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Purpose: The main goal of this study is to investigate the discrimination power

of Grey Matter (GM) thickness connectome data between Multiple Sclerosis

(MS) clinical profiles using statistical and Machine Learning (ML) methods.

Materials and Methods: A dataset composed of 90 MS patients acquired at the

MS clinic of Lyon Neurological Hospital was used for the analysis. Four MS

profiles were considered, corresponding to Clinical Isolated Syndrome (CIS),

Relapsing-RemittingMS (RRMS), Secondary ProgressiveMS (SPMS), and Primary

Progressive MS (PPMS). Each patient was classified in one of these profiles by

our neurologist and underwent longitudinal MRI examinations including T1-

weighted image acquisition at each examination, fromwhich the GM tissue was

segmented and the cortical GM thickness measured. Following the GM

parcellation using two different atlases (FSAverage and Glasser 2016), the

morphological connectome was built and six global metrics (Betweenness

Centrality (BC), Assortativity (r), Transitivity (T), Efficiency (Eg), Modularity (Q)

and Density (D)) were extracted. Based on their connectivity metrics, MS profiles

were first statistically compared and second, classified using four different

learning machines (Logistic Regression, Random Forest, Support Vector

Machine and AdaBoost), combined in a higher level ensemble model by

majority voting. Finally, the impact of the GM spatial resolution on the MS

clinical profiles classification was analyzed.

Results: Using binary comparisons between the four MS clinical profiles,

statistical differences and classification performances higher than 0.7 were

observed. Good performances were obtained when comparing the two

early clinical forms, RRMS and PPMS (F1 score of 0.86), and the two

neurodegenerative profiles, PPMS and SPMS (F1 score of 0.72). When

comparing the two atlases, slightly better performances were obtained with

the Glasser 2016 atlas, especially between RRMS with PPMS (F1 score of 0.83),

compared to the FSAverage atlas (F1 score of 0.69). Also, the thresholding value

for graph binarization was investigated suggesting more informative graph

properties in the percentile range between 0.6 and 0.8.
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Conclusion: An automated pipeline was proposed for the classification of MS

clinical profiles using six global graph metrics extracted from the GM

morphological connectome of MS patients. This work demonstrated that

GM morphological connectivity data could provide good classification

performances by combining four simple ML models, without the cost of

long and complex MR techniques, such as MR diffusion, and/or deep

learning architectures.

KEYWORDS

multiple sclerosis, brain connectivity, grey matter, machine learning, artificial
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1 Introduction

An important issue in neuroscience is the characterization of

human brain structure and function, and their alteration in brain

diseases. Today, the neurologist’s challenge is to define disease

phenotypes based on their underpinning mechanisms and to

predict the disease evolution. Multiple Sclerosis (MS), which is

the most common chronic immune-mediated disabling

neurological disease affecting the central nervous system

(Steinman, 1996; Goodin, 2014), is primary classified

according to clinical symptoms. In about 85% of cases, disease

onset is characterized by a first acute episode, called Clinically

Isolated Syndrome (CIS), it evolves to a Relapsing-Remitting

course (RRMS) followed by a Secondary-Progressive course

(SPMS) The remaining 15% of MS starts directly from a

Primary-Progressive course (PPMS) (Ghasemi et al., 2016;

Lublin et al., 2014; McDonald et al., 2001). However, the

clinical course of the disease and the risk for developing

permanent disability are very different from one patient to

another (Scalfari et al., 2010; Lynch et al., 2005). MS is

characterized by pathological processes including

inflammation and demyelination, leading to lesions,

predominantly in White Matter (WM) tissue, that can be

detected by conventional T2-weighted MRI (Compston and

Coles, 2008). Nevertheless, lesions are also present in Grey

Matter (GM) as initially demonstrated by histochemical

studies (Geurts and Barkhof, 2008; Calabrese et al., 2013), and

more recently by high field MRI (Bruschi et al., 2020; Tallantyre

et al., 2009). These findings, as well as the measurements of GM

atrophy (Filippi, 2015; Durand-Dubief et al., 2012), have

confirmed the neurodegenerative hypothesis in MS (Ghasemi

et al., 2016; Steenwijk et al., 2016; Preziosa et al., 2017). Kuceyeski

et al., 2018 showed that GM atrophy is associated with the highest

prediction accuracy of the patient’s future processing speed in

MS. More recently, cortical thickness has been recognized as an

early marker of neurodegeneration in MS (Cruz-Gomez, 2021).

In the last decade, Artificial Intelligence (AI) approaches

have been increasingly applied within the medical field, hoping to

increase diagnostic performance and improve treatment.

Specifically, Machine Learning (ML) is a data-driven approach

which covers a very broad set of methods. Indeed, ML aims to

extract possibly complex relations among available data and

generate predictions for an event. A wide range of ML

applications have been proposed in the literature. A

systematic review of the applications of ML methods in

autoimmune diseases is proposed by Stafford et al. (2020). In

a recent review paper, Segato et al. (2020) highlighted that AI

methods nowadays are among the most widely used analytical

tools, while classical ML approaches, such as support vector

machines and random forest, are still widely used.

Notwithstanding, in the field of MS, ML approaches have

often focused on automatic examination of MRI images to

classify disease at the time of onset or to predict evolution of

clinically isolated forms (Kaka et al., 2020; Afzal et al., 2020).

Such an example is proposed by Jackson et al. (2020), where a

Genetic Model of MS Severity (GeM-MSS) was used for the

evaluation of MS disability progression considering a cohort of

426 MS patients and obtaining a Root Mean Squared Error

(RMSE) of 0.46 and a correlation with MS-DSS score of 0.21.

Kolčava et al. (2020) proposed a classification task for predicting

a second clinical event in 64 MS patients with a CIS and based on

a multicenter MRI dataset. Logistic regression and Cox

proportional hazards regression models were used, obtaining a

sensitivity and specificity score of 84% and 63% respectively. In

Table 1 a tabular review of the most relevant studies of ML

application in the field of MS is provided. For a thorough review

of ML applications in MS we also refer to Vázquez-Marrufo et al.

(2021) and Garavand et al. (2022). Notwithstanding, DL models

are becoming increasingly more important in biomedical

diagnostics. For example, for the task of Epileptic Seizures

Detection, multiple DL methods have been implemented and

summarized in Shoeibi et al. (2021a). Also, in Shoeibi et al.

(2021c), various intelligent DL-based methods for automated

Schizophrenia diagnosis were described using

electroencephalography signals (EEG). Interestingly, in the

context of MS, multiple DL techniques are proposed for the

task of disease detection, segmentation and classification using

MRI data and summarized in Shoeibi et al. (2021b).

