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Simple Summary: For decades, the extracellular matrix (ECM) has been defined as a structure
component playing a rather neglected role in the human body. In recent years, research has shed light
on the role of ECM within cellular processes, including proliferation, migration and differentiation,
as well as in inflammation. In inflammation, ECM composition is constantly being remodeled and
undergoes dynamic and rapid changes. Tracking these changes could serve as a novel diagnostic tool.
Inflammatory bowel disease is accompanied by complications such as fibrosis, stenosis and fistulas.
All of these structural complications involve excessive synthesis or degradation of ECM. With this
review, we explored whether the analysis of ECM composition can be of support in diagnosing
inflammatory bowel disease and whether changes within ECM can help to predict a complicated
disease course early on.

Abstract: Work from the last years indicates that the extracellular matrix (ECM) plays a direct role in
various cellular processes, including proliferation, migration and differentiation. Besides homeostatic
processes, its regulatory function in inflammation becomes more and more evident. In inflammation,
such as inflammatory bowel disease, the ECM composition is constantly remodeled, and this can
result in a structuring of fistulizing disease course. Thus, tracking early ECM changes might bear the
potential to predict the disease course. In this review, we provide an overview of relevant diagnostic
methods, focusing on ECM changes.

Keywords: extracellular matrix; glycosaminoglycans; inflammatory bowel disease; ulcerative colitis;
Crohn’s disease; fibrosis; stenosis; magnetic resonance imaging; elastography; histopathology

1. Introduction

The main forms of inflammatory bowel disease (IBD) are ulcerative colitis (UC) and
Crohn’s disease (CD). Both are chronic inflammatory conditions with an altered extracellu-
lar matrix (ECM). The diagnosis of UC and CD is a lifelong threat, as the available therapies
treat and ease the symptoms but do not cure the disease. It is accepted that IBD results
from an exaggerated mucosal immune response in genetically predisposed individuals. En-
vironmental factors trigger this response, and a leaky epithelial barrier is either a cause or
consequence. The onset of IBD occurs in late adolescence and early adulthood affecting all
aspects of life. The incidence and prevalence of IBD is increasing worldwide just as the total
number of related deaths [1]. The Western Europe region had the highest age-standardized
death rate in 2017 [1]. Overall, an estimated 1.3 million people in Europe suffer from IBD,
which equals 0.2% of the European population [2]. The amount of direct healthcare costs
per patient per year reach up to €2000 (UC) and €3500 (CD), respectively [2]. It is still not
clear whether changes in ECM occur at an early disease stage triggering inflammation
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and contributing to chronicity or changes develop at a later disease course that are caused
by chronic and excessive inflammation. Complicated disease (stricturing or penetrating
disease behavior) is a consequence of altered ECM requiring intervention, such as balloon
dilation or surgery, including strictureplasty or resection [3]. Over 50% of CD patients and
up to 11% of UC patients experience fibrostenotic complications [4]. These complications
are accompanied by changes in the ECM. Currently, the diagnosis of IBD is based on a mul-
titude of parameters from clinics, laboratory, imaging, endoscopy and histopathology [5,6].
However, the currently available tools to predict disease course have not entered clinical
routine yet [7]. Thus, an in-depth analysis of ECM over the course of the disease might
provide a novel tool to fill in this gap.

The core components of the ECM are fibronectin, collagens, laminins and proteogly-
cans. Proteoglycans have a protein core to which sulfated glycosaminoglycans (s-GAGs)
are attached. The attached s-GAGs are linear polysaccharides, which are highly nega-
tively charged. They are build out of disaccharide building blocks. Based on the degree of
sulfation, the position of sulfation, the linkage between each and the type of monomeric
unit, they are classified into the following groups: chondroitin sulfate/dermatan sulfate
(CS/DS), keratan sulfate (KS) and heparin/heparan sulfate (HS) [8,9]. Hyaluronic acid is
the only non-sulfated GAG present in the ECM. GAGs take part in cell–matrix interactions,
and s-GAGs are strongly expressed in the ECM of intestinal tissues. Throughout the gas-
trointestinal tract, s-GAGs are found in the subepithelial basal membrane, the vascular
endothelium and the ECM of the (sub)mucosa [10]. Naba et al. characterized the matri-
some that defines all colon-tissue-specific proteins in the mouse colon that are part of or
associated with the ECM [11,12].

