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The education‑chasing labor 
rush in China identified 
by a heterogeneous 
migration‑network game
Xiaoqi Zhang1,7, Yanqiao Zheng2,7*, Zhijun Zhao3, Xinyue Ye4, Peng Zhang3, Yougui Wang5 & 
Zhan Chen6

Despite persistent efforts in understanding the motives and patterns of human migration behaviors, 
little is known about the microscopic mechanism that drives migration and its association with 
migrant types. To fill the gap, we develop a population game model in which migrants are allowed 
to be heterogeneous and decide interactively on their destination, the resulting migration network 
emerges naturally as an Nash equilibrium and depends continuously on migrant features. We apply 
the model to Chinese labor migration data at the current and expected stages, aiming to quantify 
migration behavior and decision mode for different migrant groups and at different stages. We find 
the type-specific migration network differs significantly for migrants with different age, income 
and education level, and also differs from the aggregated network at both stages. However, a 
deep analysis on model performance suggests a different picture, stability exists for the decision 
mechanism behind the “as-if” unstable migration behavior, which also explains the relative 
invariance of low migration efficiency in different settings. Finally, by a classification of cities from the 
estimated game, we find the richness of education resources is the most critical determinant of city 
attractiveness for migrants, which gives hint to city managers in migration policy design.

Uncovering the mechanisms that govern the inter-regional migration behavior of human beings is critical for 
understanding and managing a wide range of issues that interest both social scientists and policy makers, from 
analyzing the motives and welfare change of migrants to the design of migration policies1–8. The increased 
availability of large migration data sets that capture details of migration activities creates an unprecedented 
opportunity to explore the motivations, consequences and patterns of migration. The early works in this field 
aim at identifying the overall network patterns provided the occurrence of migration1,9–11, modelling the human 
interaction dynamics that drive migration to happen1,12–22, and quantifying the casual relationship between 
various social-economic factors and migration decision1–6,23–27. Apart from those topics, there is a recent wave 
of studies focusing on unifying the migration decision-making, human interactions and the migration pattern 
recognition together, so as to better understand the complexity of migration. It has been shown that the classical 
gravity law of migration across multiple destinations12–21 can be derived from a destination choice model (DCM) 
for a variety of migrants coming from different starting locations. A more recent work28 shows that interactions 
among migrants can be added into the DCM framework, by which the DCM becomes the destination choice 
game (DCG) that include DCM as a special case . The so-called “route congestion” effect11,28–30 can be formally 
studied within the DCG framework, which merges the heterogeneity of migrants on their starting locations and 
their interactions together, helping DCG generate better fitting to the observed migration trend.
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In addition to the heterogeneity for the starting locations and the interactions among migrants, the other 
fundamental driving force of migration is the benefits that migration can bring to migrants. The benefits of 
migration could depend on a variety of migrant-level social-economic factors in a complex way1–6,23–27. Econo-
mists and sociologists have made persistent effort in both qualitatively and quantitatively understanding the 
relationship between migration decision and the social-economic factors, such as the education, age, income, 
family wealth, gender difference and social capital1,3,4,27,31–34. It is shown that migration is profitable for young and 
poor migrants as it grants them and their later generations with the chance to chase well-paid job opportunity, 
better education and/or healthcare services8,31,35–37. On the ohter hand, migration is costly and hard to afford for 
the migrants with limited family wealth, low education level and lacking of social connection in the potential 
destinations3,4,33,38–40. Therefore, migration is essentially the consequence of a trade off between the benefit and 
cost, the social-economic factors are important as they shape the way to calculate the benefit and cost for differ-
ent types of migrant. On that basis, a natural question is arisen, which factor is most influential for migration 
decision, is migration for chasing better education, healthcare services, job opportunity and/or the others? The 
other related question is whether the relationship between the social-economic factors and migration decisions 
can change over time or is stationary for a long period. This question is critical for multi-stage migrations, but 
due to the limitation in both the data and the empirical methodology, it is rarely studied in the literature. It turns 
out that including the migrant-level social-economic features into the migration decision process is indispensa-
ble for answering above questions, but by now only the location-level heterogeneity are formally studied in the 
framework of DCM/DCG, the variation of the migrant-level features has not yet been included. So, we ask: how 
to incorporate the migrant-level social-economic features into the DCM/DCG framework to study the migra-
tion behavior? Can the inclusion of migrant-level features help generate better forecast for the real destination 
selection? Will they give hint to the deep motives of inter-regional migration behavior and its dynamics?

It is not trivial to extend the location-level heterogeneity to the migrant-level heterogeneity in the DCG framework. 
So, in order to address above questions, we propose a population game to model the interactive migration decision in 
which the migrant-level features are added through a continuum feature space. With the help of adding migrant-level 
features, many meaningful mechanisms, other than the classical congestion effect, route congestion effect and the 
migration cost effect28,39, can be well represented in our model, such as the “subjective congestion effect”, capturing 
the interpersonal difference in evaluating the congestion and its dependence on migrant types. To our best knowledge, 
these mechanisms have not yet been formally studied in the existing literature within the context of migration, despite 
their usefulness in classifying and identifying the attractiveness of destinations, measuring migration efficiency and so 
forth. Our new model is fittable by real data through a mild modification of the game-econometric technique41–45. The 
numeric analysis of the model is based on a resume data set extracted from one most famous online job platform in 
China. The data supports the analysis of two-stage migrations, by which some dynamic facets of the migration pattern 
can be studied. We identify and compare the two-stage labor migration networks, the forecast accuracy and migration 
(in)efficiency are also analyzed as by-products of the model, which grant us the chance to identify the stationary nature 
of the migration decision pattern over time. Finally, we highlight that although the analysis in this paper is mainly 
based on Chinese labor migration data, our method is general and not restricted to labor force migration in China, it 
can be applied to analyzing human migration behavior in a wide range of settings, such as the patient transfer behavior 
among hospitals, international immigration behavior and the vehicle route selection issues.

The remaining sections of the paper is organized as the following. In the result section, an brief overview and 
visualization to the migration dataset studied in the paper are provided, followed by a formal description on 
the migration game model and the equilibria migration network, inefficiency index network derived from the 
model. On the basis of model fitting, we discuss the stationary nature of the hidden migration decision pattern 
behind the two-stage migration, and sketch how the migrant-level heterogeneity affects the migration patterns 
and the migration efficiency. In the end, we introduce a classification criterion for cities according to the inef-
ficiency level of migration flows and briefly discuss the implication of applying the classification to our data. In 
discussion section, we discuss the further implication of our game model and data analysis. "Method" section 
introduces the technical details of the set-up of migration game model and its training procedure.

Results
Data description and the network structure of aggregated migration flows.  We study the labor 
force migration of Chinese online job-seekers by a large resume dataset. The resume data is collected from Zhao-
pin.com that is one leading online platform for job seeking in China and has a resume database consisting of 
tens of million resumes filled by real job-seekers when they registered on this platform. Since the filled resumes 
have high probability to be viewed by HRs from the intended recruiters, the information filled by job-seekers is 
believed to reflect their truth and is updated in time. The questions mandatory to be answered include the gen-
der, age, marriage status, education experience, past working experience (most job seekers on zhaopin.com has 
at least one job before), the previous working industries and so on, from which 77 migrant-level feature variables 
can be extracted (a complete statistic description of these variables in our sample can be found in the supplemen-
tary to the paper). The resume also contains the information of migrant’s hukou place, the current working place, 
the expected working places. Since the hukou place of job seekers can be identified as the place where they come 
from, the resume data set provides a two-stage OD trajectory data set for the labor force migration in China that 
are the stage (1): hukou place → current working place and stage (2): current → expected working place.