Graph theory represents a new and powerful approach for

characterizing brain networks by providing both global and local

metrics (Rubinov and Sporns, 2010; Guo et al., 2017), using

either functional MRI or diffusion tensor imaging (DTI).
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Recently, Tozlu et al. (2021) demonstrated that dynamic

functional and structural connectome metrics outperformed

results obtained from conventional MRI clinical data when

discriminating MS patients by impairment level. Previously,

Kocevar et al. (2016) demonstrated the interest of DTI

structural connectivity for the classification of MS clinical

profiles using ML methods. Marzullo et al. (2019) improved

the classification performance by using a CNN model. Schiavi

et al. (2022) used structural disconnection for the classification of

multiple sclerosis patients considering 55 MS patients and

24 healthy controls. Five different classifiers were used

reaching an accuracy in the range between 64.5% and 91.1%.

However, fMRI and DTI data, used for connectivity modeling,

require long acquisition time and the use of complex processing

techniques, strongly limiting their applicability in clinical

practice. Nevertheless, brain connectivity can also be obtained

from conventional MRI by measuring different morphological

metrics of the GM on T1-weighted images (Raamana and

Strother. 2018). In such graphs, nodes represent GM areas

obtained from the GM tissue parcellation, while edges

represent a degree of (dis-)similarity between nodes using

features like GM thickness (MacDonald et al., 2000). Indeed,

these morphological graphs follow a small-world topology at a

macroscale level, characterized by a high degree of local

clustering and short path-lengths linking individual

network nodes (He et al., 2007). Such an approach has

been recently used in Alzheimer’s Disease (AD), showing

that a GM network measures predicted hippocampal

atrophy rates within individuals with preclinical AD, in

contrast to other AD biomarkers (Dicks et al., 2020). In

MS, Muthuraman et al. (2016) analyzed morphological GM

thickness networks in order to classify CIS and RRMS patients

TABLE 1 Overview of the most relevant studies in the field of MS analysis from the literature using MRI data.

Author Dataset Method Application Performance criteria

Seccia et al. (2020) 1515 MS SVM; RF; ADB; KNN; RNN Conversion from RR to SP Spec = 86.2%;

Sens = 84.1%;

Acc = 86.2%

Barile et al. (2022) 90 MS Boosting Ensemble Disability estimation RMSE = 0.92

Rubinov and Sporns (2010) 90 MS CNN, GraphNN MS Classification RMSE = 0.09

Rosa et al. (2018) 105 MS Cascade of Two 3D Segmentation DSC=60; VD=40

Patch-Wise CNNs

Brichetto et al. (2020) 810 MS LR, SVM, KNN Conversion from RR to SP Acc = 82.6%

Zhao et al. (2020) 724 MS LR, SVM, RF EDSS prediction after 5 years Spec = 69%;

Sens = 79%;

Acc = 71%;

AUC = 78%

Pinto et al. (2020) 187 MS KNN, DT, LR, SVM Conversion from RR to SP Spec = 77%;

Sens = 76%;

AUC = 86%

Afzal et al. (2021) 19 MS Two 2D-CNN Segmentation; Lesion Detection DSC=67%

Sen=48%

Pre = 90%

Fleischer et al. (2020) 12 MS; 12 HC CBN; TPDC Causal Effects between brain areas -

Shrwan and Gupta (2021) 38 MS 2D-CNN MS Classification Acc = 99.55%;

Pre = 99.15%

Ye et al. (2020) 38 MS DNN MS Classification Acc = 93.4;

Sen = 99.1

Barile et al. (2021a) 48 MS GAN MS Classification F1 = 81%

Barile et al. (2021b) 70 MS NTF MS Classification F1 = 76%

Yperman et al. (2020) 642 MS LR; RF Disability Prediction Acc = 75%;

AUC = 75%

Pruenza et al. (2019) 48,186 MS RF MS progression Acc = 82%

SVM, Support Vector Machines; RF, Random Forest; LR, Logistic Regression; ADB, Adaboost; KNN, K-Nearest Neighbour; CNN, Convolutional Neural Network; RNN, Recurrent Neural

Network; DNN, Deep Neural Network; GAN, Generative Adversarial Network; GraphNN, Graph Neural Network; NTF, Non-Negative Tensor Factorization; HC, Healthy Control; MS,

Multiple Sclerosis; RR, Relapsing-Remitting MS; SP, Secondary-Progressive MS; CBN, Causal Bayesian Network; TPDC, Time-resolved Partial Directed Coherence; RMSE, Root Mean

Squared Error.
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using Support Vector Machines model, obtaining good level of

accuracy.

The main goal of this study is to investigate whether cortical

thickness atrophy, in patients affected by MS, represents a

discriminative biomarker for MS profiling. Our hypothesis is

based on previous studies where the GM thickness

morphometric feature was demonstrated to be one of the

most important biomarkers characterizing MS patients

(Durand-Dubief et al., 2012). Also, focusing on network

changes and not on local structural properties may represent

an important step forward for a better discrimination of the MS

clinical profiles. In order to test such an hypothesis, an ensemble

of four ML models was used for the classification of MS patients

based on the morphological GM connectivity using the GM

thickness feature. The graph characterization was based on six

global graph metrics, describing the topological behavior of the

connectome. Two different spatial resolutions were considered

for GM regional parcellation, which allows to test the initial

hypothesis in two different settings (i.e., high and low spatial

resolution). Also, with the aim of investigating whether the

choice of the parcellation atlas has an impact on our initial

hypothesis, the results obtained from the statistical and ML

analysis were compared. To our knowledge, this is the first

attempt to characterize brain networks of MS patients based

on their GM atrophy and to perform statistical analysis and

automatic classification of MS clinical profiles using two

parcellation approaches. An ensemble of 4 ML models was

considered in order to improve the binary classification task,

while taking into account the thresholding impact on the

topological architecture of the GM network.

2 Materials and methods

2.1 Study population and MRI acquisition

In this study, 90 MS patients were examined at different time

points, every 6 months during the first 3 years and then every

year for the following 4 years. Patients were recruited at the MS

clinic of Lyon Neurological Hospital and underwent a MR

examination at the CERMEP MRI department, on a 1.5T S

Sonata system (Siemens Medical Solution, Erlangen,

Germany) using an 8-channel head-coil. The MR protocol

included the acquisition of a sagittal 3D-T1 sequence (1 × 1 ×

1mm3, TE/TR = 4/2000ms). A total of six-hundred-fifty-two

scans were obtained, corresponding to 12 CIS, 30 RRMS,

28 SPMS, 20 PPMS. To better clarify the dataset used in this

study, Table 2 reports the summary information for all the MS

patients. This study was approved by the local Ethics Committee

(CPP Sud-Est IV) and the French national agency for medicine

and health products safety (ANSM). Written informed consent

was obtained from all patients prior to study initiation.