This review presents the latest findings on ECM changes in IBD, and by this, it illus-
trates how these could not only serve as a tool to monitor but also to predict the disease
course. Figure 1 illustrates the ECM changes involved in fistulizing and sttricturing disease.
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Figure 1. Changes in ECM composition during a chronic disease course. The panels shown illustrate
homeostasis (left), fistulizing disease (middle) and stricturing disease (right).

2. Materials and Methods

A search of the literature in MEDLINE, using the electronic database PubMed, was
conducted to identify GAG/ECM-associated diagnostic tools in IBD. The following search
terms were included: ((inflammatory bowel disease) OR (ulcerative colitis) OR (Crohn’s
disease)) AND (diagnosis) AND ((magnetic resonance imaging) OR (sonography) OR
(ultrasound) OR (elastography) OR (histology) OR (histopathology)) AND ((extracellular
matrix) OR (glycosaminoglycan)) AND (fibrosis OR stenosis OR stricture OR fistula),
as well as (contrast-enhanced mri) AND (bowel) OR (intestine). Included were studies in
adult humans of the past 10 years.

3. Results
3.1. In Vivo Imaging

Several types of imaging techniques are required for diagnosing UC and CD (Table 1).
This generally includes colonoscopy and, initially, small-bowel magnetic resonance imag-
ing (MRI), as well as upper endoscopy, to determine the disease pattern and the type of
disease in the individual patient. Computed tomography (CT) should be restricted to
emergency situations in order to limit radiation exposure. Furthermore, ultrasound (US) is
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nowadays frequently used for follow-up evaluation [13,14]. Employing CT enterography
in order to predict small-intestine fibrosis in CD patients revealed that the only predictive
parameter was mesenteric hypervascularity; however, this parameter correlates better
with inflammation than fibrosis [15]. Combining CT enterography with positron emission
tomography [PET] (PET/CT) was as accurate as PET/magnetic resonance enterography
in detecting strictures and bowel wall thickening [16]. However, for both techniques, the
accuracy depended on the bowel segment. The accuracy was low for duodenum and colon,
and it was highest for the terminal ileum and cecum, as well as ileocolonic anastomosis [16].
For the detection of fistulas, the sensitivity, specificity and accuracy of small-intestine
contrast ultrasonography (SICUS) are comparable to CT enteroclysis and surgical find-
ings [17]. SICUS is also accurate in detecting strictures and their extension in the proximal
and distal small intestine, as well as fistulas and abscesses, when compared to surgical and
histological findings [18]. Compared to intraoperative findings, SICUS is more accurate in
assessing fistulas, abscesses and strictures than dilatations and bowel-wall thickening [19].
The treatment response was monitored in a multicenter study including patients with
active CD by US assessing bowel wall thickness, vascularization and contrast-agent uptake,
as well as fistulas, abscesses and stenoses [20]. For determining CD activity, Novak et al.
developed and validated a US score (simple sonographic score) [21]. This score might have
been too simple and was not widely accepted. Besides this, the Limberg score is widely
used to assess disease activity with US [22]. A recent study proposed a regression model
based on multimodal multi-parametric ultrasound to assess CD activity [23]. In order to
differentiate between inflammation and fibrosis, Bhatnagar et al. compared sonographic
features with histomorphology in CD patients [24]. Their study revealed that thickness of
the mucosal layer, rather than bowel-wall thickness, correlates with acute inflammation,
chronic inflammation and fibrosis [24]. Fibrosis was associated with reduced submucosal
echogenicity, increased submucosal echogenicity with hypoechoic bands and an ill-defined
submucosa [24].