The data that we have the access is a purely random subsample of the full resume database which consists of 
resumes from 80,000 job-seekers (after dropping the records with missing values, 75,616 records are remained), 
the most recent update time of the resumes in this sample is by Jun. 2017. The included hukou places, working 
places and expected working places cover 400+ cities in China which include all the 286 prefecture-level cities 
and a set of lower-level cities of China, therefore we believe the subsample presents a good representative for the 
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city-level labor force migration trend at least for the sub-population who seek job online. To avoid over-fitting, 
we group all the destination cities into 22 city clusters among which the first 21 city clusters are officially declared 
in the Chinese Statistical Yearbook (2015), the last one consists the cities that are not contained in any of the 
officially declared city clusters.

From the data, the aggregated migration network for the two stages can be calculated simply by counting the 
number of sampled migrants who migrate between every city pair. We can discuss the structural features of the 
migration network and its structural changes for the two migration stages. The two-stage networks are presented 
in Fig. 1a,b, where to generate clean plots, we only display the migration arrows across the 22 city clusters and the 
migration arrows within every city cluster. Comparing the two plots, the decentralization or multi-centralization 
trend is observed, and this trend can also be verified through comparing Fig. 1c,d where the blue line represents 
the total to-degree of every city cluster. From Fig. 1a,c, during the first stage, Beijing is the unique global flow-
in center of all migrants, attracting migrants from both the other major cities (city clusters) in China, such as 
Shanghai, Guangzhou, and the lower-level periphery cities (grouped within “Other cities”). Although there do 
exist a couple of local flow-in centers such as Changchun in the north China and Shanghai in the East China, 
while their attractiveness is not comparable to Beijing at all. In contrast, during stage (2), multiple global flow-
in centers emerge and they are detectible from comparing Fig. 1b,d. The local centers, such as Guangzhou, 
Zhengzhou and Xi’an, are upgrade to global centers and their attractiveness becomes in line with Beijing, which 
impedes the leading position of Beijing. The attractiveness of Beijing is even reduced in the absolute sense that 
the strong migration flows from the local centers, such as Shanghai, Fuzhou, Guangzhou and Shenyang, in stage 
(2), are significantly weakened or even disappears during stage (2). Finally, during stage (2), many tier-2 cities, 
such as Zhengzhou, Changsha and Xi’an, starts to be attractive for migrants who come from periphery cities. If 
we focus on the within-cluster migration trend, the difference between the stage (1) and (2) migration is also 

Figure 1.   Overall migration network for the two-stage migrations (a,b) sketch the aggregated migration network 
formed by the mean conditional migration probability from the origin city (group) to the destination city (group). 
To simplify network structure, only the 178 cities included in the officially declared 21 major city clusters are 
plotted with their exact geographic locations (longitude v.s. latitude). All the cities out of the 21 city clusters are 
clapsed into one point labeled with “other cities”, the location of this point does not have any geographic sense 
and only the arrows linking this point with the others are meaningful. The central cities in the 21 city clusters are 
highlighted with their name labeled. The bold arrows between city pairs always point toward the destination city, 
the size, darkness and opacity of the arrow represent the value of the aggregated mean migration probability. For 
the simplicity of representation, the aggregated mean migration probability is calculated only for central cities of 
the 21 city clusters and the “other cities” through summing up the mean migration probability between all city 
pairs in the origin and destination city clusters, therefore all bold arrows are always link two central cities (or the 
“other cities”). The migration flows within each of the 21 city clusters are kept and represented as the slim arrows, 
their size, darkness and opacity represent the absolute value of the migration probability from the origin to the 
destination. (c,d) present the to-degree of every city cluster from the other city clusters and the total link weight 
within every city cluster (the sum of migration probabilities between all city pairs within a city cluster) for the 
migration network of stage (1) and (2), respectively. The to-degree reflect the attractiveness of a city cluster and 
the total link weight charaterize the tightness of inner-connection within each of the city clusters.
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remarkable and coincides with the trend of decentralization. In fact, by the comparison between Fig. 1c,d, the 
internal migration intensity is strengthened significantly for two city clusters in the stage (2) that are the set 
of other cities and city cluster centered at Beijing. The former implies an increasing trend of the out-of-center 
migration46, while the later implies the decline of Beijing in terms of absorbing local migrants which reinforces 
the finding that the attractiveness of Beijing is reduced in the absolute sense.

The observed decentralization trend is highly consistent with the divergence in city development planning 
and migrant-related policies since 2016 between the capital city Beijing and the other major cities in the middle 
and western area of China. Since 2016, Beijing started to control its population scale, issue unfriendly residential 
policies that expel the so-called “low-end” migrants who are the low-educated, low-skilled, low-income and 
elderly contractor workers without registration in local hukou system. In the mean time, many tier-2 cities in the 
middle and western area of China, such as Xi’an, Chongqing, Chengdu, Wuhan, and cities in the Yangtze river 
delta area, such as Hangzhou and Nanjing, and cities in the Pearl river delta area, such as Shenzhen and Guang-
zhou, became migrant-friendly and relaxed the hukou restriction to attract young migrants with relatively high 
education level. Since the second-stage migration in our dataset only refers to the expected migration which has 
not yet happened in reality, the expectation of migrant workers reacts much more quickly to the policy change 
than their real migration decision, the structural change of the migration network between the two stages is by 
and large attributable to the non-homogeneous change of migration policy in different cities.

Although the overall migration network is informative, it is not complete. In reality, the migration network 
often varies along with migrant types, such as the education, income and age3,34,38,47, while the aggregated net-
work fails to detect the difference. In addition, there are complicated interactions among migrants which also 
contribute to the formation of migration network28 but are not reflected in the aggregated network. To this end, 
we shall develop an empirically-fittible population game model for further investigation.

A family of large migration game.  For simplicity we focus on the origin-destination (OD) type of migra-
tion trajectories, but the framework can be easily extended to more general situations. To formulate the interac-
tions among migrants, a large population game is established where the player set is viewed as a large random 
sample drawn from a continuum feature space and all the strategies that players can select are identified as the 
set of destination locations. The continuum feature space assumption is designed to capture the heterogeneity of 
players and the fact that there are always enormous players involved in the migration analysis. For short, we shall 
call this game model as migration game throughout the paper.

Formally, consider a family of normal-form games defined through the following four components and 
represented as the tuple G(XN ⊂ P := C × R

p,C,µ,U) : 

 A1.	� Pure strategies: denote C = {c1, . . . , cn} as the pure strategy set which consists of all possible destination 
locations for players.

A2.	� Players: denote Rp as the p-dimensional feature space, every x ∈ R
p represents a personal feature profile 

that associates with a given player (type). Augmenting Rp with the origin place C forms the full set of 
potential players characterized by both their personal and location features, denoted as P = C × R

p . 
The set of N players XN is randomly drawn from P , according to a known distribution µ , which can be 
interpreted as the population distribution.

A3.	� Mixed strategy: players are allowed to take mixed strategy, the mixed strategy set is represented as the set of 
vector-valued function P = {P : XN → SC} where SC = {(p0, . . . , p|C|−1) ∈ R

c : pi ≥ 0,
∑|C|−1

i=0 pi = 1} 
is the |C| − 1 dimensional simplex, |C| is the cardinality of C . Then, for every destination j ∈ C , the jth 
coordinate projection Pj(i, x) will be the probability that a player (i, x) ∈ XN selects to migrate to j under 
the mixed strategy P. Without loss of generality, we assume P ∈ P is smooth up to a certain order with 
respect to x ∈ P , i.e. P is the restriction of a smooth function onto XN , which implies that two players 
who are similar to each other in both of origin and features should make similar choice of strategies to 
some extent.

