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Afferent input caused by electrical stimulation of a peripheral nerve increases corticospinal
excitability during voluntary contractions, indicating that proprioceptive sensory input
arriving at the cortex plays a fundamental role in modulating corticospinal excitability. The
purpose of this study was to investigate whether the effect of electrical stimulation on
the corticospinal excitability varies according to the type of muscle contraction being per-
formed. Motor-evoked potentials (MEPs) were elicited by transcranial magnetic stimulation
(TMS) during a shortening contraction, an isometric contraction, or no contraction of the
first dorsal interosseous (FDI) muscle. In some trials, electrical stimulation of the ulnar
nerve was performed at 110% of the sensory threshold or 110% of the motor threshold
prior to TMS. Electrical stimulation involved either a train of 50 pulses at 10 Hz or a single
pulse. Shortening contraction with the train of electrical stimuli significantly increased
MEP amplitudes, and the increase was dependent on the type of stimulation. Isometric
contraction with the train of electrical stimuli and electrical stimulation without voluntary
contraction did not affect MEP amplitudes. A single pulse of electrical stimulation did not
affect MEP amplitudes in any condition. Thus, electrical-stimulation-induced modulation
of corticospinal excitability varied according to the type of muscle contraction performed
and the type of stimulation. These results show that the type of contraction should be
considered when using electrical stimulation for rehabilitation in patients with central
nervous system lesions.
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INTRODUCTION
Application of electrical stimulation concurrent with voluntary
movement facilitates motor recovery (Bolton et al., 2004; de
Kroon et al., 2005; McDonnell et al., 2007; Hara et al., 2013)
and induces substantial cortical reorganization in patients with
central nervous system injuries such as stroke (Kimberley et al.,
2004; Bhatt et al., 2007; Fujiwara et al., 2009; Hara et al., 2013).
A neuroimaging study using transcranial magnetic stimulation
(TMS) indicated that electrical stimulation with voluntary move-
ment resulted in increased corticospinal excitability concomi-
tantly with functional motor recovery in stroke patients (Tarkka
et al., 2011). Thus, increasing corticospinal excitability is con-
sidered to be involved in the mechanism underlying functional
motor recovery from stroke using this combined therapeutic
approach.

The stimulation intensity was effective in modulating the
change in corticospinal excitability by electrical stimulation with
voluntary movement. When the stimulated muscle is voluntarily
shortened, low-intensity electrical stimulation displays signif-
icantly increased corticospinal excitability than high-intensity
electrical stimulation (Saito et al., 2013). However, the effect of

stimulation intensity on corticospinal excitability is considered
to depend on whether or not the stimulated muscle is active.
Chipchase et al. (2011b) reported that the stimulation intensity is
strongly associated with the modulation of corticospinal excitabil-
ity when electrical stimulation is delivered without voluntary
movement. Khaslavskaia et al. (2002) showed that electrical stim-
ulation increases the excitability of the corticospinal projection to
the stimulated muscle in an intensity-dependent manner when the
stimulated muscle is quiescent.

Voluntary movement differs in its ability to modulate the
corticospinal excitability in response to the type of muscle con-
traction being performed. A previous study in monkeys showed
that somatosensory input evoked by voluntary movement is quan-
titatively different between the types of muscle contraction (Seki
and Fetz, 2012). Lee and White (1974) reported that shortening
contractions increased the somatosensory evoked potential (SEP)
greater than did isometric contractions. These studies indicate
that somatosensory input by shortening contraction is quantita-
tively larger than input by isometric contraction. Together with the
observation that shortening contractions increased corticospinal
excitability significantly more than did isometric contraction
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(Chye et al., 2010), movement related sensory gating is considered
to be associated with modulation of corticospinal excitability.