The first contrast-enhanced MRI was performed in 1981 [25]. Oral ferric chloride
and inhaled oxygen was used. Resulting in altered spin-lattice relaxation time of the
fundus and was suggested to be useful as a bowel-labeling agent [25]. Since 1988, the
paramagnetic contrast agent gadolinium diethylene triamine penta-acetic acid (Gd-DTPA)
has been in clinical application in Germany, the USA and Japan [26]. Intravenous Gd-
DPTA administration improved MRI with regard to detecting disease complications and
extent of bowel involvement [27]. Distribution of i.v.-injected Gd-based contrast agents is
associated with blood supply, but there is no tissue targeting or specificity [28]. Contrast
agents targeting extracellular matrix for detection of aberrant matrix formation are still
in the preclinical phase. Stable plaque formation in atherosclerosis is associated with
ECM accumulation [29], and it has been visualized by very small superparamagnetic
nanoparticles [30]. ECM components, such as collagen or fibrin–fibronectin complexes,
were targeted in models of liver fibrosis and colorectal cancer [31,32]. To our knowledge,
there are no data available for ECM-targeting contrast agents in models of intestinal fibrosis.
A prospective multicenter study compared the diagnostic accuracy of MR enterography
and US in small-bowel CD and concluded MR enterography more sensitive and more
specific [33]. Compared to SICUS, MR enterography is more accurate in assessing fistulas
and strictures, while it is comparably accurate in assessing abscesses and dilatations [19].
Additionally, contrast-enhanced MR enterography is preferred to biochemical markers,
as a significant number of patients with quiescent disease have high fecal calprotectin
levels [34]. Furthermore, MR imaging could accurately detect and distinguish varying
degrees of bowel fibrosis with or without coexisting inflammation. Magnetization transfer
MRI could accurately detect the severity of bowel fibrosis in stricturing CD but not the
inflammatory component within the stricture [35], whereas fibrotic and inflammatory
strictures could be differentiated from purely inflammatory strictures [35]. With reasonable
accuracy, an area under the ROC curve of > 0.7 MRI could distinguish inflammation/edema
and muscular hypertrophy from fibrosis in ileal CD in a retrospective study [36].
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Table 1. Diagnostic imaging methods to detect inflammation and complications in IBD.

Method Diagnosis References

Ultrasound Bowel wall thickening, lesions,
hypervascularity, strictures, dilatation [37–39]

Computed tomography Mesenteric hypervascularity, fistulae,
abscesses [15,37]

PET/CT Strictures, bowel wall thickening,
inflammatory activity [16,40]

Magnetic resonance
imaging

Strictures, fistulae, abscesses, dilatations,
edema, muscular hypertrophy [19,36]

SICUS Strictures, fistulae, abscesses [18,19]

Ten years ago, a small number of CD patients underwent ultrasound elastography
(US-E) prior to elective resection of small-intestine strictures in a pilot study. US-E was
guided by MRI and CT, and the scanning included diseased stenotic and adjacent unaf-
fected small intestine. This pilot study revealed that lower strain values indicate stiffer
tissue in stenotic bowel compared to unaffected bowel [41]. Histopathology confirmed
predominantly fibrotic strictures with submucosal collagen depositions, while stenotic
tissue was characterized by fibrosis and mild-to-moderate inflammation [41]. US-E is a
feasible and reproducible technique for assessing ileal wall fibrosis in CD patients, as the
strain ratio correlates significantly with the severity of fibrosis [42]. US-E detects fibrosis
in ileal/ileocolonic segments of CD patients via increased muscular layer thickness and
collagen deposition [43], but it is still not able to differentiate fibrosis from inflammation
even when contrast enhanced [44,45]. Shear-wave elastography (SWE) is a novel technique
that allows for quantitative estimation of tissue stiffness. While resected bowel segments
showed ex vivo a higher mean shear-wave speed in high-grade fibrosis than low-grade fi-
brosis with minimal overlap [46], there was no relationship of fibrosis and SWE in vivo [47].
Lu et al. found that fibrosis was not the major component in bowel-wall thickening and
strictured bowel segments, but rather muscular hypertrophy [47]. When combining SWE
and the Limberg score for bowel vascularization, high- and low-grade inflammation, as
well as high- and low-grade fibrosis, could be discriminated [48]. SWE seems also feasible
for determining disease activity in UC, while it is rather discriminative in the left-sided
than in the right-sided colon [49].