2.2 GM connectivity generation

Starting from 3D T1-weighted images, several preprocessing

steps were applied to the anatomical image of each patient and

based on the Freesurfer v6.0.0 image analysis suite (Reutera et al.,

2012). A detailed description of all the preprocessing steps can be

found in Hanganu et al. (2015). In particular, the skull was

removed from the brain image and motion correction as well as

registration and intensity normalization were performed in order

to reduce noise andmake all the MRI scans comparable, avoiding

pixel intensity artifacts that may distort the final analysis.

Additionally, the MRI image was resampled into a 3D

coordinate system called the Talairach space. It allows to map

the location of brain structures such that MRI scans with

different size and overall shape of the brain are mapped using

comparable 3D coordinates. To better visualize the impact of the

preprocessing, Figure 1 is shown to illustrate the effect for a

random subject sampled from our cohort of MS patients. Finally,

segmentation of the anatomical tissue, including cortical and

sub-cortical GM segmentation was performed. Each voxel was

classified into one of four classes, such as WM, cortical GM, sub-

cortical GM and cerebro-spinal fluid (CSF). The cortical

thickness morphometric feature was calculated for each GM

pixel and clustered in brain regions based on the used

parcellation atlas. The exact pipeline used to build the

morphological connectome was described in Raamana and

Strother (2017). The reliability of the pipeline was validated

using histological (Rosas et al., 2002) and manual

measurements (Rosas et al., 2002) demonstrating high

performances across different scanner and field of strengths

TABLE 2 Summary information of the dataset partition into MS clinical profiles (CIS, RR, SP, PP) and healthy subjects. Average values for Age (at first
scan) and Disease Duration (DD) with standard deviation in parentheses is reported. Median values of EDSS is provided along with range of
variation in parentheses. Percentage of female patients is reported.

N Patients N Scans Age DD Sex (%) EDSS

CIS 12 64 32.4 (6.4) 3.0 (1.9) 47 1 (0–3)

PP 20 140 40.4 (6.3) 7.5 (2.9) 66 4 (2.5–6.5)

RR 30 233 33.6 (7.1) 8.3 (4.9) 82 2.5 (0–4.5)

SP 28 215 40.8 (4.8) 14.9 (6.0) 40 5 (3–7)
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(Reutera et al., 2012). Additionally, previous studies have

performed similar analysis demonstrating the robustness of

the implemented pipeline (Muthuraman et al., 2016;

Kuperberg et al., 2003). The GM parcellation task was

performed using two different atlases, the FSAverage (Rosenke

et al., 2017; Fischl et al., 1999) and the Glasser 2016 (Glasser et al.,

2016), providing 68 and 360 brain regions (nodes), respectively.

The GM morphological connectome of each patient was

obtained comparing the morphometric features (i.e., GM

thickness) of each brain region, using the Manhattan distance

formulation (Craw, 2017), and expressed by a full squared

symmetric matrix A ∈ Rq×q, where q represents the number of

FIGURE 1
Visual comparison between the anatomical T1w image modality before (A) and after (B) preprocessing.

FIGURE 2
Intuitive representation of the pipeline implemented for morphological connectome data generation. Starting from the magnetic resonance
T1-weighted image of a patient, the GM tissue was first segmented and then parcelled in different anatomical brain regions (ROIs) based on a specific
atlas used as template (FSAverage or Glasser 2016). Additionally, from the segmented tissue, the thickness morphometric statistic was calculated for
each GM region. A ROI to ROI binary comparison was performed for all possible combinations of GM regions (one to one comparison). The
Manhattan distance formulation was used as dissimilarity metric. The results were organized in a squared symmetric adjacency matrix (i.e.
connectome) where each entry represent the (dis-)similarity between two ROIs. From the connectome, six global metrics were calculated for the
analysis of graph characterization.
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nodes (brain regions). The corresponding graph representation

of this adjacency matrix can be defined as G = (V, E, ω) where V

represents the set of nodes defining brain regions (|V| = q), E

represents the set of edges between these regions (|E| =m) and ω

defines the strength of association (Raamana and Strother, 2017;

Raamana and Strother, 2018). An intuitive representation of the

pipeline implemented for morphological connectome data

generation is shown in Figure 2.

2.3 Graph binarization

In order to perform the brain morphological connectivity

analysis, graphs were binarized to remove the weakest

connections generated by the morphometric GM thickness

comparison. Henceforth, a percentile threshold 0 < τ < 1 was

imposed and a corresponding binarized unweighted and

undirected graph ~G � ( ~V, ~E) was obtained, where | ~V| � q �
|V| and |~E| � ~m≤m. It is worth noticing that the topology

and density of the network are affected by the imposed

threshold (Bullmore and Sporns, 2009; Simpson et al., 2013).

In this work, a proportional thresholding approach was applied

to determine the binarization value. Mathematically, this is

equivalent to impose a function Φ: G → ~G. Let’s define with

vec(Ai) the vectorization of the matrix A for scan i of a specific

patient and with vec(A: )++ the concatenation of vec(Ai)∀i ∈ K

where K represents the set of all patients’ scans. The total

percentile distribution over all vectorized concatenation of all

MRI scans can be defined as dvec(A: )++. Based on this formulation,

a proportional thresholding strategy can be applied. Basically,

each absolute valueΦ, corresponding to the associated percentile
τ form distribution dvec(A: )++ in the range 5%–95% at steps of 5%,

was considered as a valid binarization score. Formally speaking,

for each percentile threshold τ, a function Φ can be defined as:

Φ � 0, if ω< ϕ
1, otherwise

{

For the analysis, we followed the same approach proposed by

Kocevar et al. (2016). The Coefficient of Variation (CV) was used

as measure of variability.

2.4 Graph metrics estimation

In this study, six global graph features were calculated based on

the binarized connectome ~G of each patient’s scan. Graph Density

(D) (Barnes, 1969) is defined as the ratio between the numbers of

connections in the graph over the number of possible connections. It

represents the easiest graph metric and it intuitively conveys

information about the “density of connections” between nodes.

