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Abstract: The mitogen-activated protein kinase (MAPK) cascades have been validated playing critical
roles in diverse aspects of plant biology, from growth and developmental regulation, biotic and abiotic
stress responses, to phytohormone signal transduction or responses. A classical MAPK cascade
consists of a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK), and a MAPK. From the
75 MAPKKKs, eight MAPKKs, and 15 MAPKs of rice, a number of them have been functionally
deciphered. Here, we update recent advances in knowledge of the roles of rice MAPK cascades,
including their components and complicated action modes, their diversified functions controlling
rice growth and developmental responses, coordinating resistance to biotic and abiotic stress, and
conducting phytohormone signal transduction. Moreover, we summarize several complete MAPK
cascades that harbor OsMAPKKK-OsMAPKK-OsMAPK, their interaction with different upstream
components and their phosphorylation of diverse downstream substrates to fulfill their multiple roles.
Furthermore, we state a comparison of networks of rice MAPK cascades from signal transduction
crosstalk to the precise selection of downstream substrates. Additionally, we discuss putative
concerns for elucidating the underlying molecular mechanisms and molecular functions of rice
MAPK cascades in the future.

Keywords: MAPK cascade; phosphorylation; rice; growth and development; biotic and abiotic stress;
phytohormone signal transduction

1. Introduction

The mitogen-activated protein kinase (MAPK) cascades have been designated to be
highly conserved signal transduction modules in eukaryotes with diverse functions by
linking different extracellular stimuli to a wide range of intracellular responses [1,2]. A com-
plete MAPK cascade mainly consists of three kinases, including a MAPK kinase kinase
(MAPKKK or MEKK), a MAPK kinase (MAPKK or MEK), and a MAPK (MPK). Upon
sensing external stimulus signal, MAPKKKs phosphorylate and activate MAPKKs, the
activated MAPKKs subsequently phosphorylate MAPKs, and finally the activated MAPKs
phosphorylate a large number of specific downstream substrates, such as transcription
factors, chromatin remodeling factors, kinases or other enzymes, leading to reprogram-
ming of transcriptome and proteome in the whole cell. The sequential phosphorylation is
fundamental for MAPK cascade-mediated signal transduction and interactions between
MAPK proteins and their substrates [3].

In plants, the MAPK cascades play essential roles in growth and developmental
regulation, biotic and abiotic stress responses, phytohormone signal transduction or re-
sponses [1,4–7]. After receiving external signals, plant MAPKKKs mostly phosphorylate
the two conserved serine (S) and threonine (T) residues in the S/T-X5-S/T (X is any amino
acid) motif of MAPKKs and activate MAPKKs. The activated MAPKKs in turn phosphory-
late both the threonine (T) and the tyrosine (Y) in the T-D-Y or T-E-Y motif of MAPKs and
activate MAPKs. However, plant MAPK cascade-mediated signal transduction needs to
be precisely regulated, as continuous activation or suppression of MAPK signaling cause
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side-effects for the normal growth of plants. Thus, plant MAPKs can reversely phosphory-
late MAPKKKs to regulate the MAPK cascade, precisely controlling signal transduction or
responses [8].

2. Component of Rice MAPK Cascades

The rice genome contains 75 OsMAPKKKs, 8 OsMAPKKs and 15 OsMAPKs [9,10].
The OsMAPKKKs, occupying the largest group of rice MAPK cascade proteins, are divided
into three families, including 43 Raf family OsMAPKKKs, 22 MEKK family OsMAPKKKs,
and 10 ZIK family OsMAPKKKs [10]. Although the rice genome harbors eight OsMAPKKs,
two of them could not be detected on transcriptional levels in different rice tissues, and are
considered as pseudogenes, thus there are only six functional MAPKKs in rice [11]. The
MAPKs are divided into two subtypes, T-E-Y and T-D-Y, according to the conserved T-X-Y
motif in their active loop that specifically phosphorylated by MAPKKs. Of these, T-E-Y
subtype contains five OsMAPKs, T-D-Y subtype has 10 OsMAPKs [11].

So far, nine of 75 OsMAPKKKs (OsMAPKKK1, OsMAPKKK6, OsMAPKKK10,
OsMAPKKK11, OsMAPKKK18, OsMAPKKK24, OsMAPKKK43, OsMAPKKK62, OsMAP-
KKK63), five of eight OsMAPKKs (OsMAPKK1, OsMAPKK3, OsMAPKK4, OsMAPKK6,
OsMAPKK10-2), and ten of 15 OsMAPKs (OsMAPK3, OsMAPK4, OsMAPK6, OsMAPK7,
OsMAPK14, OsMAPK16, OsMAPK17-1, OsMAPK17-2, OsMAPK20-4, OsMAPK20-5) have
been functionally characterized (Table 1). OsMAPKKKs, OsMAPKKs and OsMAPKs play
roles in rice growth and development, such as plant architecture, leaf morphology, embryo-
genesis, seed development, seed dormancy, panicle size, and grain size. They also have
crucial roles in response to biotic stress, positively or negatively regulating rice resistance
to pathogens including Magnaporthe oryzae (M. oryzae), Xanthomonas oryzae pv. oryzae (Xoo),
Xanthomonas oryzae pv. oryzicola (Xoc), Burkholderia glumae (B. glumae) and Rhizoctonia solani
(R. solani), and to herbivores including striped stem borer (SSB) and brown planthopper
(BPH). Similarly, these MAPKs function in response to abiotic stress, such as drought, cold,
salt or submergence stress. Alternatively, a number of MAPKs participate in phytohormone
accumulation, signal transduction or response, such as abscisic acid (ABA), salicylic acid
(SA), jasmonic acid (JA), ethylene (ET), brassinosteroids (BR) or cytokinin (CK).