Frequent clinical applications of magnetic resonance elastography (MRE) in the ab-
domen are made for liver diseases, whereas the bowel is technically challenging, owing
to its location, mobility and physiological motion [50]. These challenges were tackled in a
prospective pilot study. Here, shear-wave speed and loss angle, representing stiffness and
solid–fluid behavior, were studied in IBD patients and healthy controls [51]. Both were
increased in IBD patients compared to controls; however, there was no significant difference
between UC and CD [51]. Further studies are needed for an assessment of intestinal fibrosis.

3.2. Histopathology

In UC, histopathology is required for diagnosis, assessment of disease activity and
identification of dysplasia and cancer [14]. Microscopic features include mucosal architec-
ture, lamina propria cellularity, neutrophil granulocyte infiltration and epithelial abnor-
mality [14] (Table 2). Microscopic features in diagnosing CD are discontinuous chronic
inflammation and crypt distortion, as well as granulomas [13]. In UC, any colonic stric-
ture is suspicious of cancer and requires evaluations as such [14]. In contrast, structuring
disease in CD can occur even in the absence of cancer. Distinguishing structuring disease
from cancer can be a diagnostic challenge [13]. However, an international consortium
developed and validated a stricture histopathology scoring system, in order to enable
the development of novel biomarkers and support the construction of imaging endpoints
for clinical trials in stricturing CD [52]. The consensus was reached for evaluating tissue
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sections stained with hematoxylin and eosin (H&E), but not using Movat or elastin stains.
No consensus could be reached for the need of trichrome stain [52]. The Movat stain is a
pentachrome stain and differentiates elastic, collagen and reticular fibers, as well as muscle
and fibrin [53], whereas a trichrome staining allows for differentiation of muscle fibers,
collagen and keratin [54]. A modification of Movat pentachrome stain was developed
for the demonstration of elastin, sulfated macromolecules (proteoglycans, glycosamino-
glycans and secreted mucins), collagens, myofibrils and erythrocytes [55]. Hence, ECM
components or glycosaminoglycans are not yet part of the clinical routine for diagnosis
or follow-up but are potential candidates in histopathological assessment. For example,
serum levels of matrix metalloproteinase (MMP)-9 have been shown to be increased in UC
patients. In line, within the mucosa immunohistochemically detected MMP-9 expression
increases with severity [56]. The advantage of histopathology is the spatial allocation
of protein expression. For instance, Fonseca-Camarillo et al. identified upregulation of
extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) in patients with active
UC and mononuclear and endothelial cells being the main producers [57]. The numbers
of CD147-positive cells expressing MMP-23 and MMP-10 are increased in active UC com-
pared to active CD [57]. Analyzing stenotic and inflamed ileum from CD patients revealed
enhanced CD3-positivity in the inflamed region and increased collagen-positivity in the
stenotic region [58]. The increased collagen content was accompanied by increased losyl
oxidase (LOX) involved in the process of collagen deposition linking collagen to elastin but
also interacting with fibronectin [58]. Moreover, CD20-positive cells were increased in fis-
tulizing versus stenosing CD [42]. The ECM glycoprotein tenascin C was also upregulated
in the mucosa of patients with UC and CD compared to controls [59]. Tenasin C is mainly
expressed in the lamina propria [59]. Additionally, mucosal mRNA expression has been
associated with treatment response, and tenascin C mRNA expression was higher in UC
patients nonresponsive to infliximab therapy [59].

Table 2. Diagnostic histopathological methods to detect inflammation and complications in IBD.