Maximum value of D will be obtained when every node is

connected with any other node in the network. Assortativity (r)

(Thedchanamoorthy et al., 2014) represents the correlation

coefficient between the degrees of two nodes at the extremities of

an edge. It quantifies the tendency of a network to have individual

nodes connected with other similar nodes (Newman, 2002) and thus

it can be intuitively quantified as a Pearson correlation. Transitivity

(T) (Bouwer, 1972) is the ratio between the number of triangles,

defined as triplets of nodes interconnected, and the number of all

possible triplets in the graph. Intuitively, T represents the overall

probability for the network to have adjacent nodes interconnected,

thus revealing the existence of tightly connected communities also

known as clusters. Interestingly, complex networks with small-world

properties often have high transitivity. Global Efficiency (Eg) (Ek

et al., 2015) is themean of the inverse of the shortest path distance in

the graph between each pair of nodes. Intuitively, such a metric

represents the efficiency towhich information is propagated through

the network. In fact, it measures the average propensity to reach a

node j from a node i in as less number of steps (involved nodes) as

possible. Interestingly, the change of efficiency caused by failures or

attacks can be used to assess the robustness or resilience of networks

(Zhou and Wang ,2018). Average Betweenness Centrality (BC)

(Jannoud, 2014) is defined as the total number of shortest paths

from node i to node j that pass through a specific node v of interest

over the total number of possible shortest paths, averaged with

respect to all the nodes in the network. In other words, the BCmetric

measures the extent to which a vertex lies on paths between other

vertices. Intuitively, vertices with high BC values may have

considerable influence within the network since they “control”

(i.e. influence) the overall information traveling between nodes.

Interestingly, nodes with high BC are also the ones which mostly

disrupt communication between vertices when removed from the

network, since they represent a “bridge” between two

communicating nodes and their disruption increases the number

of steps required for the information to travel, ultimately reducing

the efficiency of the network. Modularity (Q) (Lancichinetti and

Fortunato, 2009) describes the capability of a network to be

separated into modules. Such modules are also known as

communities and they are characterized by the appearance of

densely connected groups of vertices, with only sparser

connections between groups. Thus, the detection of modules

inside the human brain may be an interesting feature for

studying interdependence between Regions of Interests (ROIs)

(Newman, 2006). For an in-depth description and application of

these metrics we refer to Stamile et al. (2021).

3 Statistical and machine learning
analysis

3.1 Statistical analysis

MS clinical profiles were compared based on their global

graph metrics using Generalized Linear Model (GLM) with

binomial family and logistic link (Agresti, 2021).
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Stata16 statistical programming language (StataCorp, 2021) was

used along with the command xtmelogit for GLM model fitting.

The longitudinal aspect of the dataset was taken into account by

considering both mixed and random effects. The evaluation of

statistical differences betweenMS clinical profiles, for each global

graph metric, was performed controlling for age and gender as

confounding factors. The longitudinal aspect of the dataset was

taken into account by the random effect, which model the time

component, while the remaining regressors were included as

fixed effects. The tests were computed with a level of

significance of 5%.

3.2 Classification of MS clinical profiles

Four different ML models were considered in this study for

the classification task, namely Logistic Regression (LR) (Cox,

1958), Random Forest (RF) (Breiman, 2001), Support Vector

Machine (SVM) (Cortes and Vapnik, 1995) and Adaptive

Boosting (AdaBoost) (Schapire, 2013) models. The predictive

analysis was performed using Python 3.6 programming language

along with scikit-learn package v0.24.2, while the networkx

package v2.2 was used for global graph metrics calculation.

The 4 ML models were chosen as they are widely used, easy

to train and tune with a minimal number of hyperparameters to

optimize during cross validation (Witten et al., 2011) and provide

built-in feature importance for the prediction task, with the

exception of SVM in case a non-linear kernel is used

(i.e., Radial Basis Function Kernel). Additionally, simple

models are usually preferred with small datasets to avoid

overfitting the training set (Ghojogh and Crowley, 2019).

Moreover, the different underlying assumptions, used for each

classifier, may provide interesting insights for the classification

performance. A combination of many different predictors can

often improve predictions (Sollich and Krogh, 1995), and in

statistics this idea has been investigated extensively (Granger,

1989). In order to boost the performances and exploit the

individual properties of each classifier, we combined them

into a higher level ensemble model through majority voting.

To better clarify the ML pipeline, Figure 3 was proposed.

Predictive performances were compared considering the non-

parametric Wilcoxon matched-pairs signed-rank test.

3.3 Statistical metrics

In this work, five statistical parameters were used for the

predictive analysis, such as accuracy, precision, recall, and F1.

Such metrics are based on the analysis of true positive (TP), true

negative (TN), false positive (FP), and false negative (FN)

instances classified during the test phase (Gorunescu, 2011).

Formally speaking, accuracy is defines as the ratio between

the number of correct assessments and the number of all

assessments ( TP+TN
TP+TN+FP+FN), precision defines the fraction of

retrieved instances that are correctly classified ( TP
TP+FP) and

recall identifies the portion of positive instances that are

correctly identified ( TP
TP+FN), also known as sensitivity.

Additionally, F1 score is obtained combining precision and

recall and is defined as 2pPrecisionpRecall
Precision+Recall. Finally, the Area

Under the Receiver Operating Characteristics (ROC-AUC)

curve score was also calculated for completeness. Our

validation method consists of a stratified 10 fold cross-

validation strategy. More precisely, at each iteration, one fold

was left out as test set. From the remaining instances, 80% were

FIGURE 3
Schematic representation of the Machine Learning pipeline implemented for the classification of MS clinical profiles. Starting from the
adjacency matrix representation of the brain connectome for a patient, six global graph metrics (Betweenness Centrality (BC), Assortativity (r),
Transitivity (T), Efficiency (Eg), Modularity (Q) and Density (D) were calculated and used as input to the four Machine Learning models (Logistic
Regression, Random Forest, Support Vector Machine and AdaBoost) independently trained. The four models were then combined in a final
ensemble model by majority voting and then used for binary classification.
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used as training set and 20% as validation set. The training set

was used for parameter tuning and the model was validated on

the validation set to avoid overfitting. The entire procedure was

repeated 10 times and the results averaged. It is important to

notice that in order to avoid data leakage, if a specific patient was

assigned to the test set, all its corresponding longitudinal scans

were also selected.

3.4 Model optimization

In order to optimize the models, a grid search strategy was

employed. In particular, the following hyperparameters were

optimized. For the LR model a regularization parameter in the

interval between 1 and 100 was used, while for the RF model, the

number of trees were optimized in the range between 10 and

500 and the max depth of each tree between 1 and 10. For the

SVM model, a radial basis kernel (RBF) was used due to its good

performance, as demonstrated in previous studies (Kocevar et al.,

2016), along with a regularization parameter and kernel

coefficient in the range between 1 and 100. Finally, for the

AdaBoost model, the number of trees was tuned in the range

between 10 and 500, with a learning rate between 0.1 and 3.