Table 1. Function characterized rice MAPK genes.

Gene Name a Gene Locus b Alternative Names Biological Functions c References

OsMAPKKK1 Os03g06410 SPL3/OsEDR1/
OsACDR1

M. oryzae+, Xoo−, SA−/JA−/ET+ accumulation,
ABA+ response [12–15]

OsMAPKKK6 Os02g50970 OsDSM1 Drought stress+ [16]

OsMAPKKK10 Os04g47240 SMG2 Panicle and grain size+, architecture+, BR+

response, CK− accumulation [17–19]

OsMAPKKK11 Os07g02780 Chitin response+ [20]

OsMAPKKK18 Os03g55560 Chitin response+ [20]

OsMAPKKK24 Os04g56530 OsMAPKKKε M. oryzae+ [21]

OsMAPKKK43 Os06g50920 OsILA1 Leaf morphology− [22,23]

OsMAPKKK62 Os01g50420 Seed dormancy−,
ABA− response [24]

OsMAPKKK63 Os01g50370 Salt stress−, seed dormancy−, ABA− response [25]

OsMAPKK1 Os06g05520 OsMEK2 Salt stress+ [26]

OsMAPKK10-2 Os03g12390 OsMEK3 M. oryzae+, Xoc+,
drought stress+, SA+/ABA+ response [27–29]

OsMAPKK3 Os06g27890 OsMEK8a Xoo+, BPH+, seed dormancy−, ABA− response [24,30,31]

OsMAPKK4 Os02g54600 SMG1/OsMEK6 M. oryzae+, panicle and grain size+, architecture+,
BR+ response, CK− accumulation [32,33]
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Table 1. Cont.

Gene Name a Gene Locus b Alternative Names Biological Functions c References

OsMAPKK6 Os01g32660 OsMEK1 Cold and salt stress+ [34,35]

OsMAPK3 Os03g17700
OsBIMK1/OsMAP1/

OsMSRMK2/OsMPK5/
OsMAPK2/OsMPK3

M. oryzae−, Xoo−, SSB+,
B. glumae−, cold and drought stress+,

ABA+/JA+ response
[36–39]

OsMAPK4 Os10g38950 OsMPK6 Xoo+-, SSB+, salt stress+, seed development+,
SA+/JA+ accumulation [40–43]

OsMAPK6 Os06g06090
OsMPK1/

OsSIPK/DSG1/
OsMPK6

M. oryzae+, Xoc+, embryogenesis, panicle and
grain size+, SA+/BR+ response, ABA−/CK−

accumulation
[28,33,44,45]

OsMAPK7 Os06g48590 OsMPK4/OsAMPK4/
OsMPK7/OsMSRMK3 Xoo+, seed dormancy−, ABA− response [24,30,46]

OsMAPK14 Os02g05480 OsMAPK33/OsMPK3/
OsMAPK3 Seed dormancy−, ABA− response [24,47]

OsMAPK16 Os11g17080 OsMPK15 M. oryzae−, Xoo−, SA−/JA− accumulation [48]

OsMAPK17-1
OsMAPK17-2

Os06g49430
Os02g04230

OsMPK12/
OsBWMK1
OsBIMK2/
OsMPK13

Xoo+, SA+ accumulation
Transcriptionally induced by SA

[37,49]
[50]

OsMAPK20-4
OsMAPK20-5

Os01g47530
Os05g49140

OsMPK8/
OsMPKG1
OsMPK7

Transcriptionally induced by ABA
M. oryzae+, R. solani−, BPH−, ET− accumulation

[51]
[52,53]

a The names of rice MAPKs are used according to reference [9,11,54]. b Locus ID from Rice Genome Annotation Release 7. c M. oryzae:
Magnaporthe oryzae; Xoo: Xanthomonas oryzae pv. oryzae; Xoc: Xanthomonas oryzae pv. oryzicola; B. glumae: Burkholderia glumae; R. solani:
Rhizoctonia solani; SSB: striped stem borer; BPH: brown planthopper; ABA: abscisic acid; SA: salicylic acid; JA: jasmonic acid; ET: ethylene;
BR: brassinosteroids; CK: cytokinin. + Playing positive role. − Playing negative role.