The synergistic effect of afferent input by electrical stimula-
tion and somatosensory input by voluntary movement is known
to play an important role in modulating corticospinal excitabil-
ity (Kido Thompson and Stein, 2004; Khaslavskaia and Sinkjaer,
2005; Barsi et al., 2008; Saito et al., 2013; Sugawara et al., 2013).
However, it remains unknown whether the effect of stimula-
tion intensity on corticospinal excitability is dependent on the
type of muscle contraction being performed. The somatosensory
and electrical afferent inputs both differ with the type of mus-
cle contraction and stimulation intensity; thus, it is important
to clarify the optimal stimulation intensity to effectively increase
corticospinal excitability for a given type of muscle contraction
combined with electrical stimulation. Thus, we examined the
influence of stimulation intensity on the change in corticospinal
excitability by electrical stimulation in response to the type of
voluntary movement. The results of this study may indicate the
appropriate intensity of electrical stimulation for treatment of
motor dysfunction using voluntary movement concurrent with
electrical stimulation.

The purpose of this study was to elucidate the effect of electrical
stimulation of the ulnar nerve on the excitability of the corti-
cospinal projection to the first dorsal interosseous (FDI) muscle
during voluntary shortening contractions and voluntary isometric
contractions.

MATERIALS AND METHODS
PARTICIPANTS
Fourteen neurologically normal right-handed volunteers (thirteen
males and one female) with a mean age of 22.1 ± 1.7 years par-
ticipated in this study. All volunteers provided written informed
consent before participation. This study was performed in accor-
dance with the Declaration of Helsinki, and the protocol was
approved by the Research Ethics Committee of Niigata University
of Health and Welfare.

ELECTROMYOGRAM RECORDING
During all experiments, the participant sat comfortably in a chair
and placed his or her right hand on a table with the palm per-
pendicular to the horizontal plane. Surface electromyograms were
recorded from the right FDI muscle using disposable silver–silver
chloride surface electrodes (N-00-S; Mets Inc., Tokyo, Japan).

ELECTRICAL STIMULATION OF THE ULNAR NERVE
Electrical nerve stimulation was applied to the right wrist to
stimulate the ulnar nerve that innervates the FDI muscle. Stim-
ulation was generated using an electrical generator (SEN-7203;
Nihon Kohden Co., Tokyo, Japan) with an isolator (SS-104; Nihon
Kohden Co.) and a pair of silver-silver chloride surface electrodes.
Stimulation was delivered in trains of 50 pulses at 10 Hz with
a pulse width of 1 ms. Two different stimulus intensities were
used: (i) 110% of the motor threshold (above motor threshold)
and (ii) 110% of the sensory threshold (above sensory thresh-
old). The motor threshold was defined as the lowest stimulus that
evoked a visible twitching of the index finger, and the sensory
threshold was defined as the lowest stimulus that the volunteer

could perceive. In this study, the average motor threshold was
11.2 ± 4.7 mA (mean ± SD), and the average sensory threshold
was 7.4 ± 2.7 mA.

VOLUNTARY HAND MOVEMENT TASKS
The volunteers were asked to perform the following hand move-
ment tasks: (i) shortening contraction and (ii) isometric con-
traction (Figure 1) to investigate how the influence of electrical
stimulation on the excitability of the corticospinal tract was altered
by the difference in somatosensory input induced by voluntary
hand movement. In the shortening contraction task, the volunteer
flexed the metacarpophalangeal (MP) joint of the index finger
from 0 to 90◦ while the index finger received external torque from
a custom-made apparatus that connected distal interphalangeal
(DIP) joint of the index finger to a scale weight via a pulley to
easily sustain constant activity of FDI muscle (Figure 1). The
shortening contraction was a single movement which was held
for 5 s. In the isometric contraction task, the volunteer performed
an isometric pinch movement, attempting to touch the index fin-
ger to the thumb. The index finger was passively separated from
the thumb by the same custom-made apparatus (Figure 1), and
the volunteer was required to maintain the MP joint of the index
finger at 90◦ for the 5-sec duration of the task. In both hand
movements, the volunteer set the EMG of the FDI muscle to 15%
MVC on the basis of visual EMG feedback during voluntary hand
movement; this procedure was practiced until reaching an EMG
of 15%MVC.

