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Discriminating the occurrence 
of inundation in tsunami early 
warning with one‑dimensional 
convolutional neural networks
Jorge Núñez1, Patricio A. Catalán1*, Carlos Valle2, Natalia Zamora3 & Alvaro Valderrama4

Tsunamis are natural phenomena that, although occasional, can have large impacts on coastal 
environments and settlements, especially in terms of loss of life. An accurate, detailed and timely 
assessment of the hazard is essential as input for mitigation strategies both in the long term and 
during emergencies. This goal is compounded by the high computational cost of simulating an 
adequate number of scenarios to make robust assessments. To reduce this handicap, alternative 
methods could be used. Here, an enhanced method for estimating tsunami time series using a 
one-dimensional convolutional neural network model (1D CNN) is considered. While the use of deep 
learning for this problem is not new, most of existing research has focused on assessing the capability 
of a network to reproduce inundation metrics extrema. However, for the context of Tsunami Early 
Warning, it is equally relevant to assess whether the networks can accurately predict whether 
inundation would occur or not, and its time series if it does. Hence, a set of 6776 scenarios with 
magnitudes in the range M

w
 8.0–9.2 were used to design several 1D CNN models at two bays that 

have different hydrodynamic behavior, that would use as input inexpensive low-resolution numerical 
modeling of tsunami propagation to predict inundation time series at pinpoint locations. In addition, 
different configuration parameters were also analyzed to outline a methodology for model testing 
and design, that could be applied elsewhere. The results show that the network models are capable 
of reproducing inundation time series well, either for small or large flow depths, but also when no 
inundation was forecast, with minimal instances of false alarms or missed alarms. To further assess 
the performance, the model was tested with two past tsunamis and compared with actual inundation 
metrics. The results obtained are promising, and the proposed model could become a reliable 
alternative for the calculation of tsunami intensity measures in a faster than real time manner. This 
could complement existing early warning system, by means of an approximate and fast procedure 
that could allow simulating a larger number of scenarios within the always restricting time frame of 
tsunami emergencies.

Tsunamis have the potential to cause widespread damage and loss of life, over large swaths of coastal areas. To 
mitigate their effects, either in the long term or during emergency situations, an accurate and detailed assess-
ment of the hazard is essential. However, this can be affected by two major constraints. The first relates to data 
accuracy. Under the standard assumption that tsunami hydrodynamics are sufficiently well understood to be 
described by a mathematical model and its numerical implementation1–4, the problem then lies in the accurate 
determination of the proper initial conditions, i.e., the tsunami source, and the characterization of the bound-
ary conditions such as bathymetry, topography, and its roughness. The second constraint, relevant for tsunami 
early warning, is that the time allotted to obtain an assessment can be very short, thereby limiting the strategies 
available to estimate the hazard in minimal times with high accuracy. This contrasts with the need to provide 
accurate and meaningful information in minimal time to trigger evacuation processes.
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Ideally, during an emergency the tsunami hazard assessment would involve an on-demand full forward 
numerical modeling of the tsunami throughout all its stages (generation, propagation and inundation) using 
all available data (including the source) to forecast its characteristics before its arrival. However, the short time 
between tsunami generation and arrival in the near field5, has driven the estimates to be based mostly on tsunami 
propagation modeling. Inundation modeling is computationally expensive owing to the need to use costlier 
nonlinear models and increased model resolution6. Recent advances in very fast tsunami source characterization 
and modeling using high performance computing may reduce times to make them compatible with Tsunami 
Early Warning Systems (TEWS) time requirements, either in Near Real Time or even Faster than Real Time7–12.

However, epistemic uncertainty limits tsunami source characterization sufficiently to hamper tsunami inun-
dation accuracy13,14. Hence, a probabilistic assessment of the hazard might be needed, which require a large 
number of tsunami modeling runs13,15–19, using expensive computer facilities, or extended evaluation times8,20. 
For example, Gusman and Tanioka20 report computing times longer than 14 min for a single, site-specific simula-
tion, well in excess of the expected arrival times in places like the eastern Pacific seaboard5. One alternative is to 
keep the focus on propagation modeling to allow for including a larger number of scenarios, but leaving aside 
inundation modeling15. It is noted that the problem of accurate source characterization and the estimation of 
tsunami hazard are distinct, separate and sequential, although both contribute to the final result. In what follows, 
the analysis focuses on improving the latter, assuming that the former is available.