A host of plant MEKK family MAPKKKs are considered bona fide MAPKKKs, which
can directly phosphorylate the activation loop of downstream MAPKKs, and act the same
pattern similar to MAPKKKs of animals and yeast. In contrast, several plant Raf family
MAPKKKs can interact with downstream MAPKKs to promote MAPKKs degradation
or suppress phosphorylation activity of MAPKKs on its direct downstream substrate
MAPKs, but not directly phosphorylate and activate MAPKKs. Thus, some references
suggest to exclude these plant Raf family MAPKKKs from bona fide MAPKKKs [54–58].
Compared with OsMAPKKs and OsMAPKs, rice has a great number of OsMAPKKKs,
and more than half are Raf family MAPKKKs, the non-canonical MAPKKKs. Among the
nine functionally characterized OsMAPKKKs, six of them (OsMAPKKK10, OsMAPKKK11,
OsMAPKKK18, OsMAPKKK24, OsMAPKKK62, OsMAPKKK63) belong to MEKK family
MAPKKKs, of which OsMAPKKK10, OsMAPKKK11, OsMAPKKK18, and OsMAPKKK24
have been validated as bona fide MAPKKKs with the capacity that to directly phosphorylate
and activate downstream MAPKKs [17–21]. Three functionally characterized OsMAP-
KKKs (OsMAPKKK1, OsMAPKKK6, OsMAPKKK43) are members of Raf family. Whether
they can associate with or phosphorylate the downstream OsMAPKKs to activate or
suppress the OsMAPKKs is unclear so far [12–16,22,23]. Of the ten functionally studied
OsMAPKs, OsMAPK3, OsMAPK4 and OsMAPK6 are T-E-Y subtype MAPKs, the other
seven (OsMAPK7, OsMAPK14, OsMAPK16, OsMAPK17-1, OsMAPK17-2, OsMAPK20-4,
OsMAPK20-5) are T-D-Y subtype MAPKs. Only a few of them are validated as substrates
and can be phosphorylated by upstream OsMAPKKs, such as OsMAPK3, OsMAPK6,
OsMAPK7, and OsMAPK14 [24,28,30,33].

A complete MAPK cascade consists of MAPKKK, MAPKK and MAPK [3]. Several
integrative rice MAPK cascades have recently been identified involved in diverse phys-
iological processes. OsMAPKKK11/18/24-OsMAPKK4/5-OsMAPK3/6 cascades func-
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tion downstream of OsCERK1-OsRLCK185 complex and confer rice resistance to fungal
pathogen M. oryzae [20,21]. OsMAPKKK10-OsMAPKK4-OsMAPK6 cascade plays critical
roles in rice grain morphogenesis, rice panicle development, BR homeostasis and sig-
naling pathway [17–19]. OsMAPKKK62-OsMAPKK3-OsMAPK7/14 cascades affect ABA
signal transduction, ABA content and seed dormancy [24]. OsMAPKKK63-OsMAPKK1-
OsMAPK4 cascade regulates salt stress response [25,26]. Apart from these complete MAPK
cascades, the other cascades consisting of either OsMAPKKK-OsMAPKK or OsMAPKK-
OsMAPK lack downstream substrate OsMAPKs or upstream OsMAPKKKs, respectively.
OsMAPKKK63-OsMAPKK6 cascade regulates seed dormancy, while the downstream
substrate OsMAPKs have not been identified [25]. Additionally, OsMAPKK3-OsMAPK7
cascade is involved in rice resistance to bacterial pathogen Xoo [30], and OsMAPKK6-
OsMAPK3 cascade participates in cold stress response [34,35], but their corresponding
upstream OsMAPKKKs are unclear.

3. Complicated Action Mode of Rice MAPK Cascades

Compared with 75 OsMAPKKKs and 15 OsMAPKs, rice contains six functional
OsMAPKKs, implying that an OsMAPKK can be phosphorylated by multiple upstream
OsMAPKKKs, and similarly a OsMAPKK can phosphorylate and activate several down-
stream OsMAPKs as its substrate. It seems that OsMAPKKs function as key nodes or hubs
in MAPK cascades [59]. Of the five functionally deciphered OsMAPKKs, OsMAPKK4 typi-
cally acts as a hub of MAPK cascades, since OsMAPKKK10, OsMAPKKK11, OsMAPKKK18,
and OsMAPKKK24 can separately phosphorylate OsMAPKK4 [20,21]. OsMAPKK4, in turn,
can simultaneously phosphorylate and activate both OsMAPK3 and OsMAPK6 [33]. When
phosphorylated by different OsMAPKKKs after rice sensing different external signals,
OsMAPKK4 can select different downstream OsMAPKs for subsequential signal transduc-
tion. After rice sensing chitin-triggered signal or recognizing fungal pathogen M. oryzae
invasion, OsMAPKK4 is rapidly phosphorylated by OsMAPKKK11, OsMAPKKK18 or
OsMAPKKK24, then OsMAPKK4 subsequently phosphorylates OsMAPK3 and OsMAPK6
to transfer signals to downstream transcription factors, promoting rice resistance to M.
oryzae [20,21]. However, when rice senses a BR signal, OsMAPKK4 is phosphorylated
by OsMAPKKK10, then OsMAPKK4 phosphorylates OsMAPK6 for downstream signal
transduction [17–19].

