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OBJECTIVES: Existing prognostic models for patients with hepatocellular carcinoma (HCC) have limitations. Analytic
morphomics, a novel process to measure body composition using computational image-processing algorithms, may offer further
prognostic information. The aim of this study was to develop and validate a prognostic model for HCC patients using body
composition features and objective clinical information.
METHODS: Using computed tomography scans from a cohort of HCC patients at the VA Ann Arbor Healthcare System between
January 2006 and December 2013, we developed a prognostic model using analytic morphomics and routine clinical data based on
multivariate Cox regression and regularization methods. We assessed model performance using C-statistics and validated
predicted survival probabilities. We validated model performance in an external cohort of HCC patients from Parkland Hospital,
a safety-net health system in Dallas County.
RESULTS: The derivation cohort consisted of 204 HCC patients (20.1% Barcelona Clinic Liver Cancer classification (BCLC) 0/A),
and the validation cohort had 225 patients (22.2% BCLC 0/A). The analytic morphomics model had good prognostic accuracy in the
derivation cohort (C-statistic 0.80, 95% confidence interval (CI) 0.71–0.89) and external validation cohort (C-statistic 0.75, 95% CI
0.68–0.82). The accuracy of the analytic morphomics model was significantly higher than that of TNM and BCLC staging systems in
derivation (Po0.001 for both) and validation (Po0.001 for both) cohorts. For calibration, mean absolute errors in predicted 1-year
survival probabilities were 5.3% (90% quantile of 7.5%) and 7.6% (90% quantile of 12.5%) in the derivation and validation cohorts,
respectively.
CONCLUSION: Body composition features, combined with readily available clinical data, can provide valuable prognostic
information for patients with newly diagnosed HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the third leading cause of
cancer-related death worldwide and one of the leading causes
of death in patients with cirrhosis.1 The incidence of HCC is
rapidly rising in the United States, related to large numbers of
patients with advanced hepatitis C virus infection and non-
alcoholic steatohepatitis.2 Prognosis for patients with HCC
remains poor with 3-year survival rates below 30%, largely
driven by advanced tumor burden at the time of diagnosis.
Despite improvement over time, the majority of HCCs in the
United States are still diagnosed beyond an early stage.3

Accurate tumor staging is not only important for prognos-
tication but also for determining appropriate treatment options.
HCC prognosis and treatment decisions are often determined
by a combination of tumor burden, degree of hepatic dys-
function, and patient performance status. Several staging
systems have been proposed, without any one system being

universally accepted.4 The Barcelona Clinic Liver Cancer
(BCLC) classification may offer the most prognostic informa-
tion, has been validated in several populations, and is
endorsed by the American Association for the Study of Liver
Diseases (AASLD).4,5 However, there are potential short-
comings with the BCLC, including the subjective nature and
low inter-observer reliability of assessing functional status.6

Prior studies have suggested additional prognostic informa-
tion from a 5-gene score; however, the widespread applic-
ability of this marker has been limited by low rates of biopsy
among patients with HCC.7

In contrast, the wide availability of computed tomography
(CT) imaging—abdominal or chest CT—in patients with HCC
makes this an ideal platform for biomarker discovery. Analytic
morphomics is a novel approach that uses high throughput
semi-automated image-processing techniques to assess
body composition, such as body dimensions, visceral fat,
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and muscle mass, and link it to clinical outcomes.8,9 We have
previously demonstrated that morphomics offers improved
prognostic accuracy over standard clinical assessment in
patients after liver transplantation as well as those in motor
vehicle accidents.9–12 We hypothesize that analytic morpho-
mics can identify body factor biomarkers that may improve our
ability to prognosticate in patients with HCC. The aims
of our study were (i) to develop and validate a prognostic
model for patients with HCC using analytic morphomics
and pre-treatment objective clinical/tumor information and
(ii) to compare the performance of this model to more widely
accepted prognostic models, including the BCLC.