TMS
Transcranial magnetic stimulation was delivered over the left
primary motor cortex using a figure-eight coil with an inter-
nal wing diameter of 90 mm connected to a Magstim 200
(Magstim Co. Ltd., Whitland, UK). The optimal site for elic-
iting motor-evoked potentials (MEPs) from the FDI (motor
hotspot) was found by delivering a slightly suprathreshold stim-
ulus at 1-cm intervals around the assumed motor hotspot. The
coil was placed tangentially to the scalp and held at 45◦ to
the midsagittal line. The TMS intensity was set to 120% of
the resting motor threshold for tasks that involved no volun-
tary contraction and 120% of the active motor threshold for

FIGURE 1 | Experimental set-up and voluntary hand movement. (A) For
the shortening contraction task, the participant was required to flex the
metacarpophalangeal (MP) joint of the index finger from 0 to 90◦ and to
touch the index finger to the thumb. (B) For the isometric contraction, the
volunteer was required to maintain the MP joint of the index finger at 90◦
against external extension.
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tasks that involved voluntary contraction. The resting motor
threshold was defined as the minimum stimulus intensity
that evoked a MEP greater than 50 μV in at least five out
of ten trials. The active motor threshold was defined as
the minimum stimulus intensity that evoked a small MEP
(> 100 μV) in at least five out of ten trials when the vol-
unteer made the FDI muscle contract isometrically, and made
the EMG of FDI muscle 5%MVC with visual EMG feed-
back.

EXPERIMENTAL PROCEDURE
The volunteers performed the following experimental tasks in
a randomly assigned order (Table 1): (i) shortening contrac-
tion with electrical stimulation; (ii) shortening contraction
without electrical stimulation; (iii) isometric contraction with
electrical stimulation; (iv) isometric contraction without elec-
trical stimulation; (v) electrical stimulation without voluntary
contraction. Electrical stimulation included the following two
different stimulus conditions: (i) a train of electrical stim-
uli in which the stimulus duration was set to 5 s; (ii) single
electrical pulse just before TMS with the following two dif-
ferent intensities: (i) above motor threshold; (ii) above sen-
sory threshold. A single electrical stimulus just before TMS
influences MEPs evoked by TMS in response to the interstim-
ulus interval of a single electrical pulse and a TMS pulse,
i.e., short-latency afferent inhibition and afferent facilitation
(Mariorenzi et al., 1991; Deletis et al., 1992; Chen et al., 1999;
Tokimura et al., 2000; Roy and Gorassini, 2008; Russmann
et al., 2009; Devanne et al., 2009), so that a single electri-
cal pulse just before TMS may influence the MEP changes
induced by a train of electrical stimuli. Thus, this study inves-
tigated not only MEP changes induced by a train of electrical
stimuli but also changes induced by a single electrical pulse
just before TMS. A total of 14 experimental tasks were per-
formed successively on the same day. For the combination
of voluntary hand movement and electrical stimulation, elec-
trical stimulation began to be delivered along with voluntary
hand movement and was switched off after 5 s. When a single

Table 1 | Experimental study design.

Voluntary contraction Electrical stimulation (ES)

Shortening contraction With a train of ES (above motor threshold)

Isometric contraction With a train of ES (above sensory threshold)

With single electrical pulse (above motor

threshold)

With single electrical pulse (above sensory

threshold)

Without ES

At rest A train of ES (above motor threshold)

A train of ES (above sensory threshold)

Single electrical pulse (above motor threshold)

Single electrical pulse (above sensory threshold)

electrical pulse was combined with voluntary hand movement,
electrical stimulation was only delivered just before the TMS
trigger.

Transcranial magnetic stimulation measurements were made
before and just after the experimental tasks (Figure 2). In TMS
measurements before the experimental task, TMS was delivered
with 120% of both the resting and active motor thresholds to
measure control MEPs. In TMS measurements after the experi-
mental task, TMS was delivered while the volunteers performed
voluntary hand movements. The TMS trigger was applied 60 ms
after the last electrical stimulus pulse to minimize the influence of
the electrical pulse on the MEPs and detect the effect of electrical
stimulation on the MEPs.