As mentioned above that different MAPKKKs can phosphorylate a MAPKK, whereas,
different MAPKKs can also phosphorylate a MAPK. For example, OsMAPKK1, OsMAPKK3,
OsMAPKK4, OsMAPKK5, and OsMAPKK10-2 can interact with and phosphorylate
OsMAPK6, mediating rice resistance to fungal and bacterial pathogens or regulating
rice growth and developmental responses [17,18,27,28,33]. OsMAPKK4, OsMAPKK6,
and OsMAPKK10-2 can associate with and phosphorylate OsMAPK3, being involved in
defense response, cold tolerance, and drought tolerance, respectively [28,29,33,34,54,60].

In turn, a MAPKK can phosphorylate and activate several MAPKs, including
OsMAPKK1 can target OsMAPK4 and OsMAPK6 [26,54,60], OsMAPKK10-2 phosphory-
lates OsMAPK3 and OsMAPK6 [27–29], OsMAPKK3 interacts with OsMAPK6, OsMAPK7
and OsMAPK14 [24,30,54,60], OsMAPKK6 associates with OsMAPK3, OsMAPK4 and
OsMAPK6 [29,54,60,61]. The present data uncover that a MAPKK can interact with several
MAPKs to play roles in different physiological processes. OsMAPKK10-2 regulates rice
resistance to fungal pathogen M. oryzae and bacterial pathogen Xoc by activating OsMAPK6,
while modulates drought tolerance via activation of OsMAPK3 [27,28]. It indicates that
there are complex action modes of rice MAPK cascades, which largely determine their
multiple roles.

4. Controlling Growth and Development by Rice MAPK Cascades

Like MAPK cascade regulates cell proliferation and cell differentiation to influence
plant growth or development, some members of rice MAPK cascades control embryogene-
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sis, fertility, seed development, grain performance, panicle morphogenesis, and architecture
(Table 1).

MAPK cascades play critical roles in rice embryogenesis. Functional analysis of loss-
of-function mutants of OsMAPK6 reveals that OsMAPK6 affects the differentiation of L1
layer cells during early embryogenesis to arrest the embryonic development at the globular
stage via influencing GA and auxin synthesis [45]. By screening of a series of osmapk mu-
tants generated via CRISPR-Cas9 technology, heterozygous osmapk6 mutants can produce
homozygous osmapk6 seeds but with abnormal embryo [42], while heterozygous osmapk4
mutants do not produce homozygous osmapk4 seeds, implying OsMAPK6 and OsMAPK4
influence seed development [42].

MAPK cascades play key roles in rice grain size and panicle morphogenesis. By screen-
ing mutants with altered grain size, smg1 mutant with multiple phenotypes, including
small grains, erect leaves, dense and erect panicles has been identified. Genetic analysis
indicates that smg1 is loss-of-function of OsMAPKK4, which influences cell proliferation
and BR signal [32]. Meanwhile, a natural mutant, dsg1 with pleiotropic phenotypes, in-
cluding significant dwarfism, small grains, erect and dark-green leaves has been identified.
Complement genetic assay indicates that pleiotropic phenotypes of dsg1 are caused by loss
of OsMAPK6. Subsequently, genetic analysis indicates that OsMAPKK4 acts upstream
of OsMAPK6, by phosphorylating and activating OsMAPK6 to influence cell prolifera-
tion [62]. Recently, OsMAPKKK10 has been validated to regulate rice grain size and panicle
development via activating OsMAPKK4-OsMAPK6 cascade by a series of genetic and
biochemical analysis [17,18]. The OsMAPKKK10-OsMAPKK4-OsMAPK6 is so far the only
completely known MAPK cascade, which regulates rice growth and development. The
latest data have uncovered that plasma membrane localized receptor kinase OsER1 acts
directly upstream of OsMAPKKK10-OsMAPKK4-OsMAPK6 cascade. The phosphorylated
OsMAPK6 can subsequently phosphorylate OsDST1, then the phosphorylated OsDST1
binds to the promoter of OsCKX2 and promotes the transcription of OsCKX2 [17–19].
The whole signal transduction pathway, from plasma membrane OsER1 to cytoplasm
OsMAPKKK10-OsMAPKK4-OsMAPK6, then to nucleus OsCKX2, uncovers a practically
perfect genetic regulating network which regulates rice panicle morphogenesis, except the
only gap between OsER1 and OsMAPKKK10 (Figure 1).
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Figure 1. Schematic diagram of MAPK cascade regulating rice panicle and grain development.
Plasma membrane localized receptor kinase OsER1 acts directly upstream of OsMAPKKK10-
OsMAPKK4-OsMAPK6 cascade. The phosphorylated OsMAPK6 can phosphorylate OsDST1, then
the phosphorylated OsDST1 targets and promotes the transcription of OsCKX2, regulating rice pani-
cle morphology. Simultaneously, OsMAPKKK10-OsMAPKK4-OsMAPK6 cascade can phosphorylate
OsWRKY53 to regulate rice BR signal transduction to alter rice architecture [17–19,63].



