorithm (GA) was used for feature selection to find variable combinations that build the most 
accurate prediction model.
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was used to measure the variance of the calculated HRV parameters during the consecu-
tive time periods. For example, for a n consecutive 30-min ECG signal, there are a num-
ber of n SDNN calculated. To measure the fluctuation of SDNN across the n consecutive 
epochs, a Euclidean distance between the vector of n values of SDNN and a baseline 
with a vector of n zeros was calculated as a feature of the corresponding time point of 
the patient. For patient i, a Euclidean distance feature based on a n-consecutive 30-min 
ECG segments, DistFi_nseg, can be calculated with the formula below:

where M is total number of the patients, Fi1 . . . Fin are the n features to be calculated, for 
example HR, RR, SDNN, LF_Hz etc. For this study, a total number of 20 HRV param-
eters calculated from Kubios were extracted (Table 1) and 20 Euclidean distance features 
based on these parameters were calculated for each patient.

Due to the nature of the data we collected, which included 2 patients that did not sur-
vive for more than 12 h from admission, for this study a length of 8 consecutive time 
points were used for calculating the Euclidean distance features (DistF). For each patient 
at each time point (a 30 min time period) the corresponding DistF was calculated based 
on the following 8 time points (inclusive).

For example, for a patient with 24 h ECG data collected there would be HRV data col-
lected at 48 time points during each 30 min. Therefore, there will be 41 DistF calculated 
corresponding to 41 time points, which can be used for building the prediction model. 
The data structure for this patient would be like that shown in Table 2. Prediction mod-
els will be built with the sets of selected features from the whole set.

DistFi_nseg =

√

F
2
i1 + F

2
i2 + · · · F

2
in

i = 1, 2, . . .M

Table 1  List of HRV parameters/features extracted from ECG signals

HRV parameter Description (30 min ECG)

HR The mean heart rate

RR The mean of RR intervals

SDNN Standard deviation of RR intervals

RMSSD Square root of the mean squared differences between successive RR intervals

CVRR Coefficient of variance of RR intervals

 VLF_Hz Peak frequency for VLF band

 LF_Hz Peak frequency for LF band

 HF_Hz Peak frequency for HF band

 VLF_ms_sq Absolute power of VLF band

 LF_ms_sq Absolute power of LF band

 HF_ms_sq Absolute power of HF band

 VLF_perc Relative powers of VLF band

 LF_perc Relative powers of LF band

 HF_perc Relative powers of HF band

 LF_nu Power of LF band in normalized unit

 HF_nu Power of HF band in normalized unit

 Total_ms_sq Total spectral power

 LF/HF Ratio between LF and HF band powers

 SD1 Standard deviation of Poincaré plot, nonlinear method to measure short-term variability

 SD2 Standard deviation of Poincaré plot, nonlinear method to measure long-term variability
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Prediction models

Logistic regression (LR) is consistently used in the literature for the transformation 
of ICU severity scores into a probability of patient death in hospitals [12, 17, 18]. To 
compare the predictability of HRV parameters with that of APACHE scores, LR was 
used as a classification method in this research. To search the best set of HRV fea-
tures for predicting the probability of individual mortality, a genetic algorithm (GA) 
was applied for this study.

A GA is a search heuristic to find optimal solutions for a problem. In this study, it was 
used for selecting the best feature set for a classification/prediction model, which was 
built with the LR method. The best feature sets were defined as the ones that discrimi-
nate the best between survivors and non-survivors. The discrimination can be measured 
by false positive rate and false negative rate of the classification. A ROC curve [38] meas-
urement, for example the area under the curve (AUC), can also be used for choosing the 
best model for its overall performance. For this study, a Youden’s index [39] was used as 
the fitness function, considering that AUC does not measure a specific prediction accu-
racy which is needed in practice. More details about how to implement the GA with 
logistic regression can be found in references [40–42].

Separate prediction models using APACHE II, APACHE III and SAPS scores were 
built for comparison.

Results
The experiments were designed to apply the GA with LR using (1) 20 HRV features 
only, and (2) HRV features and HRV based Euclidean distance features (40 in total). 
The results were then compared with the LR using APACHE II, APACHE III, SAPS or 
the combinations of them.

All the experimental results presented in this section were from the runs with 5 
repeated fivefold cross validation, with the same dataset splits applied to all the 

Table 2  Data structure for one patient

*  [0, 0.5) represent the first 30 min (half an hour) of the ECG record.[20, 20.5) represents the ECG record from hour 20–20.5 h 
time point

Time point
(Time period)