DATA ANALYSIS
For voluntary contraction with electrical stimulation, the peak-
to-peak MEP amplitude was measured and expressed relative to
the peak-to-peak MEP amplitude observed in the control trial
(MEP control ratio). For electrical stimulation without volun-
tary contraction, the peak-to-peak MEP amplitude was measured.
The root mean square (RMS) amplitude of the FDI electromyo-
gram was calculated in the 50 ms prior to the TMS trigger
and expressed relative to the RMS amplitude observed with iso-
metric maximum FDI contraction (RMS maximum ratio). A
two-way repeated measured analysis of variance (ANOVA) with
factors of muscle contraction (isometric contraction or short-
ening contraction) and type of electrical stimulation (with a
train of electrical stimulation above motor threshold, with a
train of electrical stimulation above sensory threshold, with
single pulse above motor threshold, with single pulse above
sensory threshold or without electrical stimulation) was used
to analyze the different effect of electrical stimulation on the
corticospinal excitability among the type of muscle contraction

FIGURE 2 | Experimental protocol. (A) For the combination of voluntary
hand movement and electrical stimulation, electrical stimulation began to
be delivered along with voluntary hand movement and was switched off
after 5 s. Transcranial magnetic stimulation (TMS) measurement was made
before and after the experimental task. TheTMS trigger was delivered while
the volunteers performed the voluntary hand movement. The TMS trigger
was delivered 60 ms after the last electrical pulse. (B) For the combination
of voluntary hand movement and a single electrical pulse, the volunteers
performed the voluntary hand movement without electrical stimulation.
Electrical stimulation was only delivered 60 ms before the TMS trigger.
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and to analyze the background EMG among each task. For
each type of contraction, a repeated-measures ANOVA with
the type of contraction as one factor was used to compare the
MEP control ratio and the mean RMS maximum ratio across
experimental tasks. Post hoc testing was performed using the
Tukey multiple comparison. For each type of electrical stim-
ulation, Student’s paired t-test (two-tailed) was used to com-
pare the MEP control ratio between isometric contraction and
shortening contraction. Further, for each stimulus condition
of electrical stimulation, a repeated-measures ANOVA with the
stimulus condition of electrical stimulation as one factor was
used to compare the peak-to-peak MEP amplitude. All statis-
tical analyses were conducted using SPSS 15.0 for Windows.
Statistical significance was determined as p < 0.05 for all
comparisons.

RESULTS
ELECTRICAL STIMULATION-INDUCED MODULATION OF
CORTICOSPINAL EXCITABILITY
A two-way repeated-measures ANOVA revealed significant effect
of the voluntary hand movement [F(1.13) = 19.638, p = 0.001]
and type of electrical stimulation [F(4.52) = 4.191, p = 0.023]
on the corticospinal excitability. Furthermore, the analysis also
revealed significant interaction between voluntary hand move-
ment and the type of electrical stimulation [F(4.52) = 2.956,
p = 0.028].

Shortening contraction task
Figure 3A shows typical MEP waveforms in the FDI muscle
from one participant recorded in a shortening FDI contraction
performed with and without a single pulse of ulnar nerve

FIGURE 3 |The effect of voluntary contraction with electrical stimulation on the corticospinal excitability in single subject (A)Typical motor-evoked

potential (MEP) waveforms recorded in the first dorsal interosseous (FDI) muscle. (A), shortening contraction. (B), isometric contraction.
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stimulation or a train of ulnar nerve stimuli, and Figure 4
shows the pooled data (n = 14). A one-way repeated-measures
ANOVA revealed a significant effect of the type of electri-
cal stimulation on the MEP control ratio [F(4.52) = 5.002,
p = 0.002 ]. Post hoc analysis revealed that the MEP con-
trol ratio during shortening contraction was significantly higher
with a train of electrical stimulation above sensory thresh-
old than with other types of electrical stimulation (p < 0.05).
However, the analysis also revealed no significant difference
between the MEP control ratio during shortening contrac-
tion with electrical stimulation above motor threshold and that
without electrical stimulation (p = 0.658). These results indi-
cated that a train of low-intensity electrical stimulation was
highly effective in facilitating MEPs measured in the FDI during
the shortening contraction rather than high-intensity electrical
stimulation.