Int. J. Mol. Sci. 2021, 22, 1679 6 of 14

MAPK cascades function in rice architecture formation via modulating leaf morphol-
ogy and plant height. The osmapkkk43 mutant caused by a T-DNA insertion shows an
increased leaf angle. Following cell biology and genetic assays indicate that OsMAPKKK43
regulates mechanical tissue formation to modify leaf lamina joint by modulating secondary
wall synthesis [22,23].

5. Coordinating Biotic Stress Response by Rice MAPK Cascades

A great number of plant MAPK cascades, especially of Arabidopsis MAPK cascades,
have positive or negative effects on pathogens or insects invasion. Several rice MAPK
cascades have been validated to coordinate biotic response and trigger resistance to bacterial
and fungal pathogens or herbivores (Table 1).

MAPK cascades confer resistance to fungal pathogens. At least two OsMAPKKKs, two
OsMAPKKs, and four OsMAPKs have been reported to be involved in resistance to fungal
pathogen M. oryzae. Both OsMAPKKK1 and OsMAPKKK24 play positive roles in resistance
to M. oryzae, while employing different molecular mechanisms. OsMAPKKK1 triggers
resistance to M. oryzae by modulating ET biosynthesis to inhibit fungi penetration into rice
cells, and OsMAPKKK24 by activating OsMAPKK4-OsMAPK6 cascade [12,13,21]. Both
OsMAPKKK11 and OsMAPKKK18 are activated by chitin, the fungal microbial-associated
molecular pattern. However, there is no direct evidence to confirm these two genes
enhancing rice resistance to M. oryzae [20]. Of the four OsMAPKs to be involved in re-
sistance to fungal pathogen, OsMAPK3 and OsMAPK16 negatively regulate resistance
to M. oryzae [36,37,48], while OsMAPK20-5 positively confers resistance to M. oryzae [53].
OsMAPK6 is transcriptionally induced by sphingolipid elicitor and chitin, implying that
OsMAPK6 possibly plays role in rice-M. oryzae interactions [33,34]. OsMAPKK10-2 can
phosphorylate OsMAPK6, causing activated OsMAPK6 to subsequently phosphorylate
and enhance the biochemical activity of downstream transcription factor OsWRKY45 to
trigger rice resistance to M. oryzae [27]. Similarly, OsMAPKK4 phosphorylates and acti-
vates OsMAPK3 and OsMAPK6 to confer resistance to M. oryzae, through accumulation
of diterpenoid phytoalexin, momilactones and phytocassanes [33]. However, the underly-
ing mechanisms, why phosphorylated OsMAPK3 and OsMAPK6 by different upstream
OsMAPKKs, cause susceptibility and confer resistance to M. oryzae, respectively, are unclear.
Apart from being involved in resistance to fungal pathogen M. oryzae, OsMAPK20-5 has
been reported simultaneously to be involved in resistance to fungal pathogen R. solani [53].
By integrating the characterized MAPK cascades, OsMAPKKK11/18/24-OsMAPKK4/5-
OsMAPK3/6 cascades are the complete MAPK cascades, which mediate M. oryzae-triggered
signal transduction and promote rice resistance to M. oryzae (Figure 2).

MAPK cascades trigger resistance to bacterial pathogens. Up to now, one OsMAPKKK,
two OsMAPKKs, and six OsMAPKs have been referenced to be involved in resistance to
bacterial pathogens, Xoo, Xoc or B. glumae. OsMAPKKK1 negatively regulates resistance to
Xoo by modulating accumulation of JA and SA [13]. OsMAPKK10-2 functions as a positive
regulator in response to Xoc by activating downstream OsMAPK6 [28]. OsMAPKK3
also functions as a positive regulator but in response to Xoo by activating downstream
OsMAPK7, with the signal transduction that the activated OsMAPK7 phosphorylates and
activates the transcription factor OsWRKY30 to enhance rice resistance to Xoo [30]. Of the
six OsMAPKs conferring resistance to bacterial pathogen, OsMAPK3 and OsMAPK16 play
negative roles in response to Xoo [37,48], while OsMAPK7 and OsMAPK17-1 play positive
roles in resistance to Xoo [30,49]. Interestingly, OsMAPK4 positively confers resistance to
Xoo by promoting the accumulation of JA and SA, while it negatively influences resistance
to Xoo by negatively regulating systemic acquired resistance, because both OsMAPK4
overexpressing plants and osmapk4 mutant exhibit enhanced resistance to Xoo [40,41]. In
addition, OsMAPK3 is also involved in resistance to B. glumae, a soil bacterium [36].
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hance rice resistance to salt stress [25]. Thus, a complete MAPK cascade consisting of Os-