Within the context of TEWS, the long time needed to obtain a full forward modeling have prompted the use 
of strategies that trade off accuracy in favor hazard assessment time. A prime example is the use of databases of 
precomputed scenarios, as done in TEWS in Japan, Indonesia, Australia and Chile21–24. Precomputed databases 
rely on partial forward modeling (generation and propagation) of predefined tsunami sources of varying rup-
ture lengths, widths and a range of magnitudes, which are queried using simple earthquake data (hypocentral 
location and magnitude) as its input. This source characterization does not consider uncertainties in predict-
ing actual slip. Rather, these databases rely on an uniform slip distribution, which is known to underestimate 
peak tsunami intensity metrics such as runup25,26. Alternatively, tsunami time series at coastal forecast points 
can be obtained using a set of unit source functions that are linearly combined to obtain time series of tsunami 
propagation in coastal waters27,28. In either case, the expensive nonlinear modeling of the tsunami is removed 
from the emergency cycle, and is replaced by faster look up and matching procedures, or linear approximations. 
Consequently, the inundation stage of the tsunami is usually omitted and the hazard assessment is done over 
tsunami wave heights as inundation hazard proxies, for instance using Green’s Law and similar approaches29.

The apparent requirement to model several scenarios including inundation could overload the computational 
capacity of most TEWS, prompting Amato30 to suggest the need to develop new modeling techniques. One alter-
native is to use fast-computing of analytical approximations to predict Tsunami Intensity Metrics (henceforth 
TIMs) such as runup, but these tend to correlate well only close to the source where source effects dominate 
tsunami hydrodynamics31–34. Their accuracy decays rapidly as nonlinear and bathymetric-control processes 
such as resonance or energy funneling become more dominant during the later stages of the tsunami. This has 
limited the application of these analytical approaches, prompting again the use of forward modeling and the basic 
principle of precomputed databases, albeit now aimed to estimate inundation. The less expensive propagation 
models from uniform slips sources are used to obtain tsunami time series at coastal sites, which become the 
input for table look-up procedures where tsunami inundation maps become the output6,23,35–37. Among these, 
the NearTIF algorithm36 has been evaluated at several locations38–41 with good results. However, it requires an 
inundation database that covers the appropriate parameter space of cases and conditions beforehand.

Finally, it is possible to use emulators, understood as a simpler statistical model that approximates results 
of a simulator, in this case, the tsunami full forward model. For instance, Gaussian Process have been used to 
predict maximum free surface displacements using as input minimal data from the tsunami source, such as the 
earthquake location and magnitude, with reasonable results7,42. Another alternative can be the use of Machine 
Learning techniques such as neural networks, which can be understood as a special type of emulator. These have 
gained significant attention lately because they can reduce the hazard assessment time significantly, allowing 
even for the estimation of inundation.

Regarding applications of ML methods to tsunamis, Barman et al.43 estimated the tsunami time of arrival 
(ETA) on a localized region, by training a Multi Layer Perceptron (MLP) network over a larger region, using as 
input for the network design a database of ETA. Results showed good accuracy with a significant speeding up 
of computation time. Others have used Artificial Neural Networks (ANNs) to address detection of tsunamis in 
sensors44, or the identification of parameters that control risk rather than hazard45. However, regarding tsunami 
early warning, it is of interest to forecast TIMs such as runup, inundation extent, or flow depths, either as extreme 
values or time series. Namekar et al.46 trained two non-specified neural networks of identical architecture, one 
to predict free surface time series at coastal points, and the other to predict the runup distribution. Training 
was performed using a database of synthetic tsunamis from which time series at the location of three Deep 
ocean Assessment and Reporting of Tsunamis (DART) buoys were used as input, and both coastal time series 
and runup as outputs. Performance was assessed by comparing against actual data from the 2006 Kuril Island 
tsunami and its effect on Ohau, Hawai’i, USA, with good results, suggesting the possibility to bypass completely 
source characterization and use DART data as only input. The opposite philosophy was used by Günaydn and 
Günaydn47, who bypassed tsunami modeling instead, by using both a Feed Forward Back Propagation (FFBP) and 
a General Regression Neural Network (GRNN) to predict runup based on the focal point data of the earthquake 
(hypocentral location and moment magnitude), and distance to the point of interest, again with good results. 
Hadihardaja et al.48 also used a GRNN to forecast runup from earthquake source data in Indonesia. It is of note 
that these latter approaches implicitly assume that runup is controlled by source characteristics, neglecting the 
contribution of bathymetric controls such as energy funneling and/or trapping, and resonance. Runup forecasting 
was also tested by Yao et al.49 using MLP, although they focused on finding the optimal network configuration. 
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Liu et al.50 carried an extensive analysis, on which they combine different neural networks schemes in a sequential 
manner to address the problem of significant feature extraction, gappy or noisy data, and sparse measurements. 
The assessment was done for maximum wave amplitude and free surface time series, with good results and 
providing an assessment of the uncertainty arising from the neural network prediction.