An isometric contraction task
Figure 3B shows typical MEP waveforms in the FDI muscle from
one participant during an isometric contraction performed with
and without a single pulse of ulnar nerve stimulation or a train of
ulnar nerve stimuli, and Figure 4 shows the pooled data (n = 14).
A one-way repeated-measures ANOVA revealed that the MEP con-
trol ratio was similar across experimental tasks [F(4.52) = 0.600,

FIGURE 4 |The effect of voluntary contraction with electrical

stimulation on the excitability of the corticospinal tract. The changes in
the group mean MEP control ratio (n = 14) induced by the following
experimental tasks: voluntary contraction (vol) with electrical stimulation
(ES; above motor threshold, MT), vol with ES (above sensory threshold,
ST), vol with a single electrical pulse (MT), vol with a single electrical pulse
(ST), and vol without ES. In shortening contraction (white bar), the MEP
control ratio was significantly highest when a voluntary shortening
contraction was coupled with ES (ST) than when a voluntary shortening
contraction was coupled with other types of electrical stimulation (all
p < 0.05 ). In isometric contraction (black bar), the MEP control ratio was
similar across experimental tasks [F (4.52) = 0.600, p = 0.665]. Further, the
MEP control ratio was significantly higher during shortening contraction
than isometric contraction in all type of electrical stimulation (all p < 0.05).
*p < 0.05, **p < 0.01. Error bars indicate standard deviation (SD).

p = 0.665], indicating that ulnar nerve stimulation did not affect
the MEPs measured in the FDI during isometric FDI muscle
contraction.

The corticospinal excitability and muscle contraction being
performed
A Student’s paired t-test revealed that the MEP control ratio was
significantly higher during shortening contraction than that dur-
ing isometric contraction in all types of electrical stimulation
(p < 0.05), indicating that shortening contraction displayed higher
MEPs measured in FDI than isometric contraction regardless of
stimulation type.

Electrical stimulation without voluntary contraction
Figure 5A shows a typical MEP in the FDI from one participant
during a train of electrical stimulation of the ulnar nerve with-
out voluntary contraction, and Figure 5B shows the pooled data
(n = 14). A one-way repeated-measures ANOVA revealed that
there was a significant effect of the stimulation condition on the
MEP control ratio [F(4.52) = 4.201, p = 0.005]. Post hoc analysis
revealed that the MEP amplitude was significantly higher after a
train of electrical stimulation above sensory threshold than that
after a single pulse above sensory threshold (p = 0.018) and that
at rest (p = 0.006).

RMS ELECTROMYOGRAPHY
Table 2 shows the average RMS maximum ratio of the FDI elec-
tromyography signal in the 50 ms prior to the TMS trigger. A
two-way repeated-measures ANOVA revealed no significant effect
of the voluntary hand movement [F(1.13) = 1.004, p = 0.335]
and type of electrical stimulation [F(4.52) = 1.929, p = 0.181]
on the backgroung EMG. Furthermore, the analysis revealed no
significant interaction between voluntary hand movement and the
type of electrical stimulation [F(4.52) = 1.733, p = 0.157].

DISCUSSION
The main finding from these experiments was that a train of
electrical stimuli of the ulnar nerve during voluntary hand move-
ment modulated the excitability of the corticospinal projection to
the FDI, and that the modulation was dependent on the pattern
of muscle contraction. In shortening contraction, low-intensity
electrical stimulation displayed increased corticospinal excitability
compared with high-intensity stimulation. In isometric contrac-
tion, a train of electrical stimulation did not affect the excitability
of the corticospinal tract. On the other hand, in resting condition,
low-intensity electrical stimulation was effective for increasing the
corticospinal excitability.