Figure 2. MAPK cascades are downstream of pattern recognition receptors complex and regulate
rice immune response. After recognizing chitin or M. oryzae, rice pattern recognition receptors
complex including OsCERK1 and OsCEBiP that localized at plasma membrane can phosphorylate
OsRLCK185 to activate OsMAPKKK11/18/24-OsMAPKK4/5-OsMAPK3/6 cascades, leading to
activation of numerous immune-related transcription factors, such as OsWRKY45, OsWRKY53, and
OsRAI1 to initiate rice defense response [20,21,64,65]. Both fungal pathogen M. oryzae and bacterial
pathogen Xoc can activate OsMAPKK10-2-OsMAPK6 cascade via unknown OsMAPKKK to enhance
biochemical activity of OsWRKY45, thereby triggering immune response to pathogens [27–29].

MAPK cascades also have roles in resistance to herbivores. Although a number of rice
MAPK genes show diverse transcriptional patterns upon herbivores BPH and SSB infection,
only one OsMAPKK and three OsMAPKs have been validated exhibiting resistance to
BPH or SSB. OsMAPKK3 functions as a positive regulator in rice-BPH interactions by
modulating herbivory-induced phytohormone dynamics [31]. In line with OsMAPKK3,
OsMAPK3 and OsMAPK4 also act as positive regulators conferring resistance to SSB
with partly similar mechanisms. OsMAPK3 triggers resistance to SSB by regulating JA
signaling pathway and promoting accumulation of herbivory-induced trypsin protease
inhibitors [39], and OsMAPK4 confers resistance to SSB by regulating JA, ET and SA
signaling pathways [43]. Additionally, OsMAPK20-5 which transcriptionally induced
by gravid female BPH, negatively regulates rice resistance to BPH via suppressing the
accumulation of ET and NO [52]. It seems that these three OsMAPKs largely regulate
resistance to herbivores by modulating phytohormone signaling pathway.

6. Conferring Resistance to Abiotic Stress by Rice MAPK Cascades

In addition to biotic stress, rice MAPK cascades have also been confirmed conferring
abiotic stress responses, under such as salt, drought, cold, or submergence. For exam-
ple, OsMAPK3 is the fully characterized MAPK cascade protein which kinase activity
is induced by a series of abiotic stress including drought, salt, cold and submergence.
The OsMAPK3 overexpressing plants show enhanced resistance to these different abiotic
stress [36]. The following research indicates that OsMAPKK6 which acts upstream of
OsMAPK3 enhances rice cold tolerance [34,35]. The mechanism of OsMAPKK6-OsMAPK3
cascade being involved in cold tolerance is recently been deciphered, with that the activated
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OsMAPK3 interacts with and phosphorylates OsbHLH002/OsICE1, in turn phosphory-
lated OsbHLH002/OsICE1 binds and promotes the expression of OsTPP1 to cause trehalose
accumulation, thereby increasing cold tolerance for rice plants [66]. Whereas, OsMAPK3
has roles in drought tolerance by acting as substrate for OsMAPKKK10-2, the underlying
molecular mechanism is unclear [28]. Furthermore, OsMAPK3 has positive effect on salt
tolerance by attenuating the reactive oxygen species accumulation [67]. These results
demonstrate that OsMAPK3 confers tolerance to salt, drought, or cold stress probably by
phosphorylating different substrates (Figure 3).
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could activate diverse rice MAPK cascades, which play critical roles in triggering rice resistance
to these stresses [16,25–28,34–36,67,68]. OsMAPKKK63-OsMAPKK1-OsMAPK4 is the only known
cascade conferring salt tolerance, while its downstream substrates have not been identified.

For other MAPKs, OsMAPKK1, its kinase activity is induced by salinity, plays pos-
itive roles towards salt stress by phosphorylating and activating downstream substrate
OsMAPK4 [26]. Recently, OsMAPKKK63 is found to associate with OsMAPKK1 to en-
hance rice resistance to salt stress [25]. Thus, a complete MAPK cascade consisting of
OsMAPKKK63-OsMAPKK1-OsMAPK4 is identified, which positively promotes rice for
salinity tolerance (Figure 3). OsMAPKKK6 functions as a positive regulator towards
drought stress by regulating reactive oxygen species scavenging, while its downstream
OsMAPKK or OsMAPK are unidentified till now [16].