A4.	� Utility: denote up as the pure strategy utility function of players, it takes the following form for a given 
player x+ = (i, x) ∈ XN and a pure strategy profile s = {sx′+ ∈ C : x′+ ∈ XN } : 

 where s−x+ is a pure strategy combination executed by players other than the decision player x+ , I is the indica-
tor function. F is a continuous function; T is a pairing weight function valued in the unit interval [0, 1] which, 
for a given player x+ , describes which group of competitors, namely {x′+ ∈ XN : T(x+, x′+) > 0} , will be taken 
into account and how influential, measured by the value of function T(x+, ·) , the competitors are for x+ ; g is 
interpreted as the ideal population ratio that the destination location should have, which is a kind of private 
information for every player and the features of every player can affect this quantity in a certain way. The util-
ity for mixed strategy is calculated from Eq. (1) by the standard von-Neumann–Morgenstern expected utility 
theory, denoted as UvNM.

For every pure strategy j, Eq. (1) postulates that the utility it brings for every decision player depends on the 
difference between the actual population ratio [represented as the partial sum term in Eq. (1)] and the ideal 
population ratio [represented as the value of function g in Eq. (1)]. This difference can be interpreted as a measure 
for the degree of congestion in the destination city. As both the ways to count the actual population ratio and 
the ideal population ratio in Eq. (1) are allowed to vary from player to player, the congestion effect studied in 

(1)up(x+, j, s−x+) = F





1

N − 1

�

x′+ �=x+

I(sx′+ = j)T(x+, x
′
+)− g

�

x+, j
�




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this paper is essentially the subjective congestion effect, which gives full respect to the migrant-level heteroge-
neity, and is more flexible, including the widely studied congestion effect and the route congestion effect11,28–30 
as special cases. For the actual population ratio of a given decision player, only those players within the target 
group are counted, while which player is in the target group is completely determined by the pairing function 
T(x+, ·) evaluated at the feature type of the decision player. Hence, the pairing function T encodes the relationship 
among players, it can be interpreted as the continuous-version adjacency matrix of a player-to-player network. 
This player-to-player network is closely related to the concept of “social capital” in the studies of social network, 
including it into the utility function helps establish a quantitative connection between the adjacency matrix 
of the social network among migrants and that of the migration network among regions22. This connection is 
important to understand the formation of migration trajectories. To our best knowledge, our work is the first 
attempt to connect the two networks together at the adjacency-matrix level.

The ideal population ratio is also conditional on the feature of every player. This is because different players 
often disagree with each other, the disagreement can come from both the difference in personal characteristics 
(represented through their feature vector x) and the different original cities1,28. For instance, local residents with 
higher education level are more likely to survive in expensive meta-cities than those migrants with lower edu-
cation level, consequently, the former group of people tend to evaluate a greater g for big cities, while the later 
group would assign a greater g to small and cheap cities when all others equal.

Throughout the application of the current paper, we simply assume F(x) = −x2 , and g is parametrized 
through the logistic form

where x is the person-level feature vector for a given player, xi and xj are the city-level feature vectors associated 
with the origin city i and destination city j, respectively. θg (:= (θg ,1, θg ,2, θg ,3)) consists of the three coefficient 
vectors associated with the feature xi , x and xj . Under this specification, we assume that every job-seeker obtain 
utility from migration to city j through comparing the difference between his/her subjective optimal population 
ratio of city j measured by g(i, x, j) and the actual ratio of job seekers that select to migrate into j. Using quadratic 
functional form for F(x) captures that the utility is maximized if and only if the actual population ratio is just the 
ideal ratio, both overwhelming and unsaturatedness would lower down the attractiveness of a destination (notice 
that the quadratic form of F can be generalized to any functional form preserving the preference order that would 
have no impact on the current analytic and numerical results, for instance the quadratic form can be replaced 
by another function that has unique peak value and is symmetric with respect to the peak). This specification 
captures the dynamics of migration in many real world settings (e.g. the labor force migration game, the vehicle 
route selection game), similar utility functions are also used in the literature39.

For the pairing function and T, we consider two alternatives that are the constant function T ≡ 1 and the 
binary({0, 1})-valued function with T

(

(i, x), (i′, x′)
)

= 1 if and only if i = i′ . The later option describes the peer 
effect behind migration by which migrants only take their “peers”, the migrants who come from the same ori-
gin, into account. A preliminary analysis shows that the constant function dominates the “peer-effect” pairing 
function in forecast accuracy for migration decision at both migration stages, therefore, we would only focus on 
the simpler setting T ≡ 1 in the following sections. One reason for the relative disadvantage of the peer-effect T 
might be that the destination locations in our data are the city-level locations which are too-large to allow the 
peer effect to work.

Finally, note that under the adjacency matrix interpretation of T, the constant pairing T ≡ 1 is equivalent to 
that the social network that drive the formation of migration network is essentially a fully-connected network. 
In the other words, every job-seeker in the game will put equal weight to the decision of all the other players. 
This assumption is a bit weird as in reality job seekers is not possible to know all their competitors. But on the 
other hand, this assumption is equivalent to ask the job-seekers read the officially published population data of 
every city, which is not that unrealistic any more. It is definitely possible to set a more subtle form of the pairing 
function T so as to better reflect the impact of social networks among job seekers, but that is beyond the scope 
of both the data and the current study, we leave it for future studies.

Equilibrium, migration network and efficiency.  The actual migration should happen in the way that every 
migrant in the system can only move to the destination that maximizes their utility given the choice of the oth-
ers, which can be perfectly captured by the Nash equilibrium of the migration game. In fact, we can assume the 
following without loss of generality.

Assumption 1  Given n randomly sampled migrants {x+,i : i = 1, . . . , n} , there exists an Nash equilibrium mixed 
strategy {P∗E(x+,i , ·) : i = 1, . . . , n} such that the observed n OD trajectories {ODi : i = 1, . . . , n} are independent 
random samples with each ODi drawn from the law of P∗E(x+,i , ·).

This assumption sets the actual migration trajectory as a random consequence with the randomness governed 
by a set of probability laws that are derived as a latent mixed-strategy Nash equilibrium of a proper migration 
game. The randomness set-up is to capture the impact of individual heterogeneities that are unobservable and 
beyond the scope of the observed feature x. We show in the method section that under Assumption 1 the pro-
posed migration game can be fitted by real OD-trajectory data through a constrained maximum likelihood 
procedure, and a fast algorithm is provided to generate consistent inference for both the equilibria migration 
probability and the underlying game that migrants actually play.

(2)g(i, x, j|θg ) =
1

1+ exp(−θ⊤g ,1 · xi − θ⊤g ,2 · x − θ⊤g ,3 · xj)
,
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For an Nash equilibrium, PE , of the migration game G(XN ,C,µ,U) that generates the observed trajectory 
data, we can always construct the equilibria migration network which is representable as the following directed 
weighted adjacency matrix:

The ijth entry of Mx is the probability that a player would like to migrate from his/her origin to the given desti-
nation, which can be interpreted as the migration intensity for a certain type of migrants x. The dependence of 
Mx on player’s feature x reflects the heterogeneity of migration networks across different types of player, which 
is of the great interest in this study.

Apart from the adjacency matrix, a set of quantitative indices can be constructed from combining both of 
the game structural information and the equilibria migration probabilities. For instance, the following index 
is constructed as an analogue to the measure of energy conservation in physics, which is the product of two 
deviation quantities and presents a quantitative measure for the inefficiency degree of the migration dynamics 
governed by the equilibria migration networks (3):

where

In fact, under the set-up F(x) = −x2 , a great positive DEx,ij implies two situations: (1) the location j has been 
overwhelming (positive DE1x,ij ) in the view of the player with type x coming from i, but the player is still highly 
likely to move in (positive DE2x,ij ); and (2) the location j has the potential to grow up (negative DE1x,ij ) in the view 
of the player while he/she is less likely to move in (negative DE2x,ij ). Therefore, the positive DEx,ij s would polar-
ize the population distribution across cities, which would induce the coexistence of resource overuse and over 
in-flow, and cause the migration inefficiency. In contrast, negative DEx,ij implies an equalization potential for 
the population dynamics which we think as the representative for migration efficiency.