METHODS

Study populations. Our derivation cohort (Ann Arbor
Cohort) consisted of all male patients with a new diagnosis
of HCC at the VA Ann Arbor Healthcare System between
January 2006 and December 2013 (n=306). Female
patients were excluded from the cohort because only two
patients were female. Patients were identified through liver
tumor conference lists and administrative databases were
searched using ICD-9 codes (155.0 and 155.2) as previously
described.13 More than 90% of all HCC patients at the VA
Ann Arbor Healthcare system were presented at the liver
tumor conference.
Our validation cohort consisted of all patients with newly

diagnosed HCC at Parkland Health and Hospital System
(Parkland cohort) between January 2005 and March 2012.14

Similar to the VA system, Parkland is an integrated health-care
system, so patients often receive their continuity of care
through the Parkland health system. However, as the sole
safety-net hospital system for Dallas County, Parkland cares
for a socioeconomically disadvantaged, racially diverse cohort
of patients. Patients in the validation cohort were initially
identified using ICD-9 codes for HCC (155.0 and 155.2), tumor
conference presentation lists, and prior databases as pre-
viously described.15,16

All HCC cases in both cohorts were adjudicated by two
authors (A.S. and G.S.) to confirm they met the diagnostic
criteria based on AASLD guidelines.4 For tumors larger than
1 cm, HCC diagnosis required a typical vascular pattern on
dynamic imaging (arterial enhancement and delayed wash-
out) or histology. Patients were excluded if they lacked CT
imaging prior to HCC-directed treatment, had technical issues
with CT imaging precluding analytic morphomics, had
incomplete measurements at thoracic vertebral level 11
(T11), or had incomplete clinical data. Of the 306 HCC
patients seen at the Ann Arbor VA during the study period, 229
(74.8%) had an abdominal or chest CT scan prior to treatment,
with the remainder only having magnetic resonance imaging.
All patients in both cohorts were discussed in multidisciplinary
Liver Tumor Boards for management decisions, and curative
treatments (liver transplantation, resection, and radiofre-
quency ablation) were recommended for patients with early
stage HCC as applicable. Liver transplantation was available
to a minority of patients in both cohorts given financial, social,
and medical barriers to transplantation in these patient
populations.17 This study was approved by the Institutional

Review Boards at the Ann Arbor VA Healthcare System and
UT Southwestern Medical Center.

Analytic morphomics. Pretreatment CT studies were analyzed
using analytic morphomics as previously described.8,12,18,19

Briefly, all available CT scan DICOM (Digital Imaging and
Communications in Medicine) files were loaded into the analytic
morphomics server in a de-identified manner. Given the method
of processing and required data, both contrast and non-contrast
scans could be used. A semi-automated high throughput
methodology with algorithms programmed in MATLAB
(MathWorks, Natick, MA) enabled image processing and ana-
lysis. All algorithms involved a combination of user-defined
points, automated image processing, and user editing and
verification. All imaging studies were first anatomically indexed
using semi-automated identification of spinal vertebral levels to
allow for accurate and standardized measurements of the same
area in each patient. In this paper, we chose to derive all
measurements at the bottom of T11. This anatomic landmark
was chosen because this was felt to have the highest likelihood
of being available on all abdominal and chest CT scans. A single
slice was chosen, as this would include all required body
composition features while minimizing processing time and
potential radiation exposure for future prospective studies. After
anatomic indexing, the fascial envelope and skin outline were
automatically defined using key points within the linea alba,
dorsal muscles groups, and paraspinus lateral seams at
specified vertebra points (Figure 1a–d). In addition to direct
measurements of features, we also included measurements
standardized to patient body size. We used two surrogates of
patient size: (i) the distance between the anterior edge of the
vertebra to the anterior edge of the fascial envelope and
(ii) the area of the fascial envelope (Figure 1e, f). All geometries
were saved in a STL (stereolithography) format in the
analytic morphomics database with PostgresSQL and subse-
quently retrieved to calculate several shape and pixel-based
measurements.