7. Conducting Phytohormone Signal Transduction by Rice MAPK Cascades

As key molecules linking extracellular and intracellular signal transduction, MAPK
cascades have been widely reported to participate in phytohormone accumulation, signal-
ing pathways or response, such as ABA, SA, JA, CK, BR or ET. MAPK cascade-mediated
phytohormone signal transduction largely contributes to their diverse roles in growth
and developmental responses, or biotic and abiotic stress responses. For example, SA
treatment can upregulate the transcription of OsMAPKK10-2, the activated OsMAPKK10-
2 phosphorylates and enhances the activity of OsMAPK6, triggering the SA signaling
pathway to improve rice resistance to bacterial pathogen Xoc and fungal pathogen M.
oryzae. Reversely, ABA treatment can induce the transcription of both OsPTP1 and OsPTP2,
encoding two tyrosine phosphatases, which two can dephosphorylate the tyrosine residues
at the T-E-Y motif of OsMAPK6 and cause the inactivation of OsMAPK6, resulting in
decreased resistance to fungal pathogen M. oryzae and increased sensitivity to drought
stress [27,28]. Lately, OsMAPK6 is reported to be a substrate of OsMAPKKK10-OsMAPKK4
cascade being involved in BR signal transduction, modulating rice architecture and grain
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size [17–19]. Furthermore, activated OsMAPK6 by OsMAPKKK10-OsMAPKK4 cascade can
also regulate CK metabolism to alter rice panicle development. OsMAPK6 interacts with
and phosphorylates OsDST1, then the phosphorylated OsDST1 binds and promotes the
transcription of OsCKX2, which encodes the cytokinin oxidase/dehydrogenase. Thereby,
activated OsCKX2 accelerates catalyzing the degradation of active CK to alter the number
of rice spikelets [19]. Thus, the OsMAPKKK10-OsMAPKK4-OsMAPK6 cascade is closely
associated with CK homeostasis in determining rice panicle development (Figure 4). The
series of results suggest that different phytohormone signaling pathways can modulate
OsMAPK6 function in diverse physiological processes, and OsMAPK6 could also phospho-
rylate different downstream substrates to regulate phytohormone homeostasis, fine-tuning
rice growth and developmental responses as well as biotic and abiotic stress responses.
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Figure 4. Rice MAPK cascades regulate or are involved in phytohormone accumulation, signal
transduction or response. Rice MAPK cascades positively or negatively regulate phytohormone
accumulation and signal transduction, or been directly or indirectly modulated by phytohormones,
such as SA, JA, ABA, ET, BR, and CK [12–15,27,28,40,43,48,49]. The established OsMAPKKK62-
OsMAPKK3-OsMAPK7/14 cascades are regulated by ABA, while the OsMAPKKK10-OsMAPKK4-
OsMAPK6 cascade can regulate BR and CK signal transduction [17–19,24].

In the same way, other MAPK cascades are involved in phytohormone response. For
example, the OsMAPKKK62-OsMAPKK3-OsMAPK7/14 and OsMAPKK10-2-OsMAPK3
cascades are associated with ABA signal transduction, regulating rice seed dormancy [24,28].
OsMAPKKK1 acts as a positive regulator in ABA and ET signaling pathways, while as a
negative regulator in JA and SA signaling pathways [12–15], implying that OsMAPKKK1
probably interacts with different proteins or phosphorylates different downstream OsMAP-
KKs to play roles in diverse phytohormone signaling pathways. Similarly, OsMAPK4
positively regulates the accumulation of JA and SA, and OsMAPK17-1 positively regu-
lates the accumulation of SA, while OsMAPK16 negatively regulates the accumulation of
JA and SA, and OsMAPK20-5 negatively affects the synthesis of ET [40,43,48,49]. These
data demonstrate that rice MAPK cascades regulate or involve in complex phytohormone
accumulation, signaling pathways or response (Figure 4).

8. Complex Substrates of Rice MAPK Cascades

MAPK cascades play roles relying on phosphorylating a variety of downstream
substrates, which include transcription factors, chromatin remodeling factors, kinases or
other enzymes, and other proteins. So far, nine substrates for OsMAPK3, six substrates
for OsMAPK6, one substrate for both OsMAPK4 and OsMAPK7, two substrates for both
OsMAPK14 and OsMAPK17-1 have been identified and functionally characterized. Of
which majority of substrates are composed of transcription factors (TF), such as WRKY
or bHLH, few of them are kinase or other proteins (Table 2). For example, OsMAPK3
phosphorylates OsCDPK18 and OsRAI1 to confer rice resistance to fungal pathogen M.
oryzae [38,64], acts on OsWRKY30 to confer resistance to bacterial pathogen Xoo [69],
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while phosphorylates OsbHLH002, OsZFP213, SUB1A1 and OsWRKY30 to alter stress
tolerance, such as cold, salt, submergence and drought, respectively [66–69]. Occasionally,
an OsMAPK could phosphorylate different substrates to regulate the same signaling
pathway or play the same roles.

Table 2. Substrates of rice OsMAPKs.