All these works targeted prediction of point statistics of TIMs. An extension of this approach is to obtain 
their spatial distribution (i.e., maps). For instance, Romano et al.51 also use MLP to relate the earthquake source 
as input data, with maps of maximum tsunami wave height and ETA in coastal waters. Inundation statistics, 
perhaps owing to its high nonlinearity, have been addressed only recently. Fauzi and Mizutani52 used a Convo-
lutional Neural Network (CNN) to optimize the matching algorithm of NearTIF, but also use MLP to directly 
obtain tsunami inundation maps (i.e., maps of inland maximum tsunami flow depth). The MLP consists of 
five hidden layers and 128 nodes, to produce prediction based on 328 modeled tsunamis, covering a range of 
magnitudes although using uniform slip. A Linear Shallow Water Equation (LSWE) model was used to obtain 
maximum tsunami amplitude offshore on a low resolution grid (30 arcsec) that were paired to tsunami inunda-
tion obtained with a NLSWE model at higher resolution (1.11 arcsec). Performance assessment was done using 
a Mw 8.7 hypothetical event. The relative performance of the models varied significantly, which was associated 
to both the use of uniform slip for the initial condition which may not be representative enough of the tsunami 
characteristics and the limited number of scenarios used. Mulia et al.53 used a similar approach, considering 532 
source scenarios with uniform slip distributions, using also 30 arcsec and 1.11 arcsec resolutions for the modeling. 
However, a Deep Feed Forward Neural Network using tsunami inundation from a low resolution LSWE model 
was used as input (instead of coastal tsunami amplitudes), and a high resolution inundation from a NLSWE as 
model output. They tested the results against data from an observed tsunami, including inversion of the source. 
Results were found to be very good, both in terms of inundation extent and runup.

These studies used extrema of the variables in the training, thereby discarding their time series. Part of the 
reason is that time series prediction requires a different neural network architecture. Indeed, Mase et al.54 used 
a FeedForward architecture to predict sea surface elevation inside Osaka Bay, using as input offshore time series 
at a single location. Mulia et al.55 used an Extreme Learning Machine (ELM), to forecast tsunami time series 
in coastal shallower waters, aiming at reducing the limitations of more common procedure that invokes linear 
superposition, whereas the ELM includes nonlinear processes. The ELM increase in accuracy was traded off by 
nearly doubling the computational time, although it was generally less than 0.5 s, thus extremely fast for TEWS 
applications. Perhaps in the most complete work for TEWS to date, Makinoshima et al.56 trained a 1D-CNN 
to forecast tsunami time series of inundation as generated by a earthquakes in the range of Mw 9.0–9.2, with 
great accuracy and speed. They use as input data obtained from a dense network of actual tsunameters, as well 
as geodetic data from GNSS observations. They tested for sensitivity of the neural networks using different con-
figurations of input data. Among the potential downsides of the setup, is the very dense 1D-CNN configuration 
used, leading to millions of parameters to be determined, and that it requires observational data that might not 
be available in other parts of the world. In contrast, Liu et al.50 used a single location as input data, with short 
run lengths, to extrapolate time series of free surface elevation. In their case, the nearly one-dimensional flow 
of the testing site could have facilitated this, although the methodology can be applied elsewhere by including 
more input data locations.