Heterogeneity of migration networks cross migrant types.  The proposed game model is applied to 
infer the type-specific migration networks for a variety of migrant types. In practice, it is needed a set of migrant-
level features and city-level features to fit the migration game model and derive the equilibria migration net-
works. In our case, there are 77 migrant-level features and 21 dummy variables accounting for the heterogeneity 
induced by the 22 city clusters. To avoid the multicolinarity for migrant-level features, we adopt the principal 
component analysis (PCA) method to generate a few principal features that covers 99% of total variance of the 
migrant-level variables. The number of the remained PCA features is 15. We will run the estimation based on 
the 36 (= 15 + 21) feature variables for the two-stage migration data. The result is presented in Fig. 2. by which 

(3)Mx = {PE(i, x, j)}i,j∈C, x ∈ P.

(4)DEx =
{

DE1x,ij · DE2x,ij
}

i,j∈C
, x ∈ P

(5)DE1x,ij =
(

PE(i, x, j)−
∫

C×P/{(i,x)}
PE(i

′, x′, j)T
(

(i, x), (i′, x′)
)

dµ(i′, x′)

)

(6)DE2x,ij =
(∫

C×P/{(i,x)}
PE(i

′, x′, j)T
(

(i, x), (i′, x′)
)

dµ(i′, x′)− g(i, x, j)

)

Figure 2.   Heterogeneity degree of migration networks. The figures sketch the variation trend of P values at both 
migration stages for the null-hypothesis that the overall and type-specific migration networks are identical to 
each other for a series of migrant types. (a) Presents the P values variation along with the increasing of migrant’s 
education level, (b) with the increasing of monthly salary, and (c) with the increasing of migrant’s age.
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we discuss the structural change of the migration network against the two migration stages and three classes of 
migrant-level features, including the education level, age and income. The three classes of features are selected 
according to the existing literature in which these features are most critical to migration decision3,34,38,47.

In Fig. 2, we first test the significance of the heterogeneity of migration networks against a variety of migrant 
types. Within each migrant type, we calculate the type-specific migration network through marginal integration 
of the estimated equilibria networks over the domain of migrant features provided that the given dimension 
of x (education, income and age respectively) is fixed at the desired type value. To show the significance of the 
heterogeneity of type-specific migration network we conduct the Z test against the null hypothesis that the given 
type-specific migration network is indifferent from the overall network. Under the null hypothesis, the entry-
wise difference between the estimation of the type-specific and the overall network should be a random variable 
drawn from a zero-mean distribution. In Fig. 2, we report the Z test result for all different education, income and 
age types and for both stages of migration. From Fig. 2, a majority portion of migrant types are heterogeneous 
at the 0.1 confidence level and around a half of types have distinct migration network at the 0.05 confidence 
level. This result verifies the necessity to include migrant-level features into the analysis of migration networks. 
Among the three classes of migrant types, it is found that for education types, the migrants with undergraduate 
degree at stage (1) and migrants with professional school degree at stage (2) tend to deviate most significantly 
from the aggregated population; for income types, the extreme high-income group (with monthly salary above 
84,000 Chines yuan) at stage (1) and the middle-class (with monthly salary around 6,000 Chinese yuan) at stage 
(2) deviate most; for age types, the youngest migrants (older than 10 but younger than 20) at stage (1) while 
the middle-aged adults (between 30- and 40-year-old) at stage (2) deviate most. Based on these results, we can 
roughly summarize such a rule that at the initial stage of migration, the migrants with some extraordinary fea-
tures (such as high education, high income and extreme low age) are more likely to behave differently, while in 
the expected stage of migration, the migrants that take the most proportion within the whole population (such 
as middle education, income and age class) tend to deviate significantly. This contraction is quite interesting and 
deserves further explanation in the future studies.

In sum, Fig. 2 validates such a viewpoint that the migration network is not universally homogeneous for 
different migrant types. The heterogeneity is rooted deeply in the social-economic background for particular 
types of migrant, therefore, to understand the real mechanisms that govern the labor force migration behavior, 
including the migrant-level heterogeneity is indispensable. This fact proves, once again, the usefulness of the 
model proposed in this paper. Finally, note that Fig. 2 only characterizes the significance of the deviation between 
type-specific and overall migration networks, it does not reveal how the deviation happens. In the supplementary, 
we present more details of the deviation through plotting the difference migration network, which is formed 
by entry-wisely subtracting the type-specific migration probability from the overall migration probability (see 
Supplementary Figs. S1, S2 and the attached discussion).

Forecast accuracy and the stationary nature of migration dynamics.  In this section, we validate 
the inference made by our population game model in terms of its forecast accuracy. The accuracy is evaluated 
at both migration stages by which a comparison of the decision pattern between the two stages is conducted. 
We divide the full sample into a training sample which consists of 68,000 randomly picked resumes from the 
full sample and a testing sample that include the remained 7,616 resumes. Due to the large size of the training 
sample, we apply a bootstrap method to fulfil the estimation. We randomly partition the training sample into 10 
subsamples with equal sample size and run the fast estimation algorithm (see the “Method” section) on each of 
these subsamples. Based on the estimation result of each subsample, we generate a set of forecast on the test sam-
ple and calculate the accuracy, the final accuracy is aggregated through averaging over all the subsample accura-
cies. A comparison is made on the forecast accuracy for our game-based method (GBMLE), the kernel-density 
forecast (see “Method” section) and the forecast by the aggregated adjacency matrix (Fig. 1a,b) that is calculated 
through counting the proportion of migrants starting from every given city to all the other destination cities9,10.

Since there are about 400 destination locations and every migrant only selects one as its destination, gener-
ating forecast in this case is a typical multi-class classification problem. Following the literature48,49, we adopt 
the set-valued forecast method to generate destination forecast from the computed migration probability and 
evaluating its accuracy. Given the migration probability for every destination location, we first sort all destina-
tions in the descending way by the probability values. For a given positive integer k, we consider the top k forecast 
as the set of first k destinations in the sorted sequence. The top k forecast is thought to be accurate if and only if 
the true destination falls into the top k set. In Fig. 3, we plot variation trends of the forecast accuracy along with 
the parameter k for the migration probabilities calculated by three different methods.

From Fig. 3a,b, the proposed GBMLE method generates the best forecast accuracy for almost all k in both the 
two stages of migration, while the kernel forecast outperforms the aggregated forecast in general. This observation 
verifies our theoretical prediction that the GBMLE method outperforms the kernel method by incorporating the 
game structural information, while they both dominates the aggregate method because they both distinguish 
the migrant-level heterogeneity while the aggregated method does not.

In addition to the overall accuracy, it is also impressive that the GBMLE forecast accuracy can reach its maxi-
mum even when k is fairly small, while the average accuracy exceeds 95% at k = 1 . In the other words, there is 
at most 5% chance by which the maximum-a-posteri forecaster would mistakenly pick one destination out of 
400 alternative destinations. In contrast, the maximum-a-posteri forecast by the kernel method and aggregate 
method would have 50% chance of making mistakes. This difference is striking and it demonstrates the power 
of adding the game structural information in increasing the forecastibility.