Additionally, the thresholding value (τ), used for graph

binarization, as explained in Section 2.3, was also considered

as an additional hyperparameter along the entire percentile

range. In order to avoid data leakage, the search for the

optimal threshold was only performed on the training set.

The final results reported in Section 4 refers to the

performance obtained on the hold-out test sets.

4 Results

4.1 Descriptive statistical analysis of GM
connectivity

Morphological GM connectivity was characterized using six

global graph metrics and two different atlases for parcellation. By

measuring the degree of variability (i.e. CV coefficient) along

different percentile thresholding values, for each graph metrics

(Figure 4), a similar behavior was observed with both atlases.

FIGURE 4
Variability study over the entire percentile threshold range, using two different atlases [FSAverage ( ) and Glasser 2016 ( )]. Each block
defines the Coefficient of Variation (% CV), expressed in percentage values (y-axis), at each specific percentile threshold in the range [0–1] (x-axis) for
a defined global graph feature. For visual purposes, the upper and lower threshold values were cut off at a convenient value in order to avoid image
flattening.
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This first result showed that the spatial resolution of parcellation did

not have a strong impact on the variability of graph topology.

Second, we observed that the smallest CV score was obtained for a τ

value comprised between 0.7 and 0.8 for the graphmetrics BC and r.

These metrics play an important role in describing the information

flow of the network and the stability of centralized hubs. Also, the

variability of the modularity (Q) metric was coherent and stable

between the two atlases only in the range of 0.6–0.8. This result is

important as this metric is crucial for maintaining the small-world

property characterizing the human brain (Sporns and Betzel, 2016).

For the remaining three global metrics, namely Eg, T and D, an

opposite trend was observed. For Eg and T metrics an exponential

increase in the CV coefficient was observed for a value of τ greater

than 0.7. Overall, these results suggest that the information flow

between nodes far apart inside the network, and possibly pertaining

to different modular clusters, start to be compromised for higher

thresholding values, due to the reduction of intra-cluster

connections and lower number of triangular motifs (reduced

local transitivity). Notwithstanding, a stable value of CV in the

range of τ between 0.4 and 0.7 can be noticed for the Eg metric.

Finally, the D metric increased steadily until a value of τ equal to

0.7 from which an increased rate was observed, particularly for the

Glasser 2016 atlas which provides high spatial resolution

parcellation. Therefore, we concluded that good topological

characteristics could be observed for a value of τ in the range

between 0.6 and 0.8. For this reason, the statistical analysis in Section

4.2was performed considering a binary thresholding value of 0.7 as a

reasonable compromise since it represents the central value of the

suggested range.

4.2 Descriptive statistical analysis of MS
clinical profiles

Statistical analysis of the four MS clinical profiles was performed

by characterizing graphs with six global metrics calculated using two

atlases, FSAverage and Glasser 2016. As shown in Figure 5 and

Figure 6, significant differences were detected between theMS clinical

profiles for most of the graph metrics, especially considering the

higher spatial resolution (Glasser 2016) atlas. This is evident when

comparing the Transitivity (T) and Modularity (Q) metrics, for

which the Glasser 2016 atlas reported significant differences for

almost all binary comparisons, with the exception of the CIS and

RRMS groups. This result showed that a more refined parcellation

may be helpful in the discrimination of clinical profiles. Considering

the Betweenness Centrality (BC) metric, a significant reduction was

FIGURE 5
Boxplot comparison between four MS clinical profiles over six global graph metrics using FSAverage atlas. Differences between clinical profiles
were determined employing a generalized mixed effect model with age and sex as controlling factors (*p < 0.05; **p < 0.01; ***p < 0.001).
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observed comparing patients in the beginning stages of the disease,

such as CIS and RRMS, with progressive MS courses (PPMS and

SPMS). Conversely, for r, Eg and D, reduced mean values were

observed for CIS and RRMS patients compared to progressive

courses (p < 0.01). When comparing CIS with progressive

courses, significant differences (p < 0.05) were detected for almost

all metrics, with the exception of Q using the FSAverage atlas.

However, only small differences were observed between CIS and

RRMS patients. Additionally, significant differences (p < 0.05) were

observed between PPMS and SPMS groups, especially when the

Glasser 2016 atlas was used. From these results, it is possible to

conclude that GM thickness was more significantly altered in

progressive and degenerative courses, compared to earlier MS

stages. The brain networks of PPMS and SPMS patients exhibited

a reduced number of centralized nodes, leading to randomized

distribution of the information transfer.

4.3 Classification of MS Clinical profiles

From the descriptive statistical analysis, significant differences

were detected, suggesting good degree of separation between MS

clinical profiles. Thus, in order to evaluate the predictive

performance of the six global graph metrics, the 4 ML models

were trained separately and subsequently combined in an

ensemble model, by late integration using majority voting, as

described in Section 4.2. The classification task was performed

using the two atlases separately and the results compared in Tables

3, 4. Overall, comparable results were observed between the two

atlases. Moreover, high classification performance scores (F1 > 0.7

for both atlases) were obtained comparing patients in the primary

stage of the disease (CIS), with progressive courses (PPMS and

SPMS). When considering the AUC score, a similar classification

FIGURE 6
Boxplot comparison between four MS clinical profiles over six global graph metrics using Glasser 2016 atlas. Differences between clinical
profiles were determined employing a generalized mixed effect model with age and sex as controlling factors (*p < 0.05; **p < 0.01; ***p < 0.001)

TABLE 3Mean (st.dev) of the predictive performances of the ensemble
model across the ten folds of the cross validation using FSAverage
atlas.

Group F1 Precision Accuracy AUC

CIS-RR 0.653 (0.19) 0.737 (0.17) 0.626 (0.21) 0.575 (0.24)

CIS-PP 0.782 (0.19) 0.869 (0.14) 0.789 (0.18) 0.805 (0.16)

CIS-SP 0.753 (0.15) 0.826 (0.13) 0.733 (0.16) 0.749 (0.18)

RR-PP 0.725 (0.14) 0.733 (0.14) 0.743 (0.12) 0.695 (0.13)

RR-SP 0.667 (0.07) 0.699 (0.07) 0.678 (0.06) 0.674 (0.07)

PP-SP 0.663 (0.11) 0.708 (0.13) 0.665 (0.11) 0.673 (0.13)
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performance (0.75) between CIS and PPMS was observed with the

FSAverage atlas while lower score (0.67) was obtained using the

Glasser 2016 atlas, when comparing CIS and SPMS groups. These

findings suggested that a more detailed GM parcellation may lead

to less informative connectomes and a reduced classification

performance. Interestingly, when comparing CIS with RRMS

patients, no significant difference (p > 0.05) in performance

was observed between the two atlases (FSAverage; 0.66 and

Glasser 2016; 0.58). This result showed the limit of GM

connectome to discriminate patients in the early stages of the

disease, as CIS and RRMS profiles are mainly subject to

inflammation and less degeneration leading to GM atrophy

especially when a large (less refined) parcellation strategy was

considered. Notwithstanding, the high level of imbalance between

the two groups as well as the low number of CIS patients

considered in this study may play a substantial role.