OsMAPK Substrate Substrate Protein Evidence a Substrate Function References

OsMAPK3 OsCDPK18 kinase 1,2 M. oryzae− [38]

OsMAPK3 OsbHLH002/
OsICE1 TF 1,2,3,4 Cold stress+ [66]

OsMAPK3 OsZFP213 TF 1 Salt stress+ [67]

OsMAPK3 OsDRB1
double-strand
RNA binding

protein
1,2,3 miRNA biogenesis [70]

OsMAPK3 SUB1A1 TF 1,2,3,4 Submergence tolerance+ [68]

OsMAPK3 Bphi008a Wir1-like protein 1 BPH+ [71,72]
OsMAPK3 OsRAI1 TF 1,2 M. oryzae+ [64]

OsMAPK3 OsWRKY70 TF 1,2 BPH−, SA−/GA− accumulation,
SSB+, JA+/ET+ accumulation [73]

OsMAPK3 OsWRKY30 TF 1,2,4 Drought stress+ [69]
OsMAPK4 OsWRKY45 TF 2 SA+ signaling [29]

OsMAPK6 OsWRKY53 TF 1,2,4 M. oryzae+, grain size+, BR+

response [63,65,74]

OsMAPK6 OsDST1 TF 1,2 Panicle and grain size−, CK−

accumulation [19]

OsMAPK6 OsVQ13 VQ-motif
containing protein 1 Xoo+, JA+ response [75]

OsMAPK6 OsWRKY45 TF 2,4 M. oryzae+, SA+ signaling [27,29]

OsMAPK6 OsRAI1 TF 1,2 M. oryzae+ [64]

OsMAPK6 OsWRKY70 TF 1,2 SSB+, JA+/ET+ accumulation,
BPH−, SA−/GA− accumulation [73]

OsMAPK7 OsWRKY30 TF 1,2,4 Xoo+, drought stress+ [30,69]

OsMAPK14 OsWRKY30 TF 1,2,4 Drought stress+ [69]

OsMAPK14 OsbHLH65 TF 1,2 Transcriptionally induced by M.
oryzae, BPH, JA/SA treatment [47]

OsMAPK17-
1 OsWRKY33 TF 1,2 SA+ signaling [76]

OsMAPK17-
1 OsEREBP1 TF 1,2 Defense response+ [77]

a Evidences provided to validate physiological substrates for the corresponding OsMAPK. 1, in vitro and in vivo interaction analysis. 2,
in vitro phosphorylation analysis. 3, in vivo phosphorylation analysis. 4, mutation of phosphorylated S/T residues-based genetic analysis.
+ Playing positive role. − Playing negative role.

OsMAPK3 phosphorylates kinase OsCDPK18 and TF OsRAI1, totally improving
rice resistance to M. oryzae [38,64]. In the same way, OsMAPK6 acts on three different
TFs, OsWRKY53, OsWRKY45, and OsRAI1, to collectively trigger rice resistance to M.
oryzae [29,64,65]. Reversely, different OsMAPKs target the same substrate participating in
the same physiological processes. For example, both OsMAPK3 and OsMAPK6 phospho-
rylate OsRAI1 to positively confer rice resistance to fungal pathogen M. oryzae [64], and
phosphorylate OsWRKY70 to enhance rice resistance to herbivores, BPH and SSB [69,73].
OsMAPK3, OsMAPK7, and OsMAPK14 all can phosphorylate OsWRKY30 to promote rice
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resistance to bacterial pathogen Xoo and modulate rice drought tolerance [69,73]. These
data suggest the complex relationships between OsMAPKs and their diverse substrates.

9. Conclusions

Tremendous progress has been made to decipher the multiple functions of rice
MAPK cascades, with several complete MAPK cascades have been uncovered, including
OsMAPKKK11/18/24-OsMAPKK4/5-OsMAPK3/6 cascades, OsMAPKKK10-OsMAPKK4-
OsMAPK6 cascade, OsMAPKKK63-OsMAPKK1-OsMAPK4 cascade, and OsMAPKKK62-
OsMAPKK3-OsMAPK7/14 cascades. However, due to over 98 MAPK genes in rice, a
large number of them have not been functionally characterized. The gaps need to be filled,
including which proteins target OsMAPKKKs, which OsMAPKKs can be phosphorylated
by OsMAPKKKs, which OsMAPKs can be phosphorylated by OsMAPKKs, and which
proteins can be subsequently phosphorylated by OsMAPKs. Previously, yeast two hybrid
and in vitro phosphorylation assay are the main methods for MAPK substrates identifi-
cation, while these two methods may produce false negatives and positives [1,60]. Thus,
quantitative phosphoproteomic and immunoprecipitation-mass spectrometry methods
have recently been used to identify protein kinase substrates and study the function of
protein kinases [78,79]. Therefore, the combination of quantitative phosphoproteomic,
immunoprecipitation-mass spectrometry, in vitro phosphorylation, and genetic assays
would be alternative strategies to uncover the function of MAPKs and identify their sub-
strates. Furthermore, the same MAPK cascade can sense and mediate different signal
transduction, playing roles in diverse physiological processes. However, the underlying
mechanisms that a MAPK cascade precisely activates and phosphorylates different down-
stream substrates after sensing different upstream signals are still unclear. Resolving these
putative concerns would fully accelerate to elucidate the underlying molecular mechanisms
and molecular functions of rice MAPK cascades.
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