HRV features HRV Euclidean distance features

HR RR …… SD2 Time points 
for calculation

DistHR DistRR … DistSD2

1[0,0.5)* 57.7 1040.7 …… 8.6 1–8 166.9 2884.1 32.6 166.9

2[0.5,1) 56.3 1066.0 …… 12.4 2–9 167.3 2876.5 33.4 167.3

3[1,1.5)* 58.2 1030.6 10.0 3–10 168.6 2852.6 33.1 168.6

4[1.5,2) 59.4 1014.3 12.2 4–11 169.0 2846.2 33.3 169.0

5[2,2.5)* 60.2 998.8 11.3 5–12 168.4 2856.6 33.2 168.4

6[2.5,3) 58.2 1032.0 10.8 6–13 167.1 2880.3 33.1 167.1

7[3,3.5)* 60.4 996.3 14.8 7–14 167.1 2879.9 33.2 167.1

8[3.5,4) 61.5 975.8 11.4 8–15 165.9 2900.1 32.2 165.9

⋮ ⋮ ⋮ …… ⋮ ⋮ ⋮ ⋮ … ⋮
40 [19.5,20)* 62.8 957.8 …… 15.1 40–47 259.3 2019.8 … 40.2

41 [20,20.5) 68.5 877.1 …… 12.0 41–48 272.3 1870.5 … 39.0
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compared models. The final sets of features selected by GA were based on 100 
repeated runs. For each fivefold cross validation, the testing set included 1 non-survi-
vor and 20% (4) of the surviving patients with 5 time points (and the following 8 time 
points) randomly selected for each patient (total of 5 * 5 = 25 data points). The rest 
of the whole dataset was used to train the models. A Youden’s index value from the 
fivefold cross validated testing result was used as the fitness function of GA. Table 3 
shows the results from the different feature sets, with the AUC, sensitivity and speci-
ficity from the final model reported. Feature set 6 (LF_Hz, HF_Hz, LF_perc and LF/
HF) were selected from the whole set of 20 original HRV features by GA. Feature sets 
7 and 8 were the subset selected from the total number of 40 HRV features and HRV 
based DistF. We can see with the probability cut off 0.5 from the LR model, all the 
models produced higher specificity than the sensitivity. The models with APACHE III 
included as a variable/feature basically could not predict any non-survivors correctly 
with the default probability cut off 0.5. Overall, the HRV based features worked bet-
ter than the previously adopted injury severity scores. The models created with these 
selected features produced higher AUC, and higher sensitivity with similar specificity. 
Of the previously adopted illness severity scores, only APACHE II gave a reasonably 
competitive result.

Table 3  Cross validation results from the models built with different

*  Sensitivity and specificity were calculated with a probability of 0.5 from LR as a cut-off, which means when the output 
from LR is over than 0.5, it was classified as positive, otherwise negative

Set # Features Training Testing

AUC​
[95% CI]

Sensitivity
[95% CI]

Specificity
[95% CI]

AUC​
[95% CI]

Sensitivity
[95% CI]

Specificity
[95% CI]

1 APACHE II 0.73
[0.7, 0.76]

0.23
[0.15, 0.31]

1
[1, 1]

0.74
[0.63, 0.84]

0.16
[0.01, 0.31]

1
[1, 1]

2 APACHE III 0.6
[0.56, 0.64]

0.07
[0.01, 0.13]

1
[0.99, 1]

0.59
[0.43, 0.75]

0
[0, 0]

0.98
[0.95, 1.01]

3 SAPS 0.73
[0.7, 0.75]

0.08
[0.02, 0.14]

0.96
[0.95, 0.98]

0.74
[0.65, 0.84]

0.04
[0, 0.12]

0.95
[0.91, 0.99]

4 APACHE II
APACHE III

0.77
[0.74, 0.79]

0.2
[0.12, 0.28]

0.96
[0.95, 0.98]

0.65
[0.55, 0.75]

0
[0, 0]

0.96
[0.92, 1]

5 APACHE II APACHE III 
SAPS

0.78
[0.76, 0.81]

0.23
[0.15, 0.31]

0.96
[0.95, 0.98]

0.64
[0.53, 0.75]

0
[0, 0]

0.9
[0.84, 0.96]

6 LF_Hz
HF_Hz
LF_perc
LFHF

0.8
[0.77, 0.83]

0.35
[0.26, 0.44]

0.97
[0.97, 0.98]

0.75
[0.66,0.84]

0.22
[0.08,0.35]

0.93
[0.89,0.97]

7 DistHR
DistHF_Hz
DistHF_perc
DistLF/HF

0.87
[0.85, 0.9]

0.6
[0.54, 0.66]

0.96
[0.95, 0.96]

0.76
[0.64, 0.88]

0.52
[0.34, 0.7]

0.93
[0.9, 0.97]

8 HR
DistHR
DistHF_Hz
DistVLF_perc
DistHF_perc
DistLF/HF

0.9
[0.87, 0.92]

0.68
[0.62, 0.73]

0.96
[0.96, 0.97]

0.77
[0.66, 0.89]

0.65
[0.48, 0.82]

0.92
[0.88, 0.96]

9 HR
DistHR DistHF_Hz DistLF/

HF

0.86
[0.83, 0.88]

0.62
[0.56, 0.69]

0.95
[0.94, 0.96]

0.76
[0.64, 0.88]

0.5
[0.31, 0.68]

0.93
[0.89, 0.97]
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Discussions
The novelty of this study is utilizing feature extraction strategies to predict outcome of 
ICU patients with only HRV parameters derived from the ECG. The Euclidean distance 
features extracted based on the basic HRV parameters contributed to the prediction 
models significantly. The limitation of this study is that there were only 5 non-survivors 
in the data collected, and 2 of them did not survive until the data collection was com-
pleted. With this limitation, our Euclidean distance features were calculated with eight 
30-min consecutive HRV measurement. This can be expanded to a longer time period 
when there are more ECG records available. The proposed model used only HRV based 
parameters that were calculated from ECG signals to build the prediction model. As 
such, this methodology has the potential to be incorporated into the ICU workflow with 
no addition to standard patient care practices. The model produced comparable results 
with the earlier models that were adopted in some clinical applications. It is expected 
that integrating other methods for feature extraction from the ECG signals and health 
records may help the model achieve better prediction accuracy.

Conclusion
The comparison between the prediction models built with different feature sets indi-
cated that HRV based parameters alone may predict the brain injury patient outcome 
better than the previously adopted illness severity scores. Based on these findings, we 
are encouraged to test the method on a larger patient cohort and develop a practical 
model that is able to improve prediction of ICU brain injury patient outcome.
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