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Genomic patterns of progression in smoldering
multiple myeloma
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Anthony Fullam 3, Inigo Martincorena3, Kevin J. Dawson3, Mehmet Kemal Samur6, Jorge Zamora3,
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Florence Magrangeas4,5, Philippe Moreau4,5, Paolo Corradini1,2, Kenneth Anderson6, Ludmil Alexandrov7,

David C. Wedge8, Herve Avet-Loiseau9, Peter Campbell1 & Nikhil Munshi6,10

We analyzed whole genomes of unique paired samples from smoldering multiple mye-

loma (SMM) patients progressing to multiple myeloma (MM). We report that the genomic

landscape, including mutational profile and structural rearrangements at the smoldering stage

is very similar to MM. Paired sample analysis shows two different patterns of progression: a

“static progression model”, where the subclonal architecture is retained as the disease

progressed to MM suggesting that progression solely reflects the time needed to accumulate

a sufficient disease burden; and a “spontaneous evolution model”, where a change in the

subclonal composition is observed. We also observe that activation-induced cytidine dea-

minase plays a major role in shaping the mutational landscape of early subclinical phases,

while progression is driven by APOBEC cytidine deaminases. These results provide a unique

insight into myelomagenesis with potential implications for the definition of smoldering

disease and timing of treatment initiation.
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Multiple myeloma (MM) is preceded by a premalignant
expansion of clonal plasma cells, recognized as
monoclonal gammopathy of undetermined sig-

nificance (MGUS) or smoldering MM (SMM)1–3. While only a
small minority of MGUS patients progress to MM, SMM
represents a heterogeneous disease where a fraction of patients
progresses to symptomatic myeloma rather quickly, and others
experience an indolent course. Several clinical features have
been identified to stratify the risk of progression of SMM
patients4, and the definition of MM itself has recently been
updated to include additional signs of disease burden and organ
involvement that predict imminent symptomatic evolution5. In
fact, there is increasing pressure to reliably identify smoldering
patients at high risk of progression, owing to preliminary evi-
dence of survival benefit upon treatment of high-risk SMM6.
However, genomic markers of disease reflecting the intrinsic
biological features of the disease may provide, in the future, a
more accurate stratification of SMM than the current clinical
and biological criteria, which constitute only a surrogate mea-
sure of the disease burden rather than direct measures of its
biological features and aggressiveness4,7–10.

Next-generation sequencing (NGS) has provided a compre-
hensive characterization of mutations and mutational processes
operative on coding regions of the MM genome11–16. Much less
is known of the genomic features of smoldering stages, where
the full genomic spectrum of alterations and its evolution after
progression to MM is still largely unexplored. DNA copy
number and gene-expression analysis in MGUS and SMM have
found similar abnormalities to MM, however they have failed to
generate a robust and clinically useful model of progression to
MM4,17–20. Similarly, preliminary data from limited whole-
exome sequencing (WES) approaches have identified some of
the recurrent mutations of MM at the premalignant stages21,22.
However, an important area of interest is to understand the full
spectrum of genomic alterations in premalignant stages,
including both mutations and structural rearrangements; to
identify the molecular processes that generate them; and to
explore the patterns of evolution of such abnormalities at
progression.

Whole-genome sequencing (WGS) has the potential to provide
an unprecedented resolution to interrogate the full repertoire of
somatic mutations, copy number alterations (CNAs), genomic
rearrangements and mutational processes involved in MM evo-
lution, and has never been performed in asymptomatic MM. In
particular, analysis of mutational signatures by WGS can provide
information on the mutational processes operative in the cancer
cell, and thus shed light on the early pathogenesis of MM23.
Mutational processes described so far in symptomatic MM using
whole-exome data include the spontaneous deamination of
methylated cytosines (generating age-related signatures)23,24 and
the aberrant activity of the DNA deaminase APOBEC, an enzyme
linked to global and localized hypermutation in a variety of can-
cers11,13,16,25–27. However, contrary to its clear driver role in other
postgerminal center lymphoproliferative disorders28, little is
known in MM about the role of activation-induced cytidine
deaminase (AID), a DNA deaminase expressed at the activated
germinal center B-cell stage, whose canonical signature has only
been reported on few specific genes or rearrangements in MM11.
Since the advent of NGS, NNMF techniques have allowed genome
wide analysis of mutational signatures and both the canonical and
a second, referred to as noncanonical, AID signature have been
identified in chronic lymphocytic leukemia and non-Hodgkin
lymphoma but not in MM23,29,30.