THE EFFECT OF SHORTENING CONTRACTION WITH ELECTRICAL
STIMULATION ON THE CORTICOSPINAL EXCITABILITY
During the shortening contraction task, low-intensity electrical
nerve stimulation increased the excitability of the corticospinal
tract, but high-intensity electrical nerve stimulation did not. This
is consistent with the results found in our previous study, in which
the effect of electrical stimulation on corticospinal excitability was
dependent on stimulus intensity (Saito et al., 2013).

The additive effect of increased corticospinal excitability by
shortening contraction, plus increased excitability by electrical
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FIGURE 5 |The effect of electrical stimulation without voluntary

contraction on the excitability of the corticospinal tract. (A) Typical
averaged motor-evoked potential (MEP) waveforms recorded in the FDI
muscle. (B) The changes in the group mean MEP control ratio (n = 8)
induced by the following experimental tasks: electrical stimulation (ES;
above motor threshold, MT) without voluntary contraction (vol), ES (above

sensory threshold, ST) without vol, single electrical pulse (MT) without
vol, and single electrical pulse (ST) without vol, and a control trial using
the resting motor threshold as the TMS intensity. The MEP amplitude
was significantly higher after a train of electrical stimulation above
sensory threshold than after single pulse above sensory threshold
(p = 0.018) and at rest (p = 0.006).

Table 2 | Background activity of the first dorsal interosseous (FDI) muscle during each task.

The type of voluntary contraction

Shortening contraction Isometric contraction

Vol with ES (above motor threshold) 0.16 ± 0.04 0.16 ± 0.03

Vol with ES (above sensory threshold) 0.14 ± 0.05 0.13 ± 0.04

Vol with single electrical pulse (above motor threshold) 0.16 ± 0.08 0.14 ± 0.08

Vol with single electrical pulse (above sensory threshold) 0.14 ± 0.04 0.14 ± 0.04

Vol without ES 0.13 ± 0.06 0.13 ± 0.05

Average ± SD

stimulation, may explain the additional increase in corticospinal
excitability during shortening contraction combined with low-
intensity electrical stimulation. A previous study reported that
corticospinal excitability is highly increased during a shorten-
ing contraction (Kasai et al., 1997). Furthermore, our study
also showed that low-intensity electrical stimulation displayed a
significantly increased corticospinal excitability when the stimu-
lated muscle was at rest. This is consistent with the observations

of previous studies showing that electrical stimulation increases
corticospinal excitability (Ridding et al., 2000, 2001; Kaelin-Lang
et al., 2002; Khaslavskaia et al., 2002; Mckay et al., 2002; Charlton
et al., 2003; Knash et al., 2003; Tinazzi et al., 2005; Mang et al.,
2010, 2011; Chipchase et al., 2011a,b; Golaszewski et al., 2012;
Andrews et al., 2013). The combination of electrical stimulation
with voluntary contraction yielded the greatest increase in corti-
cospinal excitability (Khaslavskaia and Sinkjaer, 2005), suggesting
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these inputs may induce activation of multiple pyramidal cells,
leading to a state of subliminal fringe. Consequently, we believe
the TMS pulse was able to activate more pyramidal cells during a
shortening contraction with low-intensity electrical stimulation.

In contrast, the additive effect might be specific for low-
intensity electrical stimulation with shortening contraction. This
study showed that high-intensity electrical stimulation was not
effective for modulating the corticospinal excitability during
shortening contraction. Considering that high-intensity electri-
cal stimulation did not affect corticospinal excitability when the
stimulated muscle was at rest, afferent input by high-intensity elec-
trical stimulation might be insufficient to modulate corticospinal
excitability. Thus, the additive effect might not be induced, even
when shortening contraction is combined with high-intensity
electrical stimulation.

THE EFFECT OF ISOMETRIC CONTRACTION WITH ULNAR NERVE
STIMULATION ON THE CORTICOSPINAL EXCITABILITY
Electrical stimulation of the ulnar nerve did not affect the
corticospinal excitability when the volunteer was maintain-
ing a constant index finger MP joint angle while exerting a
constant torque against a rigid restraint. This is not consis-
tent with the observation that low-intensity electrical stimu-
lation but not high-intensity electrical stimulation is effective
in increasing corticospinal excitability. These results indicated
that isometric contraction might result in a loss of the low-
intensity electrical stimulation-induced effect on the corticospinal
excitability.