By the green lines in Fig. 3a,b, we make a counter-fact experiment. The purpose is to test the forecastability 
of the 1st-(2nd-)stage migration trajectories by the estimated 2nd-(1st-)stage migration game model. In details, 
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when generating the green line in Fig. 3a, the model parameters are the same as those used in generating the blue 
line in Fig. 3b which are estimated from the migration data at stage (2), rather than from the “correct” stage (1). 
The relation between the green line in Fig. 3b and the blue line in Fig.  3a is the same. Compare the green with 
the blue line in Fig. 3a(b), we find that although the forecast accuracy by GBMLE is a bit lower after replacing 
the model parameters, it is still significantly higher than the alternative methods (they are not affected by the 
parameter change). Moreover, the accuracy for the maximum-a-posterior forecast by GBMLE in the parameter-
change case can still be around 91%, which has been good enough and is not much different from the case that 
“correct” parameters are used. Therefore, it can be expected that the underlying mechanisms driving the observed 
migration are not significantly distinct for the two stages, and migrants’ behavior is highly consistent over time. 
This finding is very striking, because according to the model set-up, this finding implies a kind of “where-they-
stand-depends-on-where-they-sit” decision pattern: given that the migrant-level features are identical for two 
migrants A and B while their original cities, CA and CB, are different, if A migrated to CB during the first stage, 
then the decision pattern of A in choosing the second-stage destination would be analogous to the decision 
pattern of B in choosing the first-stage destination while differs from A itself during the first-stage decision. In 
the other words, the labor migration dynamics revealed by our data follows a Markovian decision process, i.e. 
when all others equal, only the current destination matters the migration in the future, the home town does 
not. This finding presents a positive evidence for the use of markovian models in describing human migration 
dynamics33,50. Finally, note that the observed “where-they-stand-depends-on-where-they-sit” decision pattern 
and the markovian property relies heavily on controlling the migrant-level heterogeneity. Without including 
the social-economic features of migrants, the feature-dependent migration probabilities reduce to the entries 
in the aggregated migration adjacency matrix which are significantly distinct for the two migration stages by 
Fig. 1, therefore, the markovian properties is not detectable unless the migrant-level heterogeneity is involved. 
This fact validates the usefulness of our model.

Migration inefficiencies and polarization of migrants distribution.  We ask whether the observed 
migration is efficient and how the degree of efficiency (measured by Eq. 4) varies in reaction to the migrant types 
and migration stages. To this end, we plot the overall inefficiency network [calculated by entry-wisely integrating 
equation (4) over all migrant-level features i.e. DEX := { 1

|X |
∑

x∈X DEx,ij} with | · | representing the cardinality, 
X the set of all migrants having the given feature] in Fig. 4a,b for the two migration stages from which it is visual-
ized that the spatial distribution of the positive/negative signs of the inefficiency arrows and the arrow strengths 
(corresponding to the sign and absolute value of entries of the inefficiency matrix (4)) are almost identical for 
both of the two migration stages. The stability of the migration inefficiency is also verified by Fig. 4c–e where 
we plot the aggregated two-stage migration inefficiency against different education, income and age types. It 

Figure 3.   Forecast accuracy for two-stage migrations In the two figures, the horizontal axis represents the 
cut-off value k for the top k forecast introduced in the main text, the vertical axis represents the accuracy 
rate, therefore, each curve in the two figures presents the variation trend of out-sample forecast accuracy of 
a given method along with the parameter k. (a,b) Represent the stage (1) and (2) migration, respectively. The 
red and yellow lines represent the forecast accuracy generated by the kernel method and aggregated method. 
The blue line is the accuracy curve generated by the proposed GBMLE method. The blue line in both (a,b) are 
generated by the same set of training and testing sample, which means the trainning sample used to estimate 
game parameters are drawn from the same population to the testing sample used to evaluate the accuracy. In 
the other words, in (a) both the training and testing sample to generate the blue line are drawn from the stage 
(1) migration data, and in (b) both the trainning and testing sample are drawn from the stage ii) migration data. 
In contrast, the green lines in (a,b) sketch the accuracy of GBMLE by using counter-fact trainning and testing 
sample. In (a) the game parameters are estimated from the trainning sample drawn from the stage (2) migration 
while the accuracy is evaluated by the stage (1) testing sample, in (b), the opposite holds, the game parameters 
are estimated from the stage (1) training sample while the accuracy is evaluated by the stage (2) testing sample.
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is shown that for the major portion of migrants in our sample, which are the migrants with education level no 
more than undergraduate, monthly income no more than 42,000 and age older than 20 and younger than 50, 
the variation trend of the overall inefficiency against the increasing of education, age and income are parallel for 
the two stages, while the 2nd-stage overall efficiency are systematically higher than the 1st-stage by a constant 
which reflects as the aggregated inefficiency measure (Eq. 4) in Fig. 4c–e is lower in stage (2). In order to measure 
the significance of the difference, we conduct the left-tail Z test and the result in Fig. 4f–h shows that at the 5% 
confidential level, the inefficiency measure in stage (2) is significantly lower than that in stage (1) for the major-
ity portion of migrants. In addition, we apply ANOVA to test the significance of the parallel difference trend, it 
shows that within the same range of education levels as above, we cannot reject that the 2nd-stage inefficiency 

Figure 4.   Migration efficiency across different migrant groups (a,b) plot mean of the migration inefficiency 
network (4) for the stage (1) and (2) migration, respectively, where the arrow always points toward the 
destination of the migration flow, the size, darkness and opacity of the arrow represents the absolute mean 
value of the inefficiency measure, and the blue-colored arrow implies negative mean inefficiency measure and 
the red-colored implies positive mean inefficiency measure. The inefficiency is aggregated up to the city-cluster 
level and every city cluster is represented by their central city. (c–e) Present the average of the mean inefficiency 
measure over all city pairs within a variety of education, income and age groups, respectively. Within each of the 
subfigures, we also decompose the ineffiency measure into the positive part and negative part, and take average 
for each of these two parts. (f–h) Sketch the gap of the average inefficiency measure over all city pairs between 
the migration stage (1) and (2), and the left-tail pvalues of the null hypothesis that the average inefficency 
measure is indfference between stage (1) and (2), where the smaller pvalue means the greater confidence to take 
the alternative hypothesis that the average inefficiency is lower for stage (2) than stage (1).
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curve in Fig. 4c differs from the 1st-stage inefficiency curve by a constant even at the 20% confidential level, the 
same holds for age and income as well which provide positive evidence for the parallel trend.

The increasing migration efficiency is quite intuitive and consistent with the job searching theory51 since the 
first-stage migration helps accumulate more information of the potential destinations that facilitates migrants to 
make rational decision. The relative invariance of migration efficiency against the variation of multiple migrant-
level features is quite surprising. One possible explanation for this observation is the invariance of the migration 
game which is supported by Fig. 3, because the identical game set-up implies the same functional form of g which 
defines the ideal population ratio of each destination and also consists of a key component of the inefficiency 
measure (4). Hence, the invariance of g provides a stablizer for the two-stage migration inefficiency.

Finally, it is observed from Fig. 4c,d a decreasing trend of migration inefficiency along with the increasing 
of education and income at least for the majority population (education level less than the master’s degree and 
monthly salary less than 42,000). This observation implies that high-educated and well-paid migrants tend to 
make more rational decision in selecting destination which agrees with the literature52 that high education can 
increase the decision rationality and the fact that the high income are often the consequence of high education.

Classification of destinations and education‑chasing behind migration dynamics.  From Fig. 4, 
it is clear that in both of the two migration stages, the overall efficiency is poor (reflected as the inefficiency meas-
ure is significantly positive for both stages). Then it is natural to ask what causes the inefficient migration. To 
answer that question, we notice that there are two sources leading to the positive inefficiency measure by defini-
tion equation (4): (1) a migrant is more likely to migrate to a destination than the average even if the given desti-
nation is already over-sized in his/her view; (2) a migrant is less likely to migrate to a destination than the aver-
age while the destination can better off if more migrants can come in. Similarly, the negativity of the inefficiency 
measure also arises from two sources that are exactly opposite to the two above. Given that, all destination cities 
can be partitioned into four classes: (I) the np cities that consist of the unsaturated cities (with 

∑

i DE
2
x,ij < 0 ) 

with positive aggregated flow-ins (
∑

i DE
1
x,ij > 0 ); (II) the nn cities that consist of the unsaturated cities (with 

∑

i DE
2
x,ij < 0 ) with negative aggregated flow-ins (

∑

i DE
1
x,ij < 0 ); (III) the pn cities that consist of the oversized 

cities (with 
∑

i DE
2
x,ij > 0 ) with negative aggregated flow-ins (

∑

i DE
1
x,ij < 0 ); and (IV) the pp cities that consist 

of the oversized cities (with 
∑

i DE
2
x,ij > 0 ) with positive aggregated flow-ins (

∑

i DE
1
x,ij > 0).