Conversely, when comparing RRMS patients with PPMS, first,

significant differences were detected comparing the FSAverage and

Glasser 2016 atlases (p < 0.05), with an AUC score of 0.70 and

0.84 respectively, conform with the statistical analysis in Section

4.2. Surprisingly, when comparing RRMS with SPMS patients,

poor classification performances were detected, especially when

the Glasser 2016 atlas was considered (AUC score of 0.62). This

result is probably due to the high variability between the two

clinical profiles, as observed from the boxplot analysis in Figure 5

and Figure 6. This result did not significantly differ from the one

obtained using the FSAverage (AUC score of 0.67) atlas. For the

comparison between progressive courses, a good level of

classification (F1 score of 0.72) was obtained using the Glasser

2016 atlas, compared to the less refined FSAverage atlas (F1 score

of 0.66). Also, the AUC scores were similar reporting a value of

0.67 and 0.72 for the FSAverage and Glasser 2016 atlas,

respectively. Interestingly, the performance, as expressed by the

F1 score and AUC scores, obtained from the two parcellation

strategies, provided an interesting insight for the use of a more

refined parcellation approach, although no differences were

detected (p > 0.05). As an additional ablation study, in

comparison with previous reports (Muthuraman et al., 2016;

Kocevar et al., 2016), the classification results obtained using

only the SVM model were reported for both atlases in Tables 5,

6. Of particular relevance is the fact that the SVM model alone

outperformed the ensemble model when the RRMS group was

compared with progressive courses (PPMS: AUC score of 0.79 and

SPMS: AUC score of 0.71), using the FSAverage atlas. However,

when Glasser 2016 atlas was used, this result was not confirmed

when RRMS and PPMS patients were compared (F1 score of

0.58 and AUC score of 0.59). A second experiment was also

performed in order to investigate the classification performances

obtained by comparing early stages of MS patients (CIS and

PPMS) with progressive MS patients (PPMS and SPMS). For

this comparison, Figures 7, 8 are proposed, which depict the

Receiver Operating Characteristic (ROC) curves for both atlases

and for each of the folds in the cross-validation. From these

Figures, it can be observed that both atlases display a high

variability between the folds. Hence, no firm conclusions can be

drawn when comparing the two parcellation strategies.

Notwithstanding, the lower performances obtained for the

FSAverage atlas are mainly due to two out of 10 folds, namely

fold 3 and 7, for which very low classification performance of the

ensemble model was obtained. As shown in Tables 7, 8, multiple

MS profile comparisons were considered using the FSAverage and

Glasser 2016 atlas, respectively. Notwithstanding, good level of

classification performances (AUC) were observed considering the

CIS and RR group combined, with respectively PPMS (FSAverage:

0.65; Glasser 2016: 0.69) and SPMS (FSAverage: 0.66; Glasser 2016:

0.69) patients. However, no statistical differences were observed

between the two atlases. Conversely, when comparing RRMS

TABLE 4Mean (st.dev) of the predictive performances of the ensemble
model across the ten folds of the cross validation using Glasser
2016 atlas.

Group F1 Precision Accuracy AUC

CIS-RR 0.762 (0.11) 0.811 (0.09) 0.747 (0.12) 0.657 (0.15)

CIS-PP 0.834 (0.12) 0.872 (0.09) 0.819 (0.13) 0.798 (0.14)

CIS-SP 0.723 (0.07) 0.809 (0.07) 0.693 (0.07) 0.672 (0.09)

RR-PP 0.858 (0.09) 0.883 (0.06) 0.868 (0.08) 0.836 (0.11)

RR-SP 0.602 (0.10) 0.637 (0.11) 0.624 (0.08) 0.616 (0.10)

PP-SP 0.719 (0.09) 0.735 (0.08) 0.716 (0.09) 0.724 (0.09)

TABLE 5 Ablation study: Mean (st.dev) of the predictive performances
of the SVMmodel across the ten folds of the cross validation using
FSAverage atlas.

Group F1 Precision Accuracy AUC

CIS-RR 0.624 (0.15) 0.695 (0.13) 0.603 (0.17) 0.504 (0.20)

CIS-PP 0.771 (0.15) 0.836 (0.14) 0.788 (0.12) 0.758 (0.17)

CIS-SP 0.734 (0.15) 0.799 (0.14) 0.717 (0.16) 0.705 (0.21)

RR-PP 0.793 (0.09) 0.808 (0.09) 0.795 (0.09) 0.787 (0.10)

RR-SP 0.705 (0.07) 0.711 (0.07) 0.706 (0.07) 0.706 (0.07)

PP-SP 0.646 (0.09) 0.702 (0.09) 0.618 (0.09) 0.618 (0.10)

TABLE 6 Ablation study: Mean (st.dev) of the predictive performances
of the SVMmodel across the ten folds of the cross validation using
Glasser 2016 atlas.

Group F1 Precision Accuracy AUC

CIS-RR 0.752 (0.09) 0.785 (0.07) 0.737 (0.11) 0.603 (0.14)

CIS-PP 0.831 (0.13) 0.872 (0.10) 0.814 (0.15) 0.795 (0.16)

CIS-SP 0.724 (0.06) 0.812 (0.08) 0.693 (0.06) 0.671 (0.12)

RR-PP 0.801 (0.08) 0.805 (0.07) 0.803 (0.07) 0.791 (0.09)

RR-SP 0.582 (0.08) 0.586 (0.09) 0.591 (0.07) 0.585 (0.08)

PP-SP 0.735 (0.08) 0.743 (0.08) 0.733 (0.08) 0.733 (0.09)
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FIGURE 7
Receiver Operating Characteristic Curves (ROC) curve of the ensemble model for all 10-folds of the cross validation using the FSAverage atlas.

FIGURE 8
Receiver Operating Characteristic Curves (ROC) curve of the ensemble model for all 10-folds of the cross validation using the Glasser
2016 atlas.
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patients with progressive courses, significant differences (p < 0.05)

were observed between the two atlases with higher score (F1 and

AUC scores of 0.78) obtained with FSAverage. Also, it is

interesting to compare this result with the one obtained when

considering CIS and RRMS together against progressive MS

courses. In this case, an F1 score of 0.65 was obtained for both

atlases, suggesting that the inclusion of CIS patients happened to

be harmful for the classification performance, probably due to the

high variability and the low number of patients in the CIS group.

