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Nitrogen (N) losses from livestock houses and
manure storage facilities contribute greatly to the
total loss of N from livestock farms. Volatilisation
of ammonia (NH3) is the major process respon-
sible for the loss of N in husbandry systems with
slurry (where average dry matter content varies
between 3 and 13%). Concerning this volatilisation
of NH3, the process parameters of pH and air tem-
perature are crucial. During a period of approxi-
mately 10 years, systematic measurements of NH3

losses originating from a large variety of differ-
ent livestock houses were made. One of the prob-
lems with NH3 emissions is the large variation in
the measured data due to the season, the produc-
tion of the animals, the manure treatment, type of
livestock house, and the manure storage. Gener-
ally speaking, prevention and control of NH3 emis-
sion can be done by control of N content in the
manure, moisture content, pH, and temperature[1].
In houses for growing pigs, a combination of
simple housing measures can be taken to greatly
reduce NH3 emissions[2]. In houses for laying
hens, the control of the manure drying process
determines the emission of NH3[1]. Monteny[3] has
built an NH3 production model with separate mod-
ules for the emission of the manure storage un-
der the dairy house and the floor in the house.

Manure spreading is also a major source of NH3

emission and is dependent on slurry composition,
environmental conditions, and farm management.
The effects of these factors have been employed
in a model[4].

Losses via NO, N2O, and N2 are important in hus-
bandry systems with solid manure and straw. The
number of experimental data is, however, very lim-
ited. As N2O is an intermediate product of com-
plex biochemical processes of nitrification and
denitrification, optimal conditions are the key is-
sues in N2O reduction strategies. We may expect
that in the near future the emission of greenhouse
gases will get the same attention from policy mak-
ers as NH3.

Sustainable livestock production has to com-
bine low emissions of gaseous N compounds with
acceptable odour emissions, low emissions of
greenhouse gases, and acceptable standards of
animal welfare. For the entrepreneur, the strategy
must be built on the regulations, the special con-
ditions of his farm, and what is reasonably achiev-
able.

KEY WORDS: ammonia emission, greenhouse gas
emissions, odour emissions, climate change, animal housing
systems, manure storage, manure treatment, volatilisation
of ammonia, sustainable livestock production

DOMAINS: agronomy, environmental sciences, environ-
mental technology, environmental management and policy,
environmental modeling, environmental monitoring

INTRODUCTION

During the past decades, livestock production has been intensi-
fied, both in numbers of livestock and in production level, with
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an increased input of minerals through feedstuffs and chemical
fertilisers. As a consequence, emissions of ammonia (NH3),
odours, and greenhouse gases to the atmosphere from livestock
production sources (housing systems, manure storage, land
spreading of manure, grazing) have increased drastically. The
emission of NH3 from agricultural activities in Europe, exclud-
ing the former USSR, doubled between 1950 and 1986[5],
whereas, for The Netherlands, this increase was by a factor of
2.5[6]. This increased NH3 emission has substantially contrib-
uted to the exceeding of critical loads for nitrogen (N) deposi-
tion in many European countries, leading to eutrophication and
soil-acidification related environmental stress[7,8]. In The Neth-
erlands, for example, about 46% of the potential acid deposition
is caused by emission of NH3[9], mainly originating from agri-
culture. The NH3 emission from agricultural sources was esti-
mated to be 180 kton in 1995[10]. According to the National
Environmental Policy Plan[11], the Dutch governmental policy
aims at a reduction, in the year 2010, of 70% and, for the year
2030, of 75 to 85%.

Since 1972, the odour nuisance from agricultural sources
has generally been controlled by a regulatory system based on
distance zones and odour strength. In the 1980s, results of odour
measurements, dispersion modelling, and neighbourhood enqui-
ries have provided a more quantitative basis to this guideline.

Methane (CH4) and nitrous oxide (N2O) contribute to global
warming. The global warming potential (GWP) of CH4 and N2O
is estimated to be 20[12] and 300 times the GWP of carbon diox-
ide (CO2). Furthermore, N2O emissions contribute to depletion
of ozone in the stratosphere, via stratospheric conversion of N2O
to NO[13].