Histological Stainings Detected Features References

H&E staining
Mucosal architecture, lamina propria cellularity,

neutrophil infiltration, epithelial
abnormality, granuloma

[13,14]

Trichrome staining Muscle fibers, collagen, keratin [54]

Pentachrome staining Elastin, collagen, reticular fibers, muscle, fibrin [53]

Immunohistochemical
antibody staining

Detection of immune cell composition,
matrix metalloproteinases,

matrix metalloproteinase inducers
[42,56–58]

3.3. Serological Markers

Intestinal mesenchymal cells (MSCs), including fibroblasts, myofibroblasts and smooth
muscle cells, are the main secretors of ECM [60]. MSCs are non-epithelial, non-endothelial
and non-hematopoietic cells [61]. In the intestine, various MSC populations occupy distinct
niches and perform site-specific functions [61]. Increased MSC numbers and excessive
ECM secretion are hallmark features of intestinal strictures. Myofibroblasts, fibroblasts
and smooth muscle cells differ in their expression of vimentin, α-smooth muscle actin and
desmin [61,62]. During intestinal inflammation, MSCs differentiate and de-differentiate
between these three phenotypes [63]. While fibrosis develops to preserve tissue architecture
and functions as an integral part of wound healing and tissue repair [64], pro-inflammatory
and pro-fibrotic mediators in IBD constantly activate myofibroblasts, leading to an ECM
overproduction and fibrosis [65] resulting in stricturing disease [4,60]. Moreover, peri-
cytes surrounding blood vessels express typical fibroblast markers under inflammatory
conditions and produce large quantities of ECM components [66]. Furthermore, epithelial-
mesenchymal transition and endothelial-mesenchymal transition play a role in intestinal



Biology 2021, 10, 1024 6 of 13

fibrosis in IBD [67,68], that need further elucidation. As the balance of degradation and
production of ECM is disrupted, components of the degraded ECM can be found in the
peripheral blood. Therefore, assessment of degraded ECM components in the serum
has diagnostic potential (Table 3). Assessing s-GAGs, hyaluronan and soluble CD138 in
the serum revealed no changes in CD patients compared to healthy controls, whereas
hyaluronan was significantly increased in UC patients and correlated with Mayo score
and thus disease severity [69]. Hence, this difference might help to distinguish UC from
CD. However, the data are currently limited to treatment-naïve patients. Steroid therapy
resulted in an increase of hyaluronan and was statistically not significantly different from
untreated UC or adalimumab-treated UC patients [69]. Yamaguchi et al. found a correlation
between the serum-derived hyaluronan-associated protein (SHAP) and disease activity in
UC and CD [70] questionable. Specific ECM degradation proteins with diagnostic value,
such as MMP-9 degraded type III collagen fragment C3M, have been associated with
penetrating CD [71]. Serum levels of C3M were increased in patients with penetrating CD
when compared to healthy controls but neither to non-penetrating or stricturing disease
nor to perianal fistula [71]. Mortensen et al. also defined biomarker combinations to
discriminate CD from UC and UC from non-IBD controls [72]. Serum levels of VICM
(MMP-2/8 degraded and citrullinated-vimentin), C3M and C4M (MMP-9 degraded col-
lagen type IV) discriminate CD from UC, and C1M (MMP-9 degraded collagen type I)
and C3M discriminate UC from non-IBD [72]. Compared to healthy controls, the tissue
inhibitor of metalloproteinase 1 TIMP-1 was increased in the serum of patients with UC or
CD and higher in active disease, allowing also for disease activity assessment [73]. Using
serum glycoproteome profiles, Stidham et al. identified two biomarkers which distinguish
inflammatory from fibrostenotic phenotypes of CD [74]. Both cartilage oligomeric matrix
protein (COMP) and hepatocyte growth factor activator (HGFA) showed ≥ 20% change in
relative abundance between fibrotic and inflammatory disease types [74]. Van Haaften et al.
identified that serum levels of formation and degradation products of collagens can serve
to differentiate penetrating and non-stricturing/non-penetrating, as well as stricturing CD
in the terminal ileum [75]. Other studies comparing different ECM components found
that a strong increase of extracellular matrix protein 1 (ECM1) in CD patients is correlated
with a higher risk to change from inflammatory phenotype to stricturing phenotype [76].
Unfortunately, for none of the markers exists a standard value which clearly defines the
disease status or activity.