5 Discussion

GM atrophy is known to occur in MS, even at the earliest

stages of the disease (Eshaghi et al., 2018) and may vary between

brain regions. Since GM atrophy is probably less affected by

inflammation, these GM alterations may provide a more reliable

marker of neurodegeneration in MS. Moreover, measuring the

cortical thickness may constitute a more sensitive marker than

traditional volume-based measures as previously demonstrated

(Narayana et al., 2013; Nygaard et al., 2015).

5.1 Classification of MS forms

Recalling that our initial hypothesis was that of evaluating the

discrimination power of cortical thickness atrophy, graph theory

techniques were employed for testing such an hypothesis.

Specifically, the power of graph representation was combined

with the anatomical GM thickness feature. Six of the most

important global graph metrics were used and based on a

previous study (Kocevar et al., 2016). Also, an ML analysis

was performed using an ensemble of four different ML

models. A previous study attempted similar tasks

(Muthuraman et al., 2016) by characterizing GM network

data considering only CIS and RRMS profiles, thereby

reaching good level of accuracy (97%) using an SVM model.

The present study extended the comparison to all MS phenotypes

and proposed a fully automated pipeline to generate GM

connectivity graphs, using only the anatomical images. To our

knowledge, this is the first attempt to classify all the clinical MS

phenotypes considering both a statistical and ML approach. Our

pipeline is particularly relevant for use in clinical practice since

our method is only based on classical anatomical T1w images,

which represent the most common modality in clinical

applications because of its fast and cheap acquisition. From

the obtained results, when comparing CIS with progressive

courses (PPMS and SPMS), good level of classification

performances were obtained, in agreement with our initial

hypothesis as well as a previous study (Muthuraman et al.,

2016). In fact, CIS represents the first stage of the disease,

usually characterized by tissue inflammation, while PPMS and

SPMS correspond to the progressive evolution of the disease

where severe GM tissue degeneration occurs. Notwithstanding,

poor predictive performances were obtained comparing CIS and

RRMS clinical profiles, particularly when the FSAverage atlas was

used. Thus, our initial hypothesis does not hold for MS patients

in the primary inflammatory stages of the disease, meaning that

thickness alone was not able to discriminate patients according to

these two MS profiles. However, the lack of discrimination

between the two early stages of MS may be explained by the

reduced number of patients in the CIS group and the high level of

imbalance with respect to the RRMS profile, which represents the

most common MS group (Zahoor et al., 2017). Additionally,

interesting results were obtained comparing multiple global

metrics. In particular, patients in the early inflammatory

stages of the disease (CIS and RRMS) showed a more

assortative brain structure compared with patients in

progressive stages (PPMS and SPMS). Such a measure

evaluates the behavior of strongly correlated cortical regions,

in terms of cortical thickness. From a clinical standpoint, a value

closer to zero may be indicative of patterns of cortical

degeneration between highly correlated GM regions (i.e.

ROIs). In fact, cortical degeneration in specific regions of the

GM tissue reduces the thickness properties of such regions

compared to those not-affected, reducing the overall

assortativity of the network. The exact opposite was found in

previous studies in which connectome data was obtained from

WM streamline tractography (Kocevar et al., 2016). This result is

expected due to the opposite information provided by GM and

WM graphs. Indeed, while the former measures the degree of

dissimilarity between 2 GM cortical regions (dissociative

measure), the latter measures the axonal interconnectivity

between two brain regions by counting the number of

TABLE 7 Ablation study: Mean (st.dev) of the predictive performances
of the ensemble model across the ten folds of the cross validation
using FSAverage atlas and multiclass binary comparisons.

Group F1 Precision Accuracy AUC

CIS+RR-PP 0.644 (0.13) 0.672 (0.13) 0.645 (0.12) 0.654 (0.13)

CIS+RR-SP 0.632 (0.12) 0.659 (0.13) 0.633 (0.12) 0.644 (0.12)

CIS+RR-PP+SP 0.649 (0.11) 0.681 (0.12) 0.651 (0.11) 0.663 (0.11)

RR-PP+SP 0.778 (0.09) 0.792 (0.10) 0.778 (0.10) 0.774 (0.10)

TABLE 8 Ablation study: Mean (st.dev) of the predictive performances
of the ensemble model across the ten folds of the cross validation
using Glasser 2016 atlas and multiclass binary comparisons.

Group F1 Precision Accuracy AUC

CIS+RR-PP 0.661 (0.12) 0.745 (0.06) 0.671 (0.11) 0.694 (0.08)

CIS+RR-SP 0.658 (0.12) 0.731 (0.06) 0.668 (0.10) 0.691 (0.08)

CIS+RR-PP+SP 0.648 (0.11) 0.721 (0.06) 0.658 (0.10) 0.681 (0.08)

RR-PP+SP 0.704 (0.09) 0.761 (0.08) 0.704 (0.08) 0.732 (0.08)
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streamline fibers obtained from tractography (associative

measure), thus providing opposite interpretations.

As long as node centrality and modularity measures are

concerned, a reduction of such metrics was observed in

patients with progressive courses, especially when high

resolution parcellation was considered (Glasser 2016). These

results may suggest that the small-world property of the

human brain was altered. Advances in connectomics and

network neuroscience have found that the small-worldness of

brain networks is associated with efficient communication

(Bullmore and Sporns, 2012). Thus, from a clinical

standpoint, such observations suggest that when small-

worldness is disrupted, the communication between different

GM regions becomes less efficient, in agreement with results

already found in the literature (He et al., 2009; Fleischer et al.,

2017). Interestingly, once again this result is in agreement with

theWM analysis performed by Kocevar et al. (2016) and with our

initial hypothesis. It is important to notice that, these aspects

were taken into account by the ML model. In fact, for the

FSAverage atlas, BC and r turned out to be the overall most

important metrics, pointing to strong predictive discrimination.

Moreover, a higher Eg and D were observed in later stages of MS,

consistent with the concept of progressive neural loss and

consequently of structural hubs, thereby increasing the

randomness of the global network (Rimkus et al., 2018). All

these findings are coherent with our initial hypothesis stating that

pathological cortical thickness alteration may represent an

important biomarker for measuring the degree of

degeneration between different MS profiles. Additionally, due

to the high number of statistically significant differences between

clinical profiles, observed for both atlases (Figure 5 and Figure 6),

it is reasonable to question whether single global graph metrics

can naively classify MS patients in their respective clinical

profiles. However, from the boxplot analysis and from the

results reported in Table 9, we can conclude that a trivial

binary thresholding cannot discriminate MS profiles and more

sophisticated ML models are required.