We ask what is the major feature of the four classes of city, how do they differ from each other and how is 
the difference related to the inefficient migration pattern? To this end, we consider the seven city-level features: 
population, GDP, foreign direct investment (FDI), total road length, city building area, the total number of 
teachers in all primary and middle schools and the total number of beds in all hospitals. The seven features are 
devoted to capture the social-economic development level of a city, among which the number of teachers and 
beds are proxies to the education and healthcare resources, which are two most important public goods and very 
influential to migration decision35–37,53. The city-level feature data is collected from Chinese Statistical Yearbook 
(2015) which are only available for the 178 cities in the 21 city clusters, so the aggregation is also taken on that 
basis. Fig.  5a–c present the mean of the seven features within each city class where the city classification and 
mean features are calculated for the overall inefficiency measure (integrating DE1x,ij , DE

1
x,ij with respect to all i 

and x) and for both migration stages.
Since the inefficiency measure (Eq. 4) is defined on the level of migration flow between city pair, the four 

classes of cities can even be extended to the set of all migration flows, which becomes four classes of ordered city 
pairs. For each of the city-pair classes, we compute the OD ratio of the seven features which are ratios formed by 
dividing the value of the origin city at a certain feature dimension by that of the destination city. The OD ratios 
convey more information than the absolute value of city-level features because they encode the comparison 
between the origin and the destination cities. The mean OD ratio for the four city-pair classes and its variation 
along with education, age and income are plotted in Fig.  5d–f (in Supplementary Fig. S10, we plot the radial 
graph for the mean features and OD ratios for the per capita value of the six features other than population, 
which is the quotient by letting the feature value divide the population, which shows a qualitatively identical 
pattern to the Fig. 5).

The geometric shape of the feature area within each of the radial plots in Fig.  5 are quite identical for both 
migration stage (1) and (2), this observation supports, once again, the invariance of the migration game. For the 
mean features and OD ratios of the city classes, some remarkable properties can be concluded. First, compared 
to the unsaturated cities (the nn and np class in Fig. 5a,c), the oversized cities (the pn class in Fig. 5b) are signifi-
cantly greater in both migration stages and in all of the seven city-level features. This finding is not trivial because 
except for the 22 city-cluster dummy variables, no city-level social-economic feature is included when fitting 
the migration game. In the other words, the classification by the migration data can have a perfect match to the 
real social-economic gap between the “large” and “small” cities even though the social-economic data of cities 
are missing from the classification process. This result establishes a natural link between the migration behavior 
and the city “size” which suggests a novel way to describe the “largeness” or “smallness” of a city.

Second, the np class differs from the nn class mainly in the stock of education resources measured by the num-
ber of teachers in primary and middle school and the np class of cities tend to own better education resources. 
This fact is robust for both migration stages, and can even be reinforced through comparing Fig.  5d,f where the 
relative advantage on the teacher’s number is much more significant for those np city pairs. The right-tail Z test 
is conducted to measure the significance of the finding for a variety of migrant types, the result shows that the 
teacher’s number is always significantly higher in the np class at the 0.05 confidential level for almost all situations 
(see Suplementary Fig. S3). In contrast, the other features, such as the healthcare resources measured by the bed 
number, do not differ much between the nn and np classes (see Supplementary Figs. S4–S9). The extraordinary 
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role played by education resources in attracting migrants results deeply from the fact that the education resources 
are immobile which makes migration the only way to chase better education54. Although the healthcare resources 
have the similarly immobile nature, it cannot impact the migration as much as the education resources because 
living temporally is fully feasible to take use of the healthcare services in a different city, there is no need to induce 
observable migration flow. In contrast, schools will not provide service unless migration really happens. In that 
sense, the education resources are more immobile than the healthcare resources, therefore offering better edu-
cation services could form a long-lasting comparative advantage of a city in attracting migrants, this advantage 
will not leak out and be “freely” used by non-migrants.

Finally, the comparative disadvantage of nn class in education resources also provides an explanation to the 
overall inefficient migration pattern. In fact, around 4/5 of all ordered city pairs are contained in the nn class, 
which dominates all the other three classes and constitutes the main portion of the inefficient migration arrows in 
Fig. 4a,b As the nn class of city (pairs) are caused by the relative shortage of education resources in the destination 
cities, it is reasonable to claim that the imbalanced spatial distribution of education resources is a major driving 
force of the overall inefficient migration. This finding is consistent with the existing studies on the relationship 
between Chinese labor migration and the education system40, and provides positive evidence for the argument 
that the distortion on education induces the distortion of population migration.

Discussion
To summarize, we study a large migration game model that can be fitted with real data through a constrained 
maximum likelihood procedure. From the game model, the conditional migration probability among the set of 
destinations can be naturally identified with a mixed-strategy Nash equilibrium of the game. The migrant-level 
heterogeneity is easily embedded into the game via the feature space of migrants, as a consequence, the resulting 
equilibria migration behavior is represented as a family of type-specific migration networks. Through applying 
the model to a two-stage Chinese labor-force migration dataset, we find that although the network structures 
are significantly distinct for two migration stages, the underlying migration game is essentially unchanged. 
Given the stationary game set-up, even if a migrant can select different destinations at different stages, the 
difference can only be induced by the different starting cities, which implies a “where-they-stand-depends-on-
where-they-sit” decision pattern. In the macro view, this decision pattern suggests the shuffling of migrants’ 
distribution be the main source of the network structural change for the 2nd-stage migration in relative to the 
1st-stage one. The staionarity of the game set-up also helps stablize the migration inefficiency measure whose 
distributions along with the spatial coordinate and the major migrant features turn out invariant qualitatively 
for the two migration stages. In addition, we test the heterogeneity of migration network against a variety of 
education, age and income types. The result shows that the migrant types can significantly alter the structure of 
migration networks. This result is quite robust, indicating the necessity of incorporating migrant-level feature 

Figure 5.   Features of four city classes (a–c) present the radial plot for the means of the seven city-level features 
for the nn, pn and np class of cities respectively for both stages of migration; (d–f) present the radial plot for the 
mean OD ratios of the seven city-level features for the nn, pn and np class of city pairs respectively for the two 
stages of migration. Because the pp class contains no city nor city pair for both stage (1) and (2) migration, the 
relevant radial plots are missing. During the classification, to avoid the data noise, we trimed those very small 
valued DE1x,ij and DE2x,ij in the sense of setting DE1x,ij(DE

2
x,ij ) as 0 when their absolute value is less than 0.001, 

then the resulting city pair ij is discarded as noisy point and will not be rendered into any of the four classes.
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into migration network analysis. The decentralization trend is found widely existing in the 2nd-stage migra-
tion, whose existence, although, is robust for various migrant types, they occur in quite different ways that are 
migrant-type dependent. Finally, based on the migration model, a four-fold classification of cities can be carried 
out by the averaged inefficiency. A statistic analysis on the class-level features suggests that the overall inefficient 
migration trend observed from the data is rooted deeply in the unbalanced spatial distribution of the primary 
education resources which drives migrants away from those unsaturated cities even if moving into these cities 
can induce the potential utility increasing.