A current estimate of the global emissions of N2O is 17.7
MT (1 MT = Tg = 1012 g), with 8.0 MT per year being emitted
from anthropogenic sources, of which 6.2 MT is from livestock
production[14]. Olivier et al.[13] indicated that fertiliser con-
sumption and animal excreta are equally important and are the
largest contributors to agricultural N2O emissions. Many authors
mention the great uncertainty in the greenhouse gas emission
data[12,15,16], mainly caused by lacking information about
emission factors for the various sources. In The Netherlands the
emissions of greenhouse gases from agricultural sources in 1999
were 25.8 billion CO2 equivalents, or approximately 11% of the
total greenhouse gas emissions. The State Institute for Public
Health and Environment in The Netherlands (RIVM)[10] is ex-
pecting a decrease of 10 to 15% in the greenhouse gases from
agriculture.

In this paper different types of emissions, mainly N, are put
in the context of sustainable agriculture and food production.

PROCESSES AND PARAMETERS
INFLUENCING EMISSIONS FROM
AGRICULTURAL SOURCES

Urea hydrolysis, catalysed by the enzyme urease, follows the
Michaels Menten kinetics for basic enzymatic conversion pro-
cesses[17]. Urease is produced by microorganisms that are abun-
dantly present in faeces and, thus, also upon surfaces that are
frequently fouled with faeces, like floors[18]. Eq. 1 represents
urea hydrolysis in a liquid environment (e.g., urine on the floor,
urine in the straw bed, or slurry in the pit).

( ) urease
2 2 3 22

CO NH H O 2NH CO+ → + (1)

The rate of urea hydrolysis and, thus, the ammonia (NH4
+)

production rate depend on the urea concentration in the urine
and the maximal rate of enzymatic urea hydrolysis at high urea
concentrations, also called “urease activity”.

In the liquid, ionised NH4
+ and unionised NH3 are in equi-

librium (Eq. 2).

pH,T
3 2 4NH H O NH OH+ -+ ¨ææÆ + (2)

The amount of NH3 relative to total ammoniacal N (TAN:
sum of NH3 and NH4

+) in the liquid is determined by the acid
dissociation constant (Ka) for NH3 and by the pH[19].

Volatilisation of NH3 is by convective mass transfer, from
the boundary of urine or slurry and air, to the air above the floor
or above the slurry in the pit. The amount of volatile NH3 de-
pends on equilibrium between NH3 in the liquid (l) and in the gas
phase (g) at that boundary (Eq. 3), following Henry’s Law.

T
3 3NH (l) NH (g)¨æÆ (3)

This equilibrium is temperature-dependent; higher tempera-
tures result in a higher amount of gaseous NH3.

NH3 volatilisation rate (Eq. 4) is the product of the NH3 mass
transfer coefficient and the difference in concentration or partial

TABLE 1
Fraction of TAN Present as NH3 as a Function of pH and Tem-

perature, with TAN as the Sum of NH3-N and NH4
+-N in Liquid[3]
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pressure of gaseous NH3 (g) between boundary (bound) and air
above the boundary (air).

T,v
3 3NH (g,bound) NH (g,air)¨ææÆ (4)

The mass transfer coefficient for NH3 depends on tempera-
ture (T) and air velocity (v) at the boundary.

Other than NH4, N2O is not directly produced from excretia.
Details of the processes and the process conditions of N2O pro-
duction are, in general, poorly understood[20,21] and may be
more complex than for NH3. Before N2O is emitted from slurry/
manure, ammonification of urea (either directly from urine from
ruminants, or indirectly, through conversion of uric acid to urea,
in excreta from birds) has to take place first. The ammonifica-
tion process is well understood and described for urine[22] and
uric acid[23], which are excreted by cattle/pigs and poultry, re-
spectively. The NH4

+ that is produced is transformed by nitrify-
ing bacteria in the presence of a sufficient supply of oxygen
(nitrification; Eq. 5).

Nitrosomon asspp. Nitrobacterspp
4 2 3NH NO NO+ - -ææææææÆ æææææÆ (5)

N2O is not an intermediate product of nitrification under
optimal conditions. It may be produced only under conditions of
low oxygen availability, as a consequence of reduction of oxidised
N compounds (NH2OH, NO2

–)[24]. Furthermore, high NH3 con-
centrations and low C to N ratios negatively affect the biochemi-
cal transformation of NH4

+ to nitrite/nitrate and, thus, the
production of N2O.

The denitrification process (Eq. 6) takes place in treated
slurry (e.g., nitrification of NH4

+ by oxidation/aeration, or in soils
where nitrate from chemical fertilisers is potentially transformed
to N gas, with N2O as one of the intermediate products).

3 2 2 2NO NO NO N O N- -Æ Æ Æ Æ (6)

Concerning N2O production in soils, and presumably also
for other on-farm subsystems, critical factors for denitrification
are the presence (or lack) of denitrifiers, which represent a large
spectrum of heterotrophic bacteria, oxygen, nitrite, and nitrate,
and easily oxidisable organic matter (C-source for bacteria[21]).