By WGS analysis of unique paired samples, we here provide a
comprehensive description of the genomic features of smoldering
stages of MM, as well as models of their evolution to MM.

Results
The genomic landscape of smoldering myeloma. We sequenced
the whole-genome of 11 SMM cases at diagnosis (Supplementary
Table 1). Sequencing was performed to an average depth of
38.7 × (Supplementary Table 2), and detected 57,736 somatic base
substitutions (range: 2389–7297, median = 5308 per patient) and
4397 small insertion–deletions (indels) (range: 209–541, median
= 399 per patient) (Fig. 1a). As expected, most substitutions and
indels (98.3%) fell in noncoding regions (Supplementary Fig-
ure 1). All patients presented a translocation and/or a CNA
described as driver in MM, and all but two showed at least one
mutation in a MM driver gene (Fig. 1a)11,13,31,32. No recurrent
substitutions were observed in noncoding regions. Seven patients
were characterized by a hyperdiploid status (Fig. 1a, Supple-
mentary Figure 2); two patients had a t(4;14) and one patient had
a t(11;14) translocation (Fig. 1a, b). Strikingly, 5/11 cases showed
translocations of MYC, none of which involved the immu-
noglobulin heavy chain (IGH) locus. In one patient, MYC was
translocated with multiple breakpoints suggestive of convergent
evolution of independent rearrangement events in different sub-
clones (Fig. 1b). Overall, we observed a median of 35 structural
rearrangements per patient, mostly nonrecurrent, in the form of
either translocations, inversions, deletions, or internal tandem
duplications (Supplementary Figure 3). Analysis of clonal CNAs,
i.e., those present in virtually all myeloma cells and thus of early
onset, showed frequent trisomies (from hyperdiploid cases) as
well as 1q gain and 13q deletions in up to 50% of cases (Fig. 1c).
Furthermore, we observed frequent clonal gains in 6p and dele-
tions in 6q and 16q. The integrated genomic landscape of
mutations, copy number changes, and rearrangements in our
series of smoldering MM thus revealed a much more complex
profile than what could be investigated with WES and copy
number array data17,18,21,22. This is more analogous to MM at
diagnosis than of an indolent condition, and suggests that driver
events identified in MM are already operative in the earlier stages
of the plasma cell disorder.

Progression to multiple myeloma. All our patients evolved to
symptomatic MM with a median time to progression of
8 months (range: 2–41 months), independent of risk stratifi-
cation criteria based on serum M-protein concentration, extent
of bone marrow involvement or cytogenetic features (Supple-
mentary Table 1). For 10 of 11 patients we could analyze a
paired tumor sample to explore the evolution of the genomic
landscape at the time of progression. The number of substitu-
tions and indels in symptomatic MM increased in all but one
patient (Fig. 2a, Supplementary Figures 4, 5), but was overall
not significantly different. However, a relevant fraction of
shared mutations significantly shifted their cancer cell fraction
(CCF), while others were lost or acquired, suggesting the
existence of a dynamic competition between subclones during
disease progression. This was analyzed by a hierarchical baye-
sian Dirichlet process11 to group mutations with similar CCF
into clusters that reflect the subclonal structure of the tumor.
Surprisingly, all samples presented one or more clusters of
subclonal variants, reflecting the presence of heterogeneity with
evidence of continued spontaneous evolution of the disease
even in early, premalignant phases (Supplementary Table 3).
Furthermore, analysis of paired samples showed two general
patterns of evolution to symptomatic MM (Supplementary
Figure 6). In 6 of 10 patients, the subclonal composition
changed during the evolution from SMM to MM in a branching
pattern. This reflects a spontaneous evolution model where,
without any external selective pressure from treatment, acqui-
sition of new genetic lesion(s) conferred a proliferative
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advantage to a subclone at the expense of others (exemplified in
Fig. 2b). In the other four patients, all subclones were equally
represented in both SMM and MM samples, without any sig-
nificant change in their subclonal structure (exemplified in
Fig. 2c). Known driver mutations could be found in the cluster
of clonal mutations, suggesting they can represent early lesions
in MM pathogenesis, but also in new subclones acquired during
progression (Fig. 2b, c and Supplementary Figure 6). Patients
progressing with branching evolution were generally char-
acterized by a longer time to MM progression (median =
23 months; range: 2–41 months), suggesting that acquisition of
additional genomic lesions was needed to change the biology of
the tumor into a more aggressive phenotype (Fig. 2d). However,
one patient progressed in only 2 months with a branching
pattern consistent with differential clonal expansion, likely
indicating that the first sampling was performed just after the
tumor acquired the final clonal sweep that changed the phe-
notype from a smoldering to an active disease, and just before
the new “active subclone” accumulated enough burden to
become symptomatic. The group of patients with no significant
change in their genomic structure had relatively shorter time to
progression (median = 5.5 months; range: 3–8 months) sig-
nifying the presence of already transformed cells with slow
impact on clinical manifestations, which are currently driving
the definition of the disease. In our small series, the pattern of
genomic progression or its timing did not correlate with pre-
sence or absence of conventional, cytogenetic-defined, high-risk
features.