Among the existing literature, Ref.28 made an important step toward understanding the migration network 
formation that underlie modelling the human interaction, migration decision and the destination-level hetero-
geneity together. The main finding in Ref.28 is that the inclusion of interaction among migrants coming from 
different source locations can significantly increase the forecast accuracy for the overall migration trend, and 
the gravity law of human migration can be naturally derived from such an interaction framework. However, 
as the analysis in Ref.28 is focused only on the inclusion of the heterogeneity of the starting locations, it cannot 
distinguish the heterogeneity induced by migrant types. Therefore, still little is known about the microscopic 
mechanisms that drive the formation of the migration network, which makes the model in Ref.28 only capable of 
generating volume forecast between city pairs rather than the forecast on the migration-decision level. In contrast, 
the main contributions of our paper are: (1) to propose a general methodology based on population game model 
and game econometric method to analyze the migrant-level decision making, migration network formation and 
the impact of migrant-level feature types, (2) to reveal empirically the change of migration network structures 
along with the migration stages and migrant types, the unchanged nature of the underlying set-up of the migra-
tion game and the migration efficiency pattern, (3) to identify a variety of city types that play significant roles in 
shaping the migration network and determining the migration efficiency.

One of the main findings in this paper is that chasing for better chance of education is a major motive for 
migrants to give up the cities that are currently unsaturated and can grow better if more migrants move in, the 
dominance of such a choice mode within the population also contributes to the overall low migration efficiency. 
Therefore, our result suggests that city managers should focus on accumulating the high-quality education 
resources if they are going to attract more migrants into their place. For instance, more fiscal expenditure can 
be allocated to building primary and middle school facilities, and provide well-paid teaching positions for 
qualified candidates. Another way is to relax the hukou registration policy for elite teachers and attract the high-
quality teachers from the outside world. Our work provides a general framework for incorporating migrant-
level heterogeneity and interactions into migration decision making and migration network formation, several 
promising extension can be built on this work. First, the migration game studied in this paper is essentially a 
complete-information game, which requires that every player has perfect knowledge on the other’s actual move. 
This assumption is a bit too strong in real world. In the future studies, the classical game-theoretical concepts 
of partial information or mis-belief should be included55,56. In addition, the current paper only studies the 
origin-destination trajectory. In reality, there exist many more complicated types of trajectory, to model them, 
properly designed dynamic games should be studied. Finally, we highlight that whenever the data is available, 
the non-trivial social network structure can be added into the analysis and the connection between migrant-level 
social network and the city-level migration network can be established, which would convey more insightful 
information for understanding the real motives of human migration behavior.

Finally, the recent pandemic of COVID-19 across the world has intrigued a large body of literature57–60 to re-
think the connection among regional development, cross-regional migration trend, the risk of infectious disease 
outbreak and its control. Notably, the analysis and methodological framework of the current paper is closely 
related with the discussion on this topic. Comparing to the existing studies, our migration game model and the 
training technique pay more attention to the population-level interaction, its impact on migration trend and the 
connection with the real-world data, which might bring extra insights into the field of epidemic modelling where 
the migration is often supposed to be rule-based and the analysis is pure-theoretical or based on synthetic data, 
which cannot capture the impact of strategic behavior on the risk of virus outbreak and the complexity from 
the real world. But on the other hand, there is no direct link between infectious disease outbreak and migration 
decision in the current model, how to extend the migration game model to include the impact of infectious 
disease into the utility function becomes an open question and is left for future studies.

Methods
Kernel‑density estimator for migration network.  There exists a natural non-parametric estimator to 
the underlying Nash equilibrium mixed strategy, which can be derived by the kernel density method as below:

where n is the number of observed OD trajectories, Xl is the feature vector for the lth migrant, ol and tl are the 
origin and target location of the migrant, Kdx

h  is the dx dimensional Gaussian kernel function with bandwidth h, 
dx is the dimension of the feature vector x, I is the indicator function.

Under Assumption 1, the classical non-parametric statistic theory61 guarantees that the estimator P̂E converges 
to the true Nash equilibrium mixed strategy in Assumption 1 (denoted as P∗E ) in the rate of O( 1√

nhdx
) . The con-

sistency of estimator P̂E makes it useful for the design of data-adaptive fast algorithm in the following 
sections.

Although the estimate in Eq. (7) is consistent for an infinite sample of the migration game, in the finite sample 
case, it will lead to under-estimate of P∗E(i, x, j) for those target location j for which P∗E(i, x, j) > 0 but j is selected 

(7)P̂E(i, x, j) =
∑n

l=1 K
dx
h (x − Xl)I(ol = i, tl = j)

∑n
i=1 K

dx
h (x − Xl)I(ol = i)
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very rarely by migrants who originate in location i. Meanwhile, P̂E(i, x, j) over-estimates P∗E(i, x, j) for the js that 
are out of the best response set. Obviously, the bias of P̂E(i, x, j) for finite samples comes mainly because it only 
utilizes the observed data, the game structure is not included at all.

Estimation procedure.  Constrained maximum likelihood algorithm can apply to estimate both of the 
equilibrium mixed strategy and the parameters of the game. Notice that under Assumption 1, the likelihood 
function of the observation migration OD trajectory data can be derived from the Nash equilibrium mixed strat-
egy, by which a constrained maximum likelihood estimation procedure can be derived as below and the proce-
dure facilitate the simultaneous estimation of both the equilibria migration probability for each migrants (i.e. the 
Nash equilibrium strategy PE ) and the unknown structural parameter θ(:=θg in Eq. (2)) of the migration game.

where the log-likelihood function L is specified as below:

UvNM is von-Neumann–Morgenstern expected utility of a given mixed strategy derived from Eq. (1); 
pi,j = P(x+,i , j) is a short-hand notation for the probability that the ith player x+,i will migrate to j under the 
given strategy P; pi = (pi,j)j∈C is the vector representing a given mixed strategy for player x+,i ; pn = (p1, . . . , pn) 
is the collection of mixed strategy for all players, p−i = (pj : j �= i) is the profile of the strategies of all the other 
players than the player x+,i ; ti is the observed target location of the ith player. The estimator P̂∗E and θ̂ for equilib-
ria migration probability and game structural parameters is derived from solving the problem (8). Here we use 
the function notation P̂∗E rather than the vector notation p̂ to express the estimator for the equilibria migration 
probability, because as we shall show in the last section that the estimated equilibria probability can be viewed 
as a function which can evaluate at an arbitrary player x even if x is not contained in the fitting sample.

It is remarkable that the constrained maximization problem (8) includes both the information from the 
observed migration trajectories and the structure of migration games in the sense that the result estimator 
must maximize the probability of observing the actual migration trajectories, meanwhile the probability has 
to constitute a Nash equilibrium of a proper migration game. It turns out that the combination of both sources 
of information leads to a more accurate estimator than the classical kernel-density estimator to the equilibria 
migration probability, which replies solely on the observed trajectory data and fails to utilize the game structure.

Theoretically, the optimization problem (8) is solvable, but in practice, searching for an optimal solution 
is infeasible for a large amount of players and pure strategies, because in that situation the calculation of the 
expected utility UvNM and the searching for feasible domain of the constraints in Eq. (8), which is equivalent to 
searching for all Nash equilibrium mixed strategies for a giant population game, are not computationally trac-
table. In addition, the objective function in Eq. (8) takes all migration probabilities of all players as parameters, 
which would diverge along with the number of players, the relevant computation is neither tractable for large 
population game. Finally, except for all the computation issues, the effectiveness of the estimator derived from 
Eq. (8) may also suffer from the missing data. This is because in reality the observed migrants are always a subset 
of all potential migrants, i.e. the actual player ser Xn ⊂ XN with n << N . According to Eq. (1), the pure strategy 
adopted by the unobserved migrant can always impact the utility of the observed migrants, which makes the 
missing observation a series issue. The next two sections are devoted to resolve the missing-data issue and the 
computation issue, respectively.