TECHNOLOGY AND TECHNIQUES TO
REDUCE AND PREVENT NH3 EMISSIONS

The amount of NH3 emitted to the atmosphere on a global scale
is estimated at 54 million tons of N per year (range: 23 to 88), of
which 22 million tons (range: 20 to 61) originates from animal
husbandry[13,33]. In Europe and The Netherlands, 53 and 60%,
respectively, of the agricultural NH3 emissions originate from
cattle husbandry[34,35]. Pig and poultry husbandry are respon-
sible for the remainder. Although great variation exists, the rela-
tive contributions of the livestock house with the outside storage,
slurry application, and grazing to the total NH3 emission from
animal husbandry are approximately calculated at 50, 40, and
10%, respectively, for situations where no emission-reduction
measures are taken[36,37].

The Dutch NH3 emission reduction goal is 70% in the year
2010. This means that NH3 emissions from all sources, e.g., land
spreading slurry, animal houses, slurry storages, grazing, must
be substantially reduced.

Effect of Dairy Cow Housing Systems

NH3 emission from cattle housing systems, including storage, is
estimated (not measured!) to be 28% of the national emission[35].
In addition to the legally required advanced slurry application
techniques and covering of outside storages, legislation is being
prepared for animal houses. Besides the measurements of NH3

emission through air exchange rate and NH3 concentration, NH3

emissions at the farm level can be estimated by calculation of the
N flows. The emission fraction represents the amount of NH3

emitted from each component of the N cycle and is defined as
the percentage of the N excreted in the cow house or during graz-
ing, in the slurry storage, and during and after land application.
In The Netherlands, the emission fraction for cows in cubicle
houses is normatively set at 10.2%, whereas the emission frac-
tion is 7.1% for tie stalls[3,37,38]. Reduction of NH3 emission
can be achieved by measures based on engineering, nutrition,
and management. The main principles are reduction of the urea
concentration of urine by nutritional measures, dilution of urine
on floors and removal from floors, slowing down the urea hy-
drolysis on floors, control of pH, reduction of mass transfer of
NH3 from urine and slurry, and reduction of air exchange be-
tween house and pit. In Table 2, these methods and their mea-
sured maximal reduction are summarised.

It may be concluded that the floor system and, related to
this, the removal of the slurry from the house are main factors in
NH3 emission rates. NH3 emission from tie stalls (5 to 27 g per
day per cow)[40,41,42,43] is lower than from loose housing sys-
tems (20 to 45 g per day per cow)[40,44]. Urea concentration in
the urine, urease activity, pH, temperature, air velocity, and area
of emitting surfaces (floor, pit) are parameters influencing emis-
sion of NH3. The slurry pit contributes, on average, 25 to 40% to
the NH3 emission from cubicle dairy cow houses with slatted
floors, with a maximum percentage of 80% in situations with
great differences in temperature between outside air and air in
the slurry pit. The potential of feeding management by changing
the diet of the dairy cow is high[3,45]. The so-called Green La-
bel Awards were introduced during the last part of the past cen-
tury to stimulate investments in these housing systems on a
voluntary basis. Compared to traditional housing systems, the
Green Label houses have to reduce NH3 emission by at least 50%,
without causing a shift to other sources of environmental pollu-
tion. To stimulate sustainable agriculture in topics other than the
environment, e.g., animal welfare, food safety, labour condition,
this Green Label system will be transformed. In practice it can
be seen that only a few systems comply with the reduction per-
centage of NH3 emission of 50%. Only cubicle houses with an
adapted floor design, e.g., grooved floors, are being built in larger
numbers[46].

Effect of Slurry Application Method

Surface spreading of slurry inevitably leads to emission of NH3

into the air. Injection of slurry on grassland reduces the emission
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TABLE 2
Overview of the Working Principle of Emission-Reducing Measures

and Reduction of the NH3 Emission from Dairy Cow Buildings
Reported in Literature (in % Compared to Slatted Floors)

of NH3. However, application of deep-working injector tines re-
quires high draught forces. New techniques are available to pre-
vent the mentioned problems, e.g., shallow injection, with open
slot and closed slot, and narrow band spreading. With the help of
these techniques, reductions in NH3 emission of 70 to 95%[4]
can be achieved, in comparison with surface spreading. Differ-
ent factors influence the reduction percentage, e.g., slurry com-
position, weather conditions, soil type, and farm management.
Researchers have modelled the effects of these different param-
eters for each application technique. Some of these factors seem
to have a major effect on the NH3 emission. The mentioned new
techniques show a more uniform distribution pattern of the slurry
than broadcast surface spreading[4].