Hence, it can be seen that Machine Learning techniques offer a promising opportunity to speed up some of 
the evaluations required for TEWS, especially in terms of inundation, which has been often discarded owing to 
its large computational burden. However, there are certain aspects that need to be considered further. First, it 
is worth assessing whether the neural network model can reproduce not only cases of tsunami inundation, but 
also cases of no inundation with equal success, to reduce the possibility of hazard over estimation (false alarms) 
or underestimation (not triggering an alarm), something that has not been addressed. This requires testing for 
a large number of scenarios. A good neural network model should be capable to predict not only the flow depth 
but also its temporal features, such as arrival time and time of the peak. Second, it is needed to assess what would 
be the minimal requirements of a neural network design that still offers good solutions. Dense neural networks 
with large amounts of actual input data such as the one used by Makinoshima et al.56 might not be currently 
feasible elsewhere.

The present work aims to addressing these questions while providing criteria for defining the training and 
testing data sets. To this end, a similar configuration to that of Makinoshima et al.56 is evaluated, but considering 
three main differences: (i) similar to prior research, a low resolution forecast obtained from the numerical mod-
eling of tsunami propagation is considered to be the input data52,53. The reason for this is to assess how capable is 
the network model to forecast in cases where offshore sea surface time series are not readily available or suitable 
to be used by a neural network, as occurs in many countries; (ii) A wider range of scenarios are tested. While 
most of the prior work has focused on the determination of the capability of a network to reproduce inundation 
values, for the context of TEWS it is equally relevant to assess whether the networks can predict tsunami occur-
rence with no inundation, to minimize false alarms and (iii) A neural network with fewer parameters is trained, 
aiming to simplify the training process.

It is expected that a simple and accurate network model can aid in operational TEWS in the sense that, by 
reducing the time required to compute inundation, it can allow modeling a larger number of scenarios, for 
instance, to account for uncertainty in source characterization. The simple model evaluated herein, can be further 
expanded to incorporate additional features such as those proposed by Liu et al.50.
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Data and methods
Tsunami data.  For the present implementation, the inundation resulting for a range of tsunamigenic earth-
quakes at two locations in central Chile are considered. First, the highly exposed area of the cities of Valparaíso 
and Viña del Mar (33◦01’28”S 71◦33’06”W). This region has not been significantly affected by tsunamis gener-
ated by the most recent local earthquakes such as those of 1906 or 198557; nor by regional tsunamis such as 
Maule 201058, Pisagua 201459, and Illapel 201560; nor the far field 2011 Tohoku transpacific tsunami. However, 
a large local earthquake in 1730 did inundate the floodplain in Valparaíso57. This varying behavior makes it a 
suitable location for studying the forecasting capabilities of a neural network model aimed at determining the 
occurrence of inundation for a wide range of earthquake magnitudes. The other location is Coquimbo bay (29◦
57’12”S 71◦20’17”W), which shows a different behavior, as it was inundated during the 2015 Illapel earthquake60, 
while large amplitudes were recorded in the local tide gauge during the 2010 Maule tsunami58 and recently 
during the Hunga-Tonga-Hunga-Ha’apai transpacific tsunami61, but without inundation. In addition, the bay 
is highly resonant, and with a spatial structure of the first mode that induces the southern end of the bay to be 
susceptible to tsunami inundation, whereas the central and northern ends are less prone to become inundated62. 
Hence, this location allows for assessing the capabilities of the network for complex inundation behavior and 
inundation footprints.

The inundation characteristics at both bays were estimated using the numerical NLSWE model Tsunami-
HySEA, which has been benchmarked and validated in accordance with U.S. National Tsunami Hazard Mitiga-
tion Program (NTHMP)10,64. Four sets of nested grids, with spatial resolutions of 30, 15, 1.875 y 0.234 arcsec, 
were built from the freely available General Bathymetric Chart of the Oceans65, and Nautical Charts elaborated 
by the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA) (Fig. 1). Two types of TIMs were 
recorded from these model runs. First, two independent sets of numerical coastal buoys located at depths of 
200 m and 50 m, were used to obtain free surface time series, ηLRℓ (t) , ℓ = 1 . . . F , with F = 6 coastal buoys per 
set (shown as red and orange circles in Fig. 1, respectively). These low resolution (LR) series will be treated as 
input data, and their spatial arrangement aims at capturing tsunamis coming from different directions relative 
to the area of interest. These data were collected from simulations using only the coarsest grid at 30 arcsec, with 
the objective to train the network to be fed with fast, linear simulations of propagation during an emergency.