The rearrangement profile could change during evolution in
terms of absolute numbers (Fig. 3a), with a fraction of cases

showing prominent loss of some and gain of other events
(Supplementary Figure 3). IGH translocations were, however,
always found in the ancestral clone and as such remained stable
during progression, confirming they are present in the first
transformed cell and from there in all cells of the tumor (Fig. 3b).
On the other hand, MYC rearrangements where mostly subclonal
in the first sample and showed a global increase of their CCF at
progression (Fig. 3b), confirming the view of such translocation
as late events in MM evolution3. However, one patient
surprisingly showed a decrease in cells bearing translocated
MYC at progression (Fig. 3b), challenging the universal driver
role usually attributed to this event. Furthermore, several
nonrecurrent rearrangements barely detectable at the smoldering
stage became clonal at the time of progression (Fig. 3c). This
confirms that the proliferative advantage needed for tumor
progression can be conferred by secondary rearrangements, and
the identification of the driver role of each will be a challenge for
future studies. Overall, we found a good concordance of the two
evolutionary patterns in terms of changes in point mutations,
CNAs and rearrangements, suggesting that the mutational
processes acting at these three levels were broadly in concert
over time and across subclones during evolution.

Mutational signatures in smoldering myeloma. Each genomic
event, be it a point mutation, an indel, or a rearrangement, results
from a specific mutational process that may drive the initial
clonal expansion and subsequent evolution. Each process pre-
ferentially induces a certain nucleotide change within a certain 5′
and 3′ context, which is identified as a specific “signature”.
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Fig. 1 The genomic landscape of smoldering multiple myeloma. a Map representing the prevalence of known driver events among 11 smoldering MM
patients. On the right the bar plot shows the number of somatic mutations (substitutions and indels) in each patient. b Circos plot representing the
recurrent MM translocations in MM identified in this study (IGH and MYC genes). c Cumulative prevalence of clonal copy number changes
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Considering 6 possible substitutions in pyrimidine context, and 4
possible bases each at the neighboring 5′ and 3′ positions, there
are then 96 possible combinations of substitutions in a trinu-
cleotide context. We employed a nonnegative matrix factorization
(NNMF) and model selection approach to extract mutational
signatures23,33 from the 96-class profile of the entire cohort
(Fig. 4a) identifying 5 main clusters covering the majority of the
mutational repertoire (Fig. 4b). Specifically, age-related (#1 and
#5 of the original paper from Alexandrov et al.23) and APOBEC
signatures (#2 and #13) accounted for 23% (3.2–40%) and 13%
(range: 1–21%) of all substitutions, respectively (Fig. 4a)23,33.
Furthermore, we found two additional signatures so far not
implicated in myeloma: the noncanonical AID (Signature #9),
contributing to 28% of all substitutions (range: 17–55%), and a
fourth compatible with signature #8, accounting for 28% of all
substitutions (range: 13–45%), previously described in different
cancers and pertaining to a yet unknown mutational process
(Fig. 4b)23,29. Finally, the fifth signature extracted by NNMF did
not match any of the ones previously described, representing a
potential novel and specific MM mutational process that we have
defined as MM-1 (present in 7% of variants, range: 1–16%),
whose pathogenesis remains entirely unknown at present. The
same 5 clusters were validated at comparable frequencies in an
already published, independent WGS series of MM at diagnosis or