5.2 Atlas comparison

Two different parcellation atlases were considered in this

study in order to investigate the impact of the spatial resolution of

the GM regions. From the analysis performed in Section 4, only

the comparison between RRMS and PPMS resulted in significant

differences in performance between the two atlases. The lack of

significant differences in all the remaining binary comparisons

might be explained by the low number of patients and the high

variability associated with the obtained results. Notwithstanding,

clear evidence in favor of the high spatial resolution atlas (Glasser

2016) can be noticed with generally higher classification scores in

terms of both F1 and AUC scores. Conform with the statistical

analysis, the Glasser 2016 atlas showed high degree of variation

between MS clinical profiles, most likely due to the larger size of

the connectome due to more precise GM parcellation.

Notwithstanding, the morphological features extracted from

each GM region are subject to larger variability since a

reduced number of pixels was considered for creating each

link inside the connectome. For this reason, a larger number

of patients might be needed in order to confirm our results.

5.3 Limitations of the study

This work has also some limitations. First, the reduced

number of patients in our dataset, especially for the CIS

group, may provide some degree of uncertainty in the

generalization results. This has led to an imbalanced dataset

TABLE 9 Mean (st.dev) values of global metrics [Betweenness Centrality (BC), Assortativity (r), Transitivity (T), Efficiency (Eg), Modularity (Q) and
Density (D)] were calculated on binarized graphs for τ=0.7 using FSAverage and Glasser 2016 atlas.

FSAverage Atlas

BC r Eg T D Q

CIS 48.83 (3.83) −0.62 (0.04) 0.58 (0.02) 0.44 (0.08) 0.27 (0.05) 0.13 (0.03)

RR 47.81 (3.94) −0.60 (0.04) 0.59 (0.02) 0.41 (0.08) 0.29 (0.05) 0.13 (0.03)

PP 44.28 (3.14) −0.57 (0.05) 0.60 (0.02) 0.42 (0.08) 0.33 (0.05) 0.12 (0.02)

SP 46.20 (4.94) −0.57 (0.05) 0.59 (0.03) 0.39 (0.09) 0.31 (0.06) 0.13 (0.03)

Glasser 2016 Atlas

CIS 263.76 (23.97) −0.55 (0.04) 0.57 (0.02) 0.26 (0.06) 0.25 (0.06) 0.15 (0.03)

RR 254.73 (19.19) −0.53 (0.03) 0.58 (0.02) 0.26 (0.04) 0.28 (0.05) 0.14 (0.02)

PP 239.77 (16.56) −0.50 (0.03) 0.60 (0.02) 0.30 (0.04) 0.33 (0.05) 0.11 (0.02)

SP 242.86 (25.11) −0.51 (0.04) 0.59 (0.03) 0.28 (0.06) 0.32 (0.07) 0.13 (0.03)
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when comparing the CIS group with other clinical profiles. In

order to tackle the problem, weights were imposed to the cost

functions of each ML model in order to regain balance during

models optimization, reducing the likelihood to overfit the

majority class. With a large enough sample size, a multi-class

classification approach might be considered and under/over

sampling techniques could be applied for the classification of

MS patients across the four MS groups, which may offer a useful

tool for clinical applications. However, the aim of this study was

more limited to binary classification and focused to the question

of whether GM tissue degeneration, combined with the

connectome representation, can discriminate MS subgroups.

Thus, in order to provide comparable results with previous

works, in this study, binary comparisons between MS clinical

profiles were considered. Second, the conditions followed in this

study for binary thresholding represent our best attempt to

empirically solve the binarization problem without inducing

bias in the process. The statistical analysis was in fact

performed independently from the predictive classification

task, in which the thresholding value was considered as an

additional hyper-parameter, optimized during cross validation.

Good properties were observed for thresholding values between

0.6 and 0.8. It is important to notice that, the study of GM

connectome thresholding remains an open issue in the literature.

In this work, we provided some empirical justifications to the

thresholding rule applied for graph characterization based on the

analysis performed in Section 4.1. Additionally, the statistical

results remain unchanged for different nearby thresholding

values ensuring robustness around the thresholding

neighbours. Third, the classification results might be improved

by including lesion filling during the GM segmentation, which

has demonstrated to increase the accuracy of cortical thickness

measurements in MS patients (Magon et al., 2014). However, this

approach requires lesions to be segmented by experts, which

represents a time consuming and expensive procedure.

Automated lesion segmentation procedures are today

available, although imprecise segmentation may hinder the

improvement provided by lesion filling, thus limiting its

applicability in clinical practice.

6 Conclusion

Although MS is mainly considered as an inflammatory and

demyelinating WM disease, it also exhibits extensive GM

involvement and neuro-degenerative processes. An automated

pipeline was proposed in this study to characterize GM graphs,

extracted from T1w MRI, using morphological features such as

GM thickness. The statistical analysis revealed that significant

differences were present between multiple global metrics,

highlighting the importance of GM connectome graphs. The

analysis was performed using two different resolution atlases,

showing slightly higher classification performances with the

more refined GM parcellation. The results obtained in this

work are of great interest considering that only the anatomical

T1w image was needed for classification of MS clinical profiles,

which represents the most common MRI modality in clinical

applications. To the best of our knowledge, no other studies

performed classification of MS clinical profiles only considering

the GM tissue degeneration measured by the morphological

thickness atrophy. Notwithstanding, the use of more advanced

Deep Learning (DL) methods may provide an additional

improvement to the baseline results proposed in this work. In

particular, advances in new deep learning architectures, such as

Transformer-based models and other deep learning based

architectures exploiting the attention mechanisms, have

demonstrated already impressive results which are worth

exploring. Besides deep learning applications, connectome

data analysis represents a new interesting field for studying

the architectural organization of the human brain network.

We plan to extend the present analysis considering a multi-

view kernel-based tensor factorization approach for the fusion of

multiple morphometric features extracted from the GM tissue,

such as GM curvature and area. Finally, the information obtained

from the WM and GM tissue may be combined in order to

enhance the classification performance of the MLmodel. Such an

approach can be performed by embedding the WM and GM

connectomes in a unified graph representation, exploiting the

complementary information provided by different brain tissue

types. Notwithstanding, such an approach requires the

acquisition of DTI data, which is less exploited for clinical

applications. Also, the study of longitudinal changes in MRI

biomarkers across the four groups represents an interesting

evolution of the present work that we aim to investigate.
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