Effects of Pig Housing Systems, Nutritional
Factors and Management

NH3 volatilisation in pig houses has to be prevented to achieve
air quality improvement and the protection of the environment,
due to the acid deposition. NH3 mainly volatilises from urine
puddles on the floor and from the slurry pit under the floor. As
described above, the volatilisation process is influenced by sev-
eral factors. The main strategies to reduce NH3 emission by di-
etary composition are shifting N excretion from urine to faeces,
reducing the pH of the slurry in the pit, and decrease of the in-
take of dietary N[47]. By including nonstarch polysaccharides,
the NH3 concentration is lowered and the pH of the slurry is de-
creased through the formation of fatty acids. The NH3 emission
from houses for rearing and fattening pigs can be decreased to
almost 50% through reduction of the slatted floor area to 25%, in
comparison with the slatted floor area of 50%. Fouling of the

pen area must then be prevented by an optimal pen design and
integrated with ventilation with low inlet and low outlet. The
combination of housing and nutritional measures also shows
promise[2].

NH3 concentrations show large variation, mainly caused by
design and lay-out of the building, ventilation method, farm man-
agement, N intake via the ration, and the climatic conditions in-
side and outside of the facilities[40]. Straw systems have not been
investigated much in The Netherlands. Measurements of deep
litter systems for rearing and fattening pigs showed that the NH3

emission was only slightly reduced in comparison with fully slat-
ted floors, whereas an increase of the emission of greenhouse
gases occured. One approach for the design of sow facilities is
the reduction of the emitting area[49]. The design for group hous-
ing of sows, with a complete functional separation of the lying
area with straw and the activity area with concrete slats and solid
floor, is currently being evaluated[50]. The application of flush-
ing systems, where frequent removal of slurry is combined with
dilution, also reduces the NH3 emission from the pig house[51].
Recent research relating NH3 and odour emission from pig hous-
ing systems has shown that measures taken to reduce NH3 emis-
sion also decrease the odour emission substantially[52].
End-of-pipe techniques, such as biological scrubbers and bio-
logical filters, are known for their high emission-reduction po-
tential[53].

Effects of Housing Systems and Manure
Treatment for Poultry

To achieve low NH3 emissions from poultry houses, the control
of the dry matter content of the litter is crucial. This is possible
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using modern techniques. In aviary systems, regular removal of
manure and drying of the litter can achieve low emission compa-
rable to the cage system, with improved drying of manure on the
belt[54]. Improvement of animal welfare conditions can thus be
combined with low NH3 emissions. For broilers, a system has
been designed with litter drying, but not applied due to costs,
hygiene concerns, and energy consumption. End-of-pipe tech-
niques, e.g., bio-scrubbers and biofilters, have a high potential
for the reduction of NH3, dust, and odour. However, the low-
NH3-emitting poultry systems do not show substantial reductions
in odour emission, compared with traditional systems[52]. In the
poultry industry, methods for further drying of the manure and
burning and gasifying of the dry manure in energy producing
plants are being developed.

In 1999 the E.U. approved a Directive[55], which bans the
use of cages after 2012, and allows no new investments in cages
after 2003.

SOURCES OF N2O IN ANIMAL HUSBANDRY

Animals and Animal Houses

Although N2O may be emitted from animals through either
breathing or flatus, Kroeze[56] indicated that the contribu-
tion of N2O from the animals’ digestive systems is not
known and may be negligible on a national scale. N2O emis-
sions from animal houses are therefore likely to originate
from the animal excreta stored indoors.

N2O is not likely to be produced from slurry stored in-
door in pits beneath the slatted floors. (This is the most
common excreta storage system in pig and cattle hus-
bandry.) However, emissions of N2O (and CH4) are to be
expected in housing systems that are based on solid ma-
nure (FYM = Farm Yard Manure).

In pig husbandry, a combination of litter-based hous-
ing with microorganisms added to enhance conversion of
NH3 to microbial protein was developed and investigated
several years ago[48]. Measurements showed that 15 to 21%
of the slurry N may be emitted as N2O[48,57]. These and
other results from N2O emission studies in pig houses are
summarised in Table 3.

The N2O emissions from housing systems for fatten-
ing pigs without straw are, on average, around 0.2 kg per
place and year for housing systems, whereas values range
between 0.6 and 3.7 kg per place and year for deep litter
systems and systems with straw. For poultry housing sys-
tems with straw, N2O emissions ranging from 0.02 to 0.15
kg per  animal  place  per  year  were  repor ted by
Mennicken[60].