Clinical data collection. Patient demographics, clinical
history, laboratory data, and imaging results for both cohorts
were obtained through review of computerized medical
records and extracted using standardized forms. Given our
goal was to develop a prognostic model to be used at HCC
diagnosis, we only included pre-treatment patient and tumor
characteristics. Age, gender, race/ethnicity, liver disease
etiology, and presence of hepatic decompensation (ascites
or encephalopathy) were recorded for each patient. Labora-
tory data of interest included platelet count, creatinine,
bilirubin, albumin, international normalized ratio, and alpha
fetoprotein. Tumor characteristics at diagnosis including
number of HCC nodules, presence of portal vein thrombosis,
and TNM staging were determined by review of CT imaging.

Statistical analysis. Overall survival distribution was esti-
mated by Kaplan–Meier analysis, with patients’ outcomes
defined from time of CT scans to death, censored at the time
of liver transplantation or date of last follow-up. Prognostic
models of survival were developed by the Cox proportional
hazard regression models. Because analysis of CT scans
with analytic morphomics leads to high dimensional data
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similar to what occurs with microarray analysis or genome-
wide association data, we chose to utilize regularization
methods to address the vast number of measurements and
multi-collinearity of variables.20 We used elastic net regular-
ization with cross-validation for variable selection to build
prognostic models. The elastic net method utilizes a linear
combination of L1 (lasso) and L2 (ridge) penalty in minimizing
the partial likelihood function. This method addresses model
over-fitting and variable co-linearity through the lasso penalty
and ridge penalty, respectively. Tuning parameters were
optimized through 10-fold cross-validation minimizing the
deviance of partial likelihood for the Cox model. With this type
of approach for variable selection, all morphomics variables
were included in addition to clinical variables. The perfor-
mance of the model was assessed with C-statistics in the
derivation (Ann Arbor VA Healthcare system) cohort and the
independent external validation (Parkland Health and Hospi-
tal) cohort. C-statistics were also assessed for prognosis
based on the TNM and BCLC staging systems, the two most
widely used systems in the United States.21 The C-statistics
may range from 0 to 1, with 1 indicating perfect prediction and
0.5 indicating prediction by chance alone, with values greater
than 0.7 generally being considered a useful model. For
prognostic models, values greater than 0.9 are rare.22 To
compare the discriminatory validity of the models, we used a
modification of the net reclassification improvement metho-
dology that can accommodate survival data to assess
discrimination, comparing the fraction of concordant pairs
for which one model is more impressive than the other.23,24

To validate predicted probabilities, we calculated the mean
absolute error in predicted probabilities for 1-year survival,

and its upper 90% quantile.25–28 The mean absolute error in
predicted probabilities is the average difference in survival
between actual survival probabilities and those predicted
by the model, and the 90% quantile is the 90% upper
quantile for these absolute errors. A lower value suggests a
smaller difference in predicted survival probabilities vs. actual
survival probabilities, and thereby better calibration. All
statistical analyses were performed using R 3.1.0 with
packages glmnet, Hmisc, rms.

RESULTS

Patient characteristics. The Ann Arbor VA derivation cohort
consisted of 204 patients with HCC, with baseline character-
istics shown in Table 1. The median age of the patients was
61 (interquartile range 58–66) years. More than 44% of
patients were Caucasian and 100% were male. The most
common etiologies of liver disease were hepatitis C (73%),
alcohol-induced (7%), and nonalcoholic steatohepatitis/cryp-
togenic (5%). A total of 57% had Child Pugh class A cirrhosis,
31% Child Pugh B cirrhosis, and 12% Child Pugh C cirrhosis.
HCC was multifocal in 50% of patients, and nearly 10% had
lymph node involvement and/or distant metastases.
The Parkland Health and Hospital System validation cohort

consisted of 225 patients with HCC, with baseline character-
istics shown in Table 1. Themedian age of the patients was 57
(interquartile range 52–62) years. More than one-fourth of
patients were Caucasian and 79% were male. The most
common etiologies of liver disease were hepatitis C (64%),
alcohol-induced (14%), and nonalcoholic steatohepatitis/