While it is not known if the break of the intestinal barrier is a cause or consequence
of IBD, it is a feature of UC and CD, and microbial products also influence the ECM [77].
Antimicrobial antibodies against specific bacteria, bacterial membrane components or
glycans, such as anti–Saccharomyces cerevisiae, anti–Escherichia coli outer-membrane porine
C, anti-flagellin, anti-laminaribioside carbohydrate antibodies, anti-mannobioside carbo-
hydrate antibodies, anti-chitobioside carbohydrate antibodies, anti-chitin antibody and
anti-laminarin antibodies, can be used as serum markers [78–80]. Amongst anti-glycans,
no correlation with fibrostenotic stricture could be shown, while serum levels of anti-
zymogen granule glycoprotein 2 may aid as a tool for diagnosis and differentiation of
CD and could indicate a more complicated CD course and anti–Saccharomyces cerevisiae
antibodies (ASCA) were qualitatively and quantitatively linked to CD, CD complications
and need for surgery [81]. A meta-analysis even indicated that positive ASCA status is a
risk factor for early onset age, ileal involvement, complicated behavior, perianal disease
and requirement for surgery in CD [82]. Additionally, anti–Escherichia coli outer-membrane
porin C is associated with Crohn’s disease phenotypes, and patients with the highest level
of serum reactivity toward an increasing number of microbiota have the greatest frequency
of strictures, internal perforations and small-bowel surgery [79]. Papadakis et al. found
an association of anti-flagellin with fibrostenosis, penetrating disease and small-bowel
involvement, as well as surgery [83]. There is no reported association of fibrostenotic
Crohn’s disease and antibodies directed against laminaribioside carbohydrate antibodies,
antichitobioside carbohydrate antibodies or mannobioside carbohydrate [84–86]. Whereas
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anti-laminarin and anti-chitin correlate could be important serologic markers for the pre-
diction of CD-related complications and surgery [87]. Overall, higher titers and several
seroreactivities pose an increased risk to develop a complicated disease course [84].

Additionally, some growth factors known to influence tissue repair, collagen secre-
tion, angiogenesis or fibroblast proliferation have been studied as possible biomarkers to
detect early ECM alterations and fibrosis. Among them are vascular endothelial growth
factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor (bFGF) and
human-chitinase-3-like 1, influencing angiogenesis, fibrogenesis, myofibroblast prolifera-
tion and myofibroblast-induced collagen secretion [88]. VEGF and bFGF both promoting
angiogenesis, tissue repair and fibroblast proliferation are significantly increased in serum
of CD patients and correlate with bowel wall thickness [89]. The expression of PDGF is en-
hanced at sites of inflammation and fibrosis [90], as well as in the serum of CD patients [91].
None of the markers can be used to predict fibrostenotic risk, but they are markers for the
severity of fibrotic changes.

Besides components of ECM, growth factors and bacterial components, a potential tool
to diagnose fibrosis is the detection of epigenetic markers, such as microRNA (miR). These
short non-coding RNAs regulate the expression of target genes at a post-transcriptional
level. One of those, miR-200b, was shown to be increased in liver fibrosis [92]. When
comparing CD patients with and without fibrostenotic complications, there is a significant
difference in serum levels of miR-200b between the groups [92]. Mehta et al. revealed
that a downregulation of miR-200b in intestinal epithelial cells is associated with epithelial
to mesenchymal transition [93]. Furthermore, low serum levels of miR-19 [94] and miR-
29b [95] could be correlated with a stricturing phenotype in CD patients. Currently there
are no epigenetic biomarkers which allow for the early prediction of a high risk to develop
fibrostenotic complications, and further studies to characterize their role are essential.
To summarize this paragraph, a number of potential biomarkers have been described to
identify fibrostenotic complications. Still, due to a low sensitivity and specificity, none of
them has entered clinical routine.

Table 3. Serological marker to discriminate intestinal inflammation from healthy gut.

Serological Marker Group Detected Component References

ECM components Hyaluronan, C3M, C4M, VICM,
COMP, TIMP-1, ECM1 [69,71–74,76]

Microbial substances Bacteria, bacterial membrane components [78–80]

Growth factors VEGF, PDGF, bFGF,
human-chitinase-3-like 1, HGFA [74,88–90]

microRNA miR-200b, miR-19, miR29b [92–95]

4. Discussion

Changes in the ECM trigger inflammation and contribute to chronicity in IBD. This is
reflected by the presence of fibrosis and stricturing disease in about 11% of UC patients,
as well as over 50% of CD patients. These complications often require surgical intervention.
We here review the latest developments in diagnosing ECM changes in order to assess
complicated disease, but also to monitor mucosal healing or differentiate CD from UC.