Second, high resolution (HR) time series of tsunami inundation flow depths dHR(t) were modeled at a set of 
pin-point locations along the shorelines of either bay (shown as yellow dots in Fig. 1). This marks a departure 
from previous studies in the sense that rather than estimating the overall inundation map, the aim here is to 
capture the characteristics of tsunami inundation at specific locations. The underlying hypothesis is that tsunami 
hydrodynamics may differ even between closely spaced points owing to processes such as resonance, and the 
designed neural network models (henceforth NNM) for each location can resolve these local features at less 
cost than tsunami maps. While this may be considered to limit the extent of application of the methodology, the 
approach followed here can be applied to more points, even further inland, without loss of generality, as proposed 
by Liu et al.50. For the present implementation, these target time series are obtained from tsunami modeling 
simulations using the highest resolution as proxy for actual inundation patterns. Thus, no real tsunami data are 
considered. Consequently, this exercise aims to reduce the time of the hazard assessment, provided a source 
characterization is available by other means.

As a result of this arrangement, six common offshore buoys modeled with the coarse 30 arcsec domain are 
used for each local domain (Valparaíso and Viña del Mar, Coquimbo and La Serena), and one inland gauge for 
each city, at high spatial resolution. These were located close to the shoreline, at relative low elevation (see Table 1) 
. In what follows, these inland gauges are denoted VaB, ViB, CoB and LSB (the first couple of letters refer to the 
city of interest). Therefore, four NNMs were trained independently. All time series were sampled at 10 sec with 
a tsunami duration of 6 hours, using a standard Manning roughness coefficient of n = 0.025 m −1/3s.

The initial conditions for the tsunami simulations were estimated from subduction earthquakes taking place 
along the extent of the Mw 9.1− 9.3 Valparaíso earthquake57, partly within the so-called Zone 2 of the zonifica-
tion proposed by Poulos et al.63, respectively shown as ZV and Z2 in (Fig. 1a). A set of 6776 earthquakes with 
magnitudes in the range Mw 8.0 to 9.2, with 0.1 Mw increments were used. The reason for this range is the exist-
ing record of locally generated tsunamis in the region, that comprise Mw 7.8 (198566), ≈ 8.0 (190667), 8.1− 8.4 
(192267 and 201560), and the estimated 9.1− 9.3 (173057). Among these, 1730 was the only one to have inunda-
tion in Valparaíso, whereas 1922 and 2015 did cause inundation in Coquimbo. However, Zamora et al.68 found 
that events Mw 9.0 are also capable of inundating the Valparaíso region, depending on the characteristics of the 
slip distribution. Hence, to account for source variability, these synthetic earthquakes were generated within 
this region using the Karhoenen-Loeve Expansion following Leveque et al.69 and Melgar et al.70, considering a 
domain discretization of 10 x 10 km. Details on the characterization of the source data are available in the Sup-
plemental Material.

In addition, for assessing the performance with completely unknown data, different rupture models were used 
as input conditions for two historical events. For Maule 2010, these consider the best-performing median model 
reviewed by Cienfuegos et al.13, and the sources estimated by Hayes (NEIC)71 and Benavente and Cummins72 
were arbitrarily selected. Similarly for Illapel 2015, the sources from Okuwaki et al.73, Shrivastava et al.74 and the 
solution from Hayes75 (and also available in the webpage of the event, mantained by the United States Geological 
Survey) are chosen only as reference for this study. Most of these sources are available at SRCMOD71.