Figure 1 Body composition features as determined by analytic morphomics. (a) Example of identification of spinal vertebral levels that serve as anatomic reference point.
(b) Example of fascial envelope (yellow line) and skin outline (red line). (c) Example of the dorsal group muscles (outlined in yellow) defined automatically after delineation of
paraspinus lateral seams at specified vertebra points. (d) Example of MATLAB-based 3D image viewer graphical user interface showing the pixel densities which was used to
measure the interstitial hounsfeld units at T11 (ITHU). (e) Example of VB2FASCIA or distance between the vertebra to the facial envelope. (f) Example of FASCIAAREA or
fascial area.
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cryptogenic (8%). A total of 37% had Child Pugh class A
cirrhosis, 38% Child Pugh B cirrhosis, and 25% Child Pugh C
cirrhosis. HCC was multifocal in 55% of patients, and nearly
26% had lymph node involvement and/or distant metastases.
Despite both centers being in the United States and serving

similar socioeconomic levels, there were significant differ-
ences between the two populations. The Parkland cohort had
higher rates of liver dysfunction, with a lower proportion of
patients with Child Pugh A cirrhosis (37 vs. 57%, Po0.001)
and higher proportion of Child Pugh C patients (25 vs. 12%,
Po0.001). The Parkland cohort also had a higher proportion
of patients with lymph node involvement and/or distant
metastases (26 vs. 10%, Po0.001). Although the proportions
of BCLC stage A patients were similar between the two
cohorts (20.9% vs. 17.6%, P= 0.47), there were significantly
more BCLC stage D patients (33.3 vs. 17.6%, Po0.001)
compared with the Ann Arbor cohort. Accordingly, there were
lower rates of curative treatment and a higher rate of best
supportive care in the Parkland cohort, leading to worse
overall survival (median 5.4 vs. 16.8 months).

Model description. To assess the ability of morphomics
variables to predict survival in HCC, we built three models.
First, we built a model using only morphomics variables
(Model 1). Recognizing that tumor factors and liver function
are important in determining outcome in HCC, we examined
the benefit of adding these factors to morphomics variables
for model performance. Model 2 included morphomics
variables and pre-treatment clinical factors known to affect
survival, whereas Model 3 included morphomics variables,
pre-treatment clinical factors, and TNM tumor stage. Only
clinical and tumor variables readily available at the time of
treatment decisions were included in the models. Variables

included in the models and the descriptions of their
measurements are detailed in Table 2.

Model performance. Median transplant-free survival of the
derivation cohort was 16.8 months, with 1-year and 3-year
survival rates of 59% and 21%, respectively. In the derivation
cohort, morphomics variables when used alone had a
C-statistic of 0.72 (95% confidence interval (CI) 0.63–0.82)
for predicting survival. Adding routine clinical information to
the analytic morphomics model increased the C-statistic to
0.76 (95% CI 0.67–0.85). Finally, a model combining
analytic morphomics, TNM tumor stage, and routine clinical
information achieved the highest C-statistic of 0.80 (95% CI
0.71–0.89) when combined with routine clinical information
(Po0.001 compared with both prior models). In a post hoc
subgroup analysis, the analytic morphomics model, there
appeared to be a trend towards better C index in patients with
Child Pugh B or C cirrhosis compared with those with Child
Pugh A cirrhosis (C-statistics 0.82, 95% CI 0.73–0.91 vs.
0.73, 95% CI 0.58–0.88). The final analytic morphomics
model had a significantly higher C-statistic compared with the
TNM (0.71, 95% CI 0.61–0.80) and BCLC (0.66, 95% CI
0.56–0.76) staging systems (Po0.001) (Table 3). For
calibration, the mean absolute error in predicted 1-year
survival probabilities was 5.3%, with a 90% quantile of 7.5%.
To examine the generalizability of our model, we examined