Outdoor Slurry Storage

N2O production from outdoor manure and slurry storage is simi-
lar to indoor storage. Thus, N2O emissions are to be expected
only from stored solid manures (e.g., FYM). The most important
differences between indoor and outdoor storage are the method
of storage and the storage conditions. Most indoor storages (slurry
pits) are relatively open to the air inside the animal house, and
gases produced are likely to volatilise to the air above the stored
excreta. In several European countries, however, some sort of
covering for outdoor slurry storage is advised (e.g., in Denmark,
U.K.) or enforced by law (e.g., in The Netherlands) to reduce the
emission of gases to the atmosphere.

Sibbesen and Lind[24] reported a value of 0.3 g of N2O
per day per m2 of FYM (from pig slurry) stored under summer
conditions, whereas Sommer et al.[61] found N2O emission rates
of 0.73 g per day per m3 of cattle slurry during summer storage.
Both sets of data indicate that N2O emissions from storage of
solid manure are not to be neglected and need further attention.

Slurry/Manure Treatment

A combination of aerobic (nitrification) and anaerobic (denitrifi-
cation) treatment may be operated to remove N from slurry. In
The Netherlands, this is commonly used for veal calf slurry, due
to low acceptability of this type of slurry to arable farmers. Based
upon work by Burton et al.[62] and Willers et al.[63], potential
N2O emission from aerobic slurry treatment may be 10 to 20%
of the slurry N. The relatively high potential for N2O emissions
during aerobic/anaerobic slurry treatment is related to oxygen

TABLE 3
N2O Emissions (kg per Animal Place per year)

from Pig Housing Systems
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limitation of nitrifying bacteria and/or O2 inhibition of
denitrifiers[63,64].

Treatment of manure through composting is mainly con-
ducted in poultry husbandry (laying hens), and occasionally on
pig and cattle farms (straw-based housing systems), with the aim
of obtaining a biologically stable organic fertiliser with a high
dry matter and nutrient content. Composting can be operated with
either natural or forced aeration. In natural composting systems,
air (and thus oxygen) is allowed to enter the compost heaps,
whereas during forced composting, air is moved through the
stored manure. Hüther et al.[65] conducted experiments with the
forced aeration of various types of FYM and reported maximum
loss of N2O-N was 1.5% of total N, occurring at aeration rates of
around 1.8 m3 of air per h per m3 of FYM, whereas N loss dras-
tically decreased at greater aeration rates (1.8 to 4.8 m3 of air per
h per m3 of FYM).

Options for Control of N2O Emissions from
Animal Housing Systems

With the increased pressure for animal housing systems which
take animal welfare into account, straw-based housing systems
are currently being developed and introduced in practice (e.g.,
for pigs[66]). This implies the production of more FYM and con-
sequently an increase in greenhouse gas emissions during stor-
age (with natural composting) and treatment (e.g., forced
composting). Improved knowledge of the optimal process con-
ditions during composting, relative to the emissions of (green-
house) gases, and the development of composting systems
operated under optimal conditions, may limit the potential in-
crease in greenhouse gas emissions. Also, for aerobic/anaerobic
slurry treatment systems, a better understanding of process con-
ditions leading to advanced process control systems (oxygen sup-
ply, technological support) may limit the increased potential for
greenhouse gas emissions[64].

TOWARD SUSTAINABLE LIVESTOCK
PRODUCTION

Livestock production in The Netherlands is faced with many regu-
lations. Besides regulations with respect to the emissions to air,
soil, and water, other issues are also becoming urgent, e.g., im-
provements in food safety, healthy food, disease control, animal
welfare. Farmers urgently need farm control systems in order to
sustain control of the environmental aspects[67].

For this reason, we have started several projects in The
Netherlands, where research is being conducted with the goal of
sustainable technology development. Therefore, projects must
be supported by a broad group of stakeholders. For the pig in-
dustry, a multidisciplinary approach means conducting a project
with close cooperation between research institutions and private
companies. In such an approach, system development moves
along the chain from animal feed, via digestion by pigs in inno-
vative housing systems (health, welfare), to fertiliser production
from faeces and urine. Sustainability of the system can then be
evaluated by a life cycle analysis method based on building ma-
terials, mineral management, volatile emissions, and energy and

water inputs[68]. Currently, one integrated project in dairy hus-
bandry involves nutrient management.
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