relapse (Supplementary Figure 7, clinical information in ref. 12).
The prevalence of each signature varied between patients both
in absolute and relative contribution, confirming genomic
complexity and heterogeneity of MM (Fig. 4c, d). The nc-AID
contribution was more prevalent among noncoding regions
(Fig. 4e, f) than in coding regions, explaining why it was not
found in prior WES studies11,25. Together, these data highlight
that all processes that shape the MM genome are already
operative at asymptomatic stages.

Localized hypermutation in smoldering myeloma. Somatic
mutations were not evenly scattered across the genome. Instead,
we found areas of localized hypermutation, termed “kataegis”,
which were occasionally reported in MM exomes11. In our
whole genome data, we extend these observations and describe
extensive evidence of kataegis, of which we defined 127 regions
with a median of 6 (range: 3–17) per sample (Fig. 5a). Some
areas of kataegis were expected, i.e., in the immunoglobulin
heavy (IGH) or light (IGK/IGL) chain loci secondary to the
physiological process of somatic hypermutation during B-cell
development in the germinal center. IGH/IGK/IGL kataegis was
found in all patients. After excluding these regions, ≥1 kataegis
event was detected in 7/11 patients, for a total of 45 events.
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Only two non-IGH/IGK/IGL kataegis events within the same
patient were not conserved during SMM progression, suggest-
ing most represent early events. Interestingly, kataegis was
associated with rearrangements, found in 60% of such regions
involving non-IGH/IGK/IGL loci. Breakpoints of such rear-
rangements were significantly closer to the kataegis region than
expected by chance (Fig. 5b, top), suggesting they may arise as
part of the same mutational process. In immunoglobulin
regions, where rearrangements were mostly composed of
deletions from the V(D)J recombination and class switch
recombination processes, this phenomenon was even more
pronounced (Fig. 5b, bottom). To look for mutational pro-
cesses operative around these events, we restricted mutational
signature analysis to kataegis regions, where we extracted 3
main signatures: nc-AID, APOBEC, and a third process not
included in COSMIC mutational signatures data set (http://
cancer.sanger.ac.uk/cosmic/signatures). The profile of this lat-
ter process was most similar to the canonical AID (c-AID)
mutational signature recently described in a chronic lympho-
cytic leukemia WGS study (Fig. 5c)29, and it was likely missed
by previous NNMF studies because it is very localized in the

genome and present in few types of cancers only. Consistent
with c-AID activity, we found this signature to be particularly
prevalent in IGH/IGK/IGL loci (Fig. 5d), and less so in other
regions (Fig. 5e). Overall, the combined effect of c-AID and
nc-AID was responsible for more than 70% of all substitutions
in kataegis regions (Fig. 5d, e), suggesting a causative role of
aberrant AID activity in shaping the early mutational repertoire
of neoplastic plasma cells, and not just a legacy of its physio-
logical activity in the germinal center.

Evolution of signatures over time. Comparing paired samples,
no significant differences were observed in the prevalence of the
five signatures during evolution, both in terms of absolute
numbers and relative contribution (Fig. 4d, e). These data suggest
that, independent from patterns of genomic evolution, the
mutational processes that shape the MM cell genome are already
operative at the smoldering stage. However, as mutations could
be clustered into clonal (early, present in the first transformed cell
and from there in all cells of the tumor) or subclonal (late,
acquired by a fraction of tumor cells after transformation and
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closer to the sampling time), we asked whether the contribution
of the five signatures varied in the preclinical phases of MM
development, i.e., before the actual sampling at the SMM stage.
When each cluster of mutations was analyzed as an independent

genome, NNMF reported striking differences in prevalence of
specific mutational signatures between clonal and subclonal
events (Fig. 6a–c and Supplementary Figure 8). Specifically, nc-
AID contributed to 47% (range: 36–59) of all early substitutions
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Fig. 4 The landscape of mutational signatures involved in MM. a The 96-substitution class prevalence in all samples in the study from which NNMF
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in all patients. Conversely, its activity was minimal, if not absent,
among late substitutions, where instead APOBEC and Signature
#8 were responsible for more than 50% of all substitutions in all
patients [27% (range: 3–58) and 18% (range: 7–50), respectively].
Unsupervised hierarchical clustering confirmed all early clones
had a similar signature contribution that was different from late
clones (Fig. 6d).