the validity of the model using an external cohort from
Parkland Health and Hospital System. Median transplant-
free survival of the validation cohort was 5.4 months, with
1-year and 3-year survival rates of 34 and 16%, respectively.
The analytic morphomics model performed well with a
C-statistic of 0.75 (95% CI 0.68–0.82), which was significantly
higher than C-statistics for the TNM (0.67, 95% CI 0.60–0.74)

Table 1 Patient demographics

Variable Ann Arbor cohort (n=204) Parkland cohort (n=225)

Age at diagnosis (years) 61 (58–66) 57 (52–62)
Gender (% male) 204 (100%) 178 (79%)
Race (% Caucasian) 89 (44%) 60 (27%)
Etiology of liver disease
Hepatitis C 148 (73%) 145 (64%)
Alcohol-induced 14 (7%) 32 (14%)
NASH/cryptogenic 11 (5%) 17 (8%)

Multifocal HCC 102 (50%) 123 (55%)
Portal vein thrombosis 43 (21%) 76 (34%)
Child pugh class
Child pugh A 117 (57%) 83 (37%)
Child pugh B 63 (31%) 86 (38%)
Child pugh C 24 (12%) 56 (25%)

MELD score 9 (8–12) 11 (8–15)
Alpha fetoprotein (ng/ml) 34.9 (9.6–283.2) 116.0 (13.8–4260.0)
ECOG performance status 1 (0–2) 2 (1–2)
TNM stage (I/II/III/IV) 86/47/51/20 7/109/51/58
BCLC stage (0/A/B/C/D) 5/36/26/101/36 3/47/51/49/75
Treatment
Resection 23 12
RFA 23 8
TACE 76 70
Sorafenib 22 17
Supportive 60 118

BCLC, Barcelona Clinic Liver Cancer; ECOG, Eastern Cooperative Oncology Group; HCC, hepatocellular carcinoma; MELD, Model for End Stage Liver Disease;
NASH, nonalcoholic steatohepatitis; RFA, radiofrequency ablation; TACE, transarterial chemoembolization; TNM, tumor node metastases.
All values are expressed are n (%) or median (interquartile range).
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Table 2 Variables in final models

Variable name Description Type of measurment

Model 1: Morphomics alone
FASCIACIRCUMFERENCE BY VB2FASCIA Circumference of the facial envelope divided by the distance

between the vertebra to the facial envelope
Body dimension

VISCERALFATAREA BY VB2FASCIA Area of the visceral fat divided by the distance between the
vertebra to the facial envelope

Fat

PSPXSECAREA BY VB2FASCIA Area of the dorsal muscle group divided by distance between
the vertebra to the facial envelope

Muscle

PSPVOLOFVB BY VB2FASCIA Volume of the dorsal muscle group divided by the distance
between the vertebra to the facial envelope

Muscle

TOTALBODYAREA BY VB2FASCIA Total body area divided by the distance between the vertebra
to the facial envelope

Body dimension

TOTALBODYCIRCUMFERENCE BY VB2FASCIA Circumference of the body divided by the distance between
the vertebra to the facial envelope

Body dimension

VB2FASCIA BY FASCIAAREA The distance between the vertebra to the facial envelope
divided by the fascial area