This discrepancy might be due to the movement-related gating
of the sensory input. Previous studies have demonstrated gating of
sensory input during voluntary contraction (Angel and Malenka,
1982; Blakemore et al., 1998; Bays et al., 2005), indicating atten-
uation of afferent input during the contraction. Thus, in this
study, afferent input by electrical stimulation might be reduced
by sensory gating during isometric contraction. Furthermore, the
duration of electrical nerve stimulation in the present study (5 s),
was shorter than that used in previous studies, where electrical
stimulation increased the corticospinal excitability (Ridding et al.,
2000, 2001; Mang et al., 2011; Golaszewski et al., 2012; Léonard
et al., 2013). Thus, the combined use of isometric contraction
and electrical stimulation may not have been sufficient to increase
corticospinal excitability.

THE CORTICOSPINAL EXCITABILITY AND MUSCLE CONTRACTION
BEING PERFORMED
The corticospinal excitability was significantly higher during
shortening contraction than that during isometric contraction
regardless of the intensity and type of electrical stimulation.

The different level of movement-related sensory gating between
the muscle contractions being performed is believed to be respon-
sible for this result. Previous studies have demonstrated gating of
sensory input during voluntary contraction (Angel and Malenka,
1982; Blakemore et al., 1998; Bays et al., 2005). Another study
showed that a shortening contraction increased the SEP over that
of isometric contraction (Lee and White, 1974). These results indi-
cate the level of somatosensory processing that induces attenuation
of somatosensory input is stronger during isometric contraction

than during shortening contraction. Thus, in this study, the level
of sensory gating during isometric contraction with electrical
stimulation is likely to be stronger than that during shortening
contraction with electrical stimulation.

THE EFFECT OF ULNAR NERVE STIMULATION WITHOUT VOLUNTARY
CONTRACTION ON THE CORTICOSPINAL EXCITABILITY
Low-intensity electrical stimulation was effective in increasing the
corticospinal excitability, but high-intensity electrical stimulation
was not effective. These results indicated that the effect of elec-
trical stimulation on corticospinal excitability was specific for the
stimulation intensity. This is not consistent with the observation
from the previous studie, where the increase in the corticospinal
excitability elicited by electrical stimulation was reported to be
dependent on stimulus intensity (Khaslavskaia et al., 2002).

This discrepancy might be due to sensory gating induced by
electrical muscle contraction. A previous study reported that gat-
ing of sensory input was present during passive movement as well
as during voluntary movement (Jones et al., 1989). High-intensity
electrical stimulation used in this study caused muscle contraction
without voluntary effort and consequently might have induced the
gating of sensory input as well as voluntary contraction. Along
with the short duration of electrical nerve stimulation in the
present study (5 s), high-intensity electrical stimulation that has
been used here might be insufficient to increase the corticospinal
excitability.

METHODOLOGICAL CONSIDERATIONS
An increase or decrease in the excitability of spinal interneurons
may be involved in an increase in the excitability of the corti-
cospinal tract to the FDI muscle. Christova et al. (2010) reported
that muscle vibration that externally stimulates the muscle spindle
does not regulate the excitability of the spinal cord during a vol-
untary contraction. Furthermore, electrical stimulation does not
affect the excitability of the spinal cord (Thompson et al., 2006).
Thus, electrical stimulation-induced modulation of corticospinal
excitability during voluntary contraction may be predominantly
caused by a change in the excitability of the primary motor cortex.
Further examination of the mechanism underlying the changes in
corticospinal excitability induced by the combination of voluntary
contraction and electrical stimulation is necessary.

CONCLUSION
Our results suggest that electrical nerve stimulation-induced mod-
ulation of corticospinal excitability is dependent on the type
of voluntary muscle contraction being performed. This indi-
cates that the intensity of electrical stimulation should be set
according to the hand motor task being performed when a com-
bination of voluntary contraction and electrical stimulation is
utilized for rehabilitation of patients with central nervous system
lesions.
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