All slip models were transformed to free surface elevation using the Okada76 solution for surface displace-
ment considering tapering and a Kajiura filter, before running each simulation. Simulations were run on the 
CTE-Power9 system at the Barcelona Super Computing Center servers using four Graphic Processing Units 
(GPUs) and 40 Central Processing Units (CPUs) per task. The entire high resolution 6776 scenarios dataset was 
generated, on average, in 400 hours of computational time, and the low resolution runs took about 35 hours. The 
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Figure 1.   Topo-bathymetry and nested domains used for tsunami numerical simulations with Tsunami-
HySEA. (a) Basin domain (Level 1) at spatial resolution of 1 arcmin. Yellow dashed box shows Zone 2 of Poulos 
et al.63 and ZV the study area. The 2010 and 2015 (cyan triangles) correspond to the location of centroids taken 
from the Global Centroid Moment Tensor database. White box denotes Level 2. (b) Regional (Level 2) grid with 
resolution of 15 arcsec. Black boxes indicate the two local domains. c and d) Local (Level 3) grid with resolution 
of 1.875 arcsec. Red and orange dots indicate the location of offshore virtual buoys used to obtain input time 
series, located at the isobaths of 200 m and 50 m respectively. Yellow dots show the location of inland numerical 
buoys that are the target of the network. Yellow boxes denote the high resolution grid (Level 4, 0.234 arcsec, ∼ 7 
m). Panels c and d correspond to Coquimbo-La Serena and Valparaíso-Viña del Mar, respectively.
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CTE-Power9 system has two login nodes and 52 computing nodes. Each of them accounts for two IBM Power9 
processors (20 cores, 160 HT) and four NVIDIA Volta V100 GPUs.

Database pre‑processing.  The amount of data contained on each of the input and target datasets has a 
direct relationship with the number of network parameters to be trained, thereby requiring the use of dense and 
deep networks if a high level of detail is required. The present implementation aims to assess whether networks 
with fewer parameters can succeed in providing meaningful early warnings, discriminating between inundation 
or no inundation. Hence, some data pre-processing was performed based on two criteria. First, to determine 
the minimum length of the time series that carry relevant information for the assessment. On this regard, even 
though six hours of tsunami records were modeled, the meaningful parameters are the time when first arrival 
occurred (denoting that inundation has taken place), and the time of maximum flow depth (assumed to be the 
worst condition). At each inland gauge, the joint distribution of maximum flow depth versus arrival time, and 
time of peak amplitude were estimated. A sample of these distributions is shown in Fig. 2 for ViB. The tsunami 
arrival time is recorded internally by Tsunami-HySEA as the first instance of non-zero flow depth inland, and 
most of the arrivals ( 97% ) occur within an hour (see the percentage index on the left of the graph in Fig. 2a), 
while the flow depth of the first varying significantly in magnitude. On the other hand, the time of peak flow 
depth was calculated independently and is shown in Fig. 2b. There is no one-to-one correlation between the two 
metrics, since many of the peak flow depths take place within 3 hours after tsunami onset. A small number of 
very low magnitude flow depths occur very late in the simulation. From this analysis, it is possible to conclude 
that the most meaningful information can be obtained even if the time series length is trimmed. To provide an 
objective measure for this, it was defined that the run length had to satisfy that 99% of the cases have arrived, 
and that at least 90% of the peaks have been included. This allowed to reduce the time series for the network 
training to four hours in Coquimbo-La Serena, and two hours for Valparaíso-Viña del Mar. Here, differences in 
hydrodynamics appear to play a role.

The second consideration that affects the number of parameters is the resolution of the time series. While 
the model runs were designed to provide outputs every 10 s, this could be an excess of information for tsunamis 

Figure 2.   Scatter plots of the joint distribution of (a) maximum flow depth and tsunami arrival time; (b) 
maximum flow depth and time of the maximum, for all scenarios (dots). Vertical colored regions distinguish 
between the tsunami amplitude values used to categorize the hazard21. Horizontal coloring distinguish between 
very fast, fast and late arrivals, following68. Percentage values on the left indicate the cumulative fraction of 
events as a function of time. (c) Sample time series of inundation, showing the effect of different sub-sampling 
values.
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which are long period waves in the range of several minutes. Hence, it is possible to subsample the series in such 
a way that relevant features of the time series are retained. However, unlike time series in water, inundation can 
have short lived features due to the episodic and complex nature of inundation flows. Hence, a sensitivity analy-
sis for subsampling was carried out as shown in Fig. 2c, where a high resolution time series (solid dark line) is 
compared with subsampled ones. Subsampling at 1 min (60 s) suffices to retain key features such as the timing 
of first arrival, secondary peaks and late arrivals. This allows reducing the total number of samples to 1/6-th of 
the original size. The combined effect of trimming and subsampling led to time series with a total number of 
samples α = 241 and 121 for Coquimbo-La Serena, and Valparaíso-Viña del Mar, respectively, down from α
=1441 and 721 data points of the length-trimmed 10 sec series. In addition, the NNMs can produce noisy time 
series