Body dimension

VISCERALFATAREA BY FASCIAAREA Visceral fat area divided by the fascial area Fat
SUBCUTFATAREA BY FASCIAAREA Subcutaneous fat area divided by the fascial area Fat
PSPXSECAREA BY FASCIAAREA Dorsal muscle group area divided by the fascial area Muscle
PSPVOLOFVB BY FASCIAAREA Dorsal muscle group volume divided by fascial area Muscle
TOTALBODYAREA BY FASCIAAREA Total body area divided by fascial area Body dimension
TOTALBODYCIRCUMFERENCE BY FASCIAAREA Body circumference divided by the fascial area Body dimension
ITHU NORMALIZED Density of the interstitial area normalized Relative interstitial

density

Model 2: Morphomics and TNM stage
FASCIACIRCUMFERENCE BY VB2FASCIA Circumference of the facial envelope divided by the distance

between the vertebra to the facial envelope
Body dimension

VISCERALFATAREA BY VB2FASCIA Area of the visceral fat divided by the distance between the
vertebra to the facial envelope

Fat

PSPXSECAREA BY VB2FASCIA Area of the dorsal muscle group divided by distance between
the vertebra to the facial envelope

Muscle

PSPVOLOFVB BY VB2FASCIA Volume of the dorsal muscle group divided by the distance
between the vertebra to the facial envelope

Muscle

TOTALBODYCIRCUMFERENCE BY VB2FASCIA Circumference of the body divided by the distance between
the vertebra to the facial envelope

Body dimension

VISCERALFATAREA BY FASCIAAREA Visceral fat area divided by the fascial area Fat
ITHU NORMALIZED Density of the interstitial area normalized Relative interstitial

density
TNM stage III TNM stage III Tumor factors
TNM stage IV TNM stage IV Tumor factors

Model 3: Morphomics, TNM stage, and clinical factors
PSPXSECAREA BY VB2FACIA Area of the dorsal muscle group divided by distance between

the vertebra to the facial envelope
Muscle

PSPVOLOFVB BY VB2FACIA Volume of the dorsal muscle group divided by the distance
between the vertebra to the facial envelope

Muscle

TOTALBODYAREA BY VB2FASCIA Total body area divided by the distance between the vertebra
to the facial envelope

Body dimension

TOTALBODYCIRCUMFERENCE BY VB2FASCIA Circumference of the body divided by the distance between
the vertebra to the facial envelope

Body dimension

VB2FASCIA BY FASCIAAREA The distance between the vertebra to the facial envelope
divided by the fascial area

Body dimension

PSPXSECAREA BY FASCIAAREA Dorsal muscle group area divided by the fascial area Muscle
PSPVOLOFVB BY FASCIAAREA Dorsal muscle group volume divided by fascial area Muscle
TOTALBODYAREA BY FASCIAAREA Total body area divided by fascial area Body dimension
ITHU NORMALIZED Density of the interstitial area normalized Relative interstitial

density
Multifocal Presence of multifocal tumor Tumor factor
PVT Y NY Presence of portal vein thrombosis Clinical factor
LogTBili Log of total bilirubin Clinical factor
LogINR Log of INR Clinical factor
Albumin Albumin Clinical factor
Hepatic encephalopathy Presence of hepatic encephalopathy Clinical factor
Ascites Presence of ascites Clinical factor
TNM stage III TNM stage III Tumor factors
TNM stage IV TNM stage IV Tumor factors

INR, international normalized ratio; TNM, tumor node metastases.
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and BCLC (0.70, 95% CI 0.62–0.78) staging systems
(Po0.001) (Table 3). As our derivation cohort only had
males and the external cohort had males and females, we
re-examined C-statistics of the model after excluding females
and data were similar to those above (data not shown). For
calibration, the mean absolute error in predicted 1-year
survival probabilities was 7.6%, with a 90% quantile of 12.5%.