Deal with unobserved migrants.  As pointed out previously, the estimation procedure (8) has to face the 
potential bias induced by unobserved migrants. In this section, we will gives a validation of the procedure (8) 
that guarantees the effectiveness of the procedure (8) even if unobserved migrants exists. As a by-product, an 
asymptotic formula can be derived for the von-Neumann-Morgenstern expected utility from Eq. (1) which gives 
a simple and fast way to compute UvNM when the number of players is huge. In fact, the following holds and the 
proof is presented in the supplementary to this article:

Proposition  Suppose T, g are bounded functions, F is continuous. If we denote UvNM(x+, P) as the von-Neumann–
Morgenstern expected utility of the mixed strategy profile P constructed from equation (1), and define U(x+, P) as 
the following:

where P(x+, j) is the probability that player x+ goes to destination j under strategy P, then the following hold uni-
formly for all P ∈ P:

(8)

max
pn ,θ

L(pn, θ)

s.t.












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The Proposition 4.3 is a direct consequence of the law of large number. It states that when the number of 
player N is large, we can think of the game as specified through the utility (10) which, compared to the classical 
von-Neumann–Morgenstern expected utility, is much easier to compute for large N. Therefore, from now on we 
will concentrate on the game specified through A1–A3 and the mixed strategy utility (10).

Also notice that by A3 , every mixed strategy is essentially corresponding to a smooth function on P . Then, 
by a similar argument to Proposition 4.3, the smooth function property guarantees the uniform convergence of 
the utility (10) as N → ∞ . The convergence is crucial to the statistic inference of the game model based merely 
on partial observation of the player set. Because it states that even if only a subsample of players are observable, 
the difference of utility induced by removing those unobservable players is negligible, as long as the number of 
players in the observed partial game is large enough and the play of the partial game is coherent in the sense that 
every mixed strategy for the partial game is just a restriction of the strategy of the full game onto the observable 
player set. In fact, the convergence of utility also induces a convergence statement for the Nash equilibriums of 
the game, which is a bit too technical, so we leave the discussion to the supplementary.

With the help of the convergence result, we can make statistic inference for both the migration network and 
the migration games, because we can safely consider the partially observed migration game as an identically 
independently distributed (i.i.d.) sample of an underlying full game, and the observed equilibria trajectories of 
the partial game is just an i.i.d. sample that follows the law of an Nash equilibrium mixed strategy within the full 
game. On that basis, the standard statistic techniques are applicable to infer the true Nash equilibrium and the 
true game being played from the observed trajectories, which forms the theoretical foundation of the algorithm 
design in the following sections.

Fast algorithm.  Solving a constrained optimization problem of the form Eq. (8) needs to repeatedly search 
within the feasible domain postulated by the constraints. But the particular constraints (8) makes it challenging 
to identify the feasible domain, as the constraints come from the definition of Nash equilibriums of the migra-
tion game. By definition, Nash equilibrium condition is equivalent to a nonlinear equation system with n equa-
tions where n is the number of trajectories in the input data. When the data size is giant, solving such an equation 
system is infeasible. Meanwhile, in the objective function, the number of parameters increase along with the data 
size, which makes it unavoidable to search a high-dimension parameter space that is computationally intracta-
ble. Therefore, we have to figure out some way to reduce the dimension of the problem and fasten the speed of 
searching for Nash equilibrium by proper approximation tricks.

In this section, we presents a data-adaptive algorithm that utilize the observed trajectory data to simplify the 
procedure of solving the Nash equilibrium and convert it to an one-shot convex optimization problem. Through 
solving the convex optimization problem, we can represent the equilibria mixed strategy profile pn as a function 
of the parameter vector θ , and then solve the unconstrained maximum likelihood problem to derive the final 
estimator for both θ and pn.

Notice that when the number of players, n, is large,

for the true equilibria strategy pn . Then, we can use this asymptotic equivalence together with the asymp-
totic relation in Eq. (10) to speed up the computation. Formally, we can replace the terms of the form 
1

n−1

∑

i′ �=i pi′ ,jT(x+,i , x+,i′) in equation (10) with 1
n−1

∑

i �=i′ I(ti′ = j)T(x+,i , x+,i′) and then replace UvNM in the 
first line constraint of Eq. (8) with the expression (10), then the feasible domain of the migration probability pi s 
for every player x+,i under the Nash equilibrium constraint (8) is just the set of solution to a linear optimization 
problem given the parameter θ , which can be easily expressed as below:

where up(x+,i , j, s
∗
−i) is the pure strategy utility in Eq. (1) with s∗−i being the observed pure strategy of the other 

players than i.
Then the first line constraint in Eq. (8) can be approximated by the solution to the following convex optimi-

zation problem:

where �i(θ) = argmax
{

up(x+,i , j, s
∗
−i) : j = 1, . . . ,M

}

 and P̂E is the non-parametric estimate in Eq. (7). �(θ) 
depends on θ through the dependence of up on θ.

The problem (14) is a classical convex optimization problem with the strict concave objective function, this 
kind of problem has a unique solution and can be solved fastly. Notice that the constraints in Eq. (14) include 
the game structural information ( θ ) through restricting that the migration probability is positive for a location 
if and only if the location is contained in the support set of the best response to s∗−i .
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Denote p∗(θ) = (p∗1(θ), . . . , p
∗
n(θ)) as the optimal solution vector to the problem (14) for all players, then 

plugging p∗(θ) into Eq. (9) yields a refined likelihood function that only depends on θ . The final estimator θ̂ is 
then the solution to the unconstrained maximization problem with the objective function (9) and control variable 
θ . Given the optimal solution θ̂ , the estimator to the Nash equilibrium strategy is given as p̂ = p∗(θ̂ ) . Notice that 
given θ̂ , the estimate to the equilibrium migration probability can even be extrapolated to players who are not 
contained in the observed sample. In fact, given an arbitrary player x+ , the problem (14) can always be solved 
for x+ and the fixed θ̂ , so we can denote P̂∗E(x+) as the estimator to the equilibria migration probability of player 
x+ no matter whether x+ is already in sample.

Remark  The data-adaptive construction of p∗ is the key to reduce the dimension of the searching space for the 
optimization problem (8) which makes the dimension of feasible domain of the constraint (8) or (9) not depend 
on the number of observations any more. Meanwhile, this construction can accommodate both the game struc-
ture and the data, the resulting uniqueness of p∗(θ) helps identify the “best” Nash equilibrium from the poten-
tially existing multi-equilibriums. Consequently, it is no longer needed to search for the entire Nash equilibrium 
set as did in the reference45, which is almost impossible for a game with a large amount of players. Finally, the 
use of the data-oriented equivalence relation (12) helps reduce the repeated searching for Nash equilibrium to 
an one-shot convex optimization problem, which also contributes significantly to reduce the computation load.

Remark  It turns out the estimator P̂∗E is more efficient than P̂E in terms of kicking out those dominated destina-
tions. Under mild conditions, it easily verifies that P̂∗E has the oracle property:

Oracle Property: There exists an N such that for every player x+ , if we denote Sx+ , Ŝx+ ⊂ C as the best response 
set to the equilibria mixed strategy profile {P∗E(x′+) : x′+ �= x+} and {P̂∗E(x′+) : x′+ �= x+} by the other players, 
respectively, then Sx+ ≡ Ŝx+ for all n > N.

The oracle property of the estimator P̂∗E is remarkable that offers the finite convergence of the best response set 
under the Nash equilibrium P∗E . The finite convergence property is not possible in general for the kernel density 
estimator (7). In fact, the finite convergence property of our estimator comes from its efficient utilization of 
the information provided by the game structure. Including the game structure through Eq. (14) guarantees an 
uniformly non-vanishing utility gap between those dominated pure strategies and the best response strategies 
under the true P∗E . The non-vanishing property makes the utility gap detectable even for a large finite sample. 
In contrast, without referring to the game structure, the kernel density estimator have to prudently assign some 
positive weight to both the best-response and dominated strategies. The finite convergence property also implies 
a better forecast performance under finite sample, which is demonstrated in the numerical experiment in the 
next section.
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