Discussion
In our characterization of the genomic landscape of SMM we
observe that cytogenetic, mutational, and rearrangement profiles
are very similar to what has been described in MM. The most
common aberrations (gain 1q, del13q, hyperdiploidy, and IGH
translocations) were all clonal and therefore retained in MM,
underlying their role in early stages of the disease. Interestingly,
all SMM samples analyzed in this study were characterized by a
significant subclonal heterogeneity that was frequently perturbed
at the time of progression. While somewhat counterintuitive, the
complexity of SMM genomic profile did not seem to be associated
with a shorter time to progression nor to a more frequent evo-
lution through accumulation of additional changes. PD26400
represents an emblematic example of this, being the patient with
the longest time to progression yet the most complex genomic
profile (Supplementary Figure 3). Likely, these differences reflect
a highly variable mutation rate between patients that does not
correlate with clinical aggressiveness.

Using paired samples, we report two very important and
translationally significant results. First, we observe two models
of progression from premalignant stage to MM. In the “static

progression model”, the same subclonal architecture was
retained as the disease progressed to MM. In this model, the
time to progression solely reflected the time needed to accu-
mulate a sufficient disease burden to become clinically symp-
tomatic. Here, all the genomic features of an overt myeloma
were already present when the disease was defined as SMM
based on clinical parameters. Moving forward the task will be to
genomically redefine symptomatic myeloma so as to include
these SMM patients in the category that should be treated as
MM. An early identification and treatment of these patients will
be the direction of future studies. The “spontaneous evolution
model” represents an interesting example of spontaneous
Darwinian evolution where the subclonal composition of
smoldering MM changed without any selective pressure from
treatment, owing to the stochastic acquisition of additional
mutations conferring a proliferative advantage to one of the
subclones. While in the first model the time to progression is
generally lower than 1 year, in the case of spontaneous evolu-
tion the median time to progression was longer and reflected
the time needed for the generation of a truly new malignant
clone that would progress to overt MM. Patients in this group
will be the candidates to undergo preventive therapeutic stra-
tegies to truly abrogate progression to myeloma.

A second important finding identifies processes operative at the
early premalignant stage and then later related with progression
to myeloma. Our study shows that all samples (SMM and MM)
are characterized by an early and major contribution from AID to
the generation of the mutational spectrum of the transformed
postgerminal center B-cell giving rise to the myeloma clone. This
distinct profile is shared by all patients and represents an early
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common driver mutational process, consistent with AID activity
in the germinal center and its absence in MM cells34. Based on
these data, we hypothesize a novel pathogenic model for MM
where aberrant AID activity contributes to tumor initiation, and
provides a fertile ground where other later processes (i.e., APO-
BEC and signature #8) act and shape the final genomic landscape
of overt MM. Consistently, we have recently shown that APOBEC
activity increases with disease progression from MGUS to plasma
cell leukemia, reinforcing this finding16.

Compared to previous WES studies, our WGS provided a
much richer catalog of genetic lesions but a shallower median
coverage. As a result, potentially we may have missed additional
subclones present at low frequencies in the cancer samples,
overestimating the percentage of cases where no change in the
genomic structure occurred. As sequencing costs will fall, future
studies may take advantage of the wealth of data provided by
WGS at the depth of WES studies, and add sensitivity to our
initial observation. Our data raise potential caveats for the search
of markers of progression. In fact, current techniques will mostly
allow identification of genomic events affecting the main SMM
clone only, but this is not necessarily the one that will progress. In
our series in fact, most samples showing subclonal changes
acquired novel mutations not evident at the time of the first
sampling. Again, deeper coverage will be required to add sensi-
tivity and bring advances that may be clinically useful.

In summary, our unique paired samples from SMM and
symptomatic MM from the same individual provide an important
insight into both patterns of progression and mechanism driving
the biological processes related with genomic evolution at dif-
ferent stages of the disease. These results also highlight potential
future translational approaches and point to redefining both
smoldering as well as symptomatic myeloma.