DISCUSSION

We found using analytic morphomics, we can build an
accurate prognostic model for patients with HCC. In order to
ascertain the relative accuracy of our prognostic model, we
sought to compare it with the most prognostic or widely used
staging systems, BCLC and TNM, respectively.21 Our model
achieved a C-statistic of 0.80 in the derivation cohort, which
was significantly better than that of the TNMandBCLC staging
systems. We validated our model on an external cohort of
patients from a non-VA setting located in a geographically and
ethnically distinct region of the United States. Despite these
differences in the two cohorts, our model continued to perform
well in the validation cohort with a C-statistic of 0.75. The
analytic morphomics model demonstrated good calibration in
both derivation and validation cohorts, with a mean absolute
error in predicted 1-year survival probability of 5.3% and 7.6%,
respectively.
Analytic morphomics takes advantage of the wide avail-

ability of cross-sectional imaging in patients with HCC and
offers a potential source for prognostic information. Our
analytic morphomicsmodel includes three components: tumor
burden, liver function, and analytic morphomics data. These
measures parallel the inclusion of tumor burden, liver function,
and performance status included in other staging systems,
such as the BCLC. However, our model was able to achieve
higher C-statistics for survival in both the derivation and
validation cohorts. Prior studies have suggested high inter-
observer variability in assessing performance status aswell as
unclear cutoffs for discriminating ECOG performance
status.6,29 The use of analytic morphomics data may allow
more objective, reliable, and continuous measures of patient
performance status over a provider’s subjective assessment of
ECOG status.30

Using analytic morphomics, we are able to quantify features
of body composition that may be an important biomarker for

prognosticating clinical outcomes. This information can be
important for describing prognosis for patients in clinic, risk
stratification for clinical trials, and potentially for treatment
decisions. For example, it may be possible to define a
subgroup of patients who derive less benefit or are at an
increased risk of harms from palliative treatment such as
TACE and sorafenib. Our previous work showed that analytic
morphomics can be used to predict the presence of
cirrhosis among patients with liver disease with very high
accuracy (Area Under Receiver Operating Characteristics,
AUROC40.90), which was significantly better
than other serum-based methods.9 Similarly, we have shown
that analytic morphomics can predict mortality after trans-
plantation in patients with chronic liver disease.10 The
ability of analytic morphomics to predict outcome in such a
diverse population of patients supports the hypothesis that
understanding underlying patient features (phenotype) is a
very important first step to personalizing care. This is
particularly important in a disease such as HCC, in which it
is not only the aggressive nature of the tumor but also
underlying patient characteristics, such as functional status
and liver status, which are critical in determining prognosis.
Analytic morphomics can provide an accurate method to
quantitate these features.
Our morphomics model incorporates several characteris-

tics, including dorsal muscle area and volume, total body
circumference, and interstitial tissue density (Figure 1). It is
possible that, if not likely, dorsal muscle area and volume
serve as objective surrogates for sarcopenia and/or
frailty.8,10,30 This hypothesis is further supported by the fact
that adding performance status to the analytic morphomics
model did not change the predictive accuracy in the derivation
cohort (C-statistic 0.793 vs. 0.796). There has been increasing
literature on the prognostic importance of these features in
patients with cirrhosis and early data suggest exercise
programs to reverse frailty and/or sarcopenia may improve
prognosis in patients with cirrhosis;31,32 however, it is unclear
whether this would be equally true among patients with HCC.
Interstitial tissue density may serve as an early marker for
portal hypertension, as it has moderate correlation with the
presence of ascites (data not shown).
The performance of prognostic models is often lower in

validation cohorts than derivation cohorts given possible over-
fitting of the model, measurement error related to inter-

Table 3 Performance of model in derivation and validation cohorts

Derivation cohort Validation cohort

C-statistic Mean absolute error in
predicted probability
of 1-year survival

C-statistic Mean absolute error in
predicted probability of

1-year survival

Model 1a 0.72 95%CI 0.63–0.82
Model 2a 0.76 95%CI 0.67–0.85
Model 3a 0.80 95%CI 0.71–0.89 5.3%90%quantile 7.5% 0.75 95% CI 0.68–0.82 7.6% 90% quantile 12.5%
TNM System 0.71 95%CI 0.61–0.80 0.67 95% CI 0.60–0.74
BCLC System 0.66 95%CI 0.56–0.76 0.70 95% CI 0.62–0.78