Early and accurate diagnosis of a complicated disease course is crucial for assessment
and management of these patients. For example, intestinal fibrosis negatively influences
the response to therapy with biologicals [96,97].

The gold standard for diagnosing disease remains endoscopy. Cross-sectional imaging
techniques add, in particular, information with regards to the small bowel, as well as
to complications, including abscess and fistulizing disease. There is European consent
that the use of CT should be limited to emergency due to radiation exposure. Thus, MRI
should present the standard technique and has a high contrast resolution, providing
anatomical details without ionizing radiation, but is time- and cost-intensive. Additionally,
most contrast agents used in MRI contain gadolinium, which can accumulate in tissues,
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regardless of renal function [98]. Against a background of IBD patients having an increased
risk to develop chronic kidney disease [99] and of patients with impaired renal function
developing in rare cases gadolinium-associated systemic fibrosis [100], radiologist have to
balance risks and benefits of gadolinium-enhanced MRI.

The technique of US is rapid, safe and easy to use. Recent studies have provided
convincing evidence that US can be performed in a reproducible manner; thus, the former
argument that it strongly dependent on the examiner is outdated [101]. Elastography is also
non-invasive, and the advantages of US apply to elastography. Shear-wave elastography
requires fasting of the patients in order to reduce bowel content and blood flow. The US-E
strain ratio not only depends on the degree of pressure exerted by the US probe [42],
but the mesenteric tissue surrounding the bowel wall serves as control. This control
might be misleading, as hyperplasia of mesenteric fat itself already affects the strain
ratio. Hyperplastic mesenteric fat wrapping around the circumference of the intestine
(creeping fat) is a common feature in CD [102,103]. Additionally, mesenteric and creeping
fat are inflamed in CD [104], providing misleading strain ratios [42]. The application
field of elastography is limited to selected bowel segments and allows no cross-sectional
imaging [105]. Multimodal imaging would be optimal for assessing the disease, the disease
activity and complications, but one has to keep in mind that bowel peristaltic negatively
influences all imaging techniques. There is no reference standard in the diagnosis of IBD,
but as an initial diagnostic tool, radiologic visualization, combined with a follow-up via
US, is widely used to diagnose and evaluate IBD [5].

In situ imaging using histopathology provides a clear picture of the intestinal tis-
sue, but it is only a snapshot and is limited to the surface layers when taken as biopsy.
Histopathology, in combination with endoscopy, gives a good overview of stricturing,
mucosal surface and gut motion and is one of the most important diagnostic strategies.
One disadvantage is that not all segments can be reached, and the view is restricted to
the luminal surface. In this regard, adding insult to injury during diagnosis, noninvasive
diagnostic tools are favorable.

Using serological biomarkers presents an especially minimal invasive and fast ap-
proach. Various ECM-related biomarkers not only diagnose IBD but also differentiate
CD from UC. However, due to a low sensitivity and specificity, none of them has entered
clinical routine. Besides this, serum biomarkers bear the risk of capturing ECM changes in
other organs, since IBD is associated with extraintestinal manifestations, such as rheumato-
logical, musculoskeletal, hepatological and dermatological manifestations; arthropathies
and uveitis are also frequent [106]. Nevertheless, additional assessment of ECM changes
provides a great potential tool in IBD diagnosis.

5. Conclusions

Various methods and techniques are available for the diagnosis of UC and CD, as well
as the assessment of disease activity and complications. Every technique has its advantages
and accuracy but also implies disadvantages and inaccuracies. There is no one-size-
fits-all. The optimal treatment of IBD patients should aim at a multimodal approach.
Some techniques and approaches have not made it into the clinic yet and need further
development and validation. Involving the extracellular matrix and its synthesis, changes
and degradation provide a potential toolbox to monitor disease course and phenotype
over time.
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