Methods
Sample selection. The study involved the use of human samples, which were
collected after written informed consent was obtained. All patients were diagnosed
between August 2008 and January 2014 before the revised International Myeloma
Working Group diagnostic criteria were published5. Based on the new criteria,
patient PD26424 would have been classified as active MM because of 61% BM
plasma cells (Supplementary Table 1). However, this patient was considered as
SMM based on prevailing criteria at the time and was included in this study. As
this patient received treatment prior to obtaining a progression sample, it was not
included in the analysis of progression.

The protocol was approved by RES Committee East of England—Cambridge
Central (WTSI protocol number 15/046). Samples and data were obtained after an
informed consent was signed, and managed in accordance with the Declaration of
Helsinki.

DNA were extracted from 21 samples from CD138+ myeloma cells purified
from bone marrow, and constitutional control DNA originated from peripheral
blood mononuclear cells. Purity of the CD138+ fraction was assessed by anti-
CD138 immunocytochemistry post sorting, and only samples with >90% plasma
cells were sequenced. For 10 patients, we sequenced 2 different samples collected at
different time points of the disease.

Massively parallel sequencing and alignment. Short insert—500 bp—genomic
libraries were constructed, flowcells prepared and sequencing clusters generated
according to Illumina protocols. We performed 100 bp paired-end sequencing on
HiSeq ×10 genome analyzers. The average sequence coverage was 38.7-fold. Short
insert paired-end reads were aligned to the reference human genome (GRCh37)
using Burrows–Wheeler Aligner, BWA (v0.5.9)35.

Processing of genomic data. CaVEMan (Cancer Variants Through Expectation
Maximization: http://cancerit.github.io/CaVEMan/) was used to call somatic sub-
stitutions36. Indels were called using a modified Pindel version 2.0. (http://cancerit.
github.io/cgpPindel/) on the NCBI37 genome build37. Structural variants were
discovered using a bespoke algorithm, BRASS (BReakpoint AnalySiS) (https://
github.com/cancerit/BRASS) through discordantly mapping paired-end reads38.
Discordantly mapping read pairs that were likely to span breakpoints, as well as a
selection of nearby properly paired reads, were grouped for each region of interest.
All rearrangements identified by BRASS that failed high-quality mapping of split
reads were manually evaluated by IGV. Considering the number of reads sup-
porting each rearrangement breakpoints and adjusting this value for both copy

number and ACF, we were able to estimate the adjusted variant allelic frequency
(VAF) of each rearrangement VAF. This parameter was used to roughly estimate
the change in the number of cells carrying each rearrangement during progression.

Allele-specific copy number analysis of tumors was performed applying ASCAT
(v2.1.1) on NGS data39,40. The evaluation of copy number changes for the
identification of subclonal aberrations was also performed by Battenberg as
previously described41.

To model clusters of clonal and subclonal point mutations, allowing inference
of the number of subclones and the fraction of cells within each subclone, we used
a 2-D Bayesian Dirichlet analysis as previously described for all patients with
paired samples11,42. We classified as “spontaneous evolution”, all progressions that
matched with the previously defined clonal evolution models (“Linear”,
“Differential Clonal Response”, and “Branching Evolution”)11, i.e., where the
cancer cell fraction of the various subclones changed significantly between the two
samples; conversely “static progression” was used to classify the ones that
progressed without any significant genomic change.

Mutational processes and signature analysis. Signatures of mutational processes
were analyzed using the Wellcome Trust Sanger Institute mutational signatures
framework (NNMF)23,33. Because NNMF works best when a large number of
samples is used33, we increased our cohort size by adding 19 additional MM
samples (4 newly diagnosed and 15 relapse), sequenced and analyzed by WGS at
our institution with the same pipeline as described above (Supplementary Table 4).
Our final cohort for NNMF thus included a total of 40 samples. The signature
analysis of each subclone, represented by a cluster of mutations identified by the
Dirichlet process, was limited to clusters with more than 100 substitutions.

Wilcoxon test (wilcox.test R function) was used to investigate the different
mutational load and signature contribution between SMM and MM. All other
analyses were performed using appropriate functions in R 3.3.2 software – (www.r-
project.org). Code is available upon request.

Data availability. Sequence files are available at the European Genome-phenome
archive under the Accession code EGAD00001001898.
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