BCLC, Barcelona Clinic Liver Cancer; CI, confidence interval; TNM, tumor node metastases.
aModel variables are detailed in Table 2. Model 1 includes analytic morphomics variables alone. Model 2 includes analytic morphomics variables and TNM tumor
stage. Model 3 includes analytic morphomics variables, TNM tumor stage, and pre-treatment clinical variables.
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observer variability of predictors, and/or differences in patient
case mix.33,34 However, the prognostic accuracy of our
analytic morphomics was similar in our independent external
validation cohort despite large differences in patient char-
acteristics. Our derivation cohort sampled from a VA popula-
tion and consisted primarily of Caucasian elderly males,
whereas our validation cohort sampled from a safety-net
population and included a large number of Hispanics and
Blacks, younger patients, and both sexes. Furthermore, our
derivation cohort was sampled from Dallas County and
included a large number of overweight, obese, and even
morbidly obese patients.
Some limitations of our study warrant further discussion.

Although analytic morphomics is versatile, at the present
time, we can only perform image analysis on CT data files, and
for patients who only had an magnetic resonance imaging,
we were unable to include them in the study. Nevertheless,
this is proof of concept to demonstrate image analysis
software that quantifies morphologic features in patients may
provide valuable prognostic information in patients with newly
diagnosed HCC. Furthermore, we increased the versatility of
our tool by focusing on the anatomic level that is often present
on both abdominal and chest CT scans and included all
protocol scans. Although magnetic resonance imaging is
becoming more preferred in some centers for diagnosis of
HCC, it is not always widely available especially in rural and
underserved areas. Even in patients who only received
magnetic resonance imaging for diagnosis of HCC, there is
often accompanying CTof the chest to rule out metastasis that
can be used for analysis. A second concern may be that
analysis of the data requires specialized expertise and
software that is not readily available. We are currently in the
process of developing stand-alone software packages that
can be distributed to academic sites aswell as developing web
portals and other modalities for easy acquisition of the
standard DICOM data files available in any CT scan. We
have shown the feasibility of this process by acquiring CT scan
data from completely different health-care systems such as
the Veterans Administration Health Systems and Parkland
Health Systems. The analytic software required for image
analysis was not available at Parkland Health Systems,
demonstrating the capability of performing this analysis
remotely. Thus, we feel that this process can be easily
generalized for different types of practices given time and
development. Because of its retrospective nature, our study
was also limited by missing data and the potential for
measurement bias. The possibility of measurement bias is
particularly applicable to variables, such as performance
status, which are subjective and were not consistently
reported in clinical notes. Finally, the majority of patients in
both cohorts underwent palliative therapies with TACE and/or
sorafenib, so larger studies are needed to determine whether
our results are equally valid in patients undergoing curative
treatments.
In summary, we found proof of principle that analytic

morphomics may offer prognostic information in diverse
cohorts of patients with HCC. Incorporation of body composi-
tion features from CT imaging can likely provide objective data
regarding sarcopenia as a potential marker of performance
status and interstitial edema as a potential marker of

early portal hypertension. Further research is needed to
prospectively validate these findings in large cohorts of
patients with HCC.
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Study Highlights
WHAT IS CURRENT KNOWLEDGE
✓ Accurate tumor staging is important for prognostication and

determining appropriate treatment options.

✓ Several staging systems have been proposed for
hepatocellular carcinoma (HCC), without any one system
being universally accepted.

✓ Analytic morphomics, a novel approach using semi-
automated image-processing techniques to assess body
composition features, has been linked to prognosis in other
diseases.

WHAT IS NEW HERE
✓ Analytic morphomics can provide prognostic information in

patients with HCC.

✓ Our analytic morphomics model offers improved prognostic
accuracy over currently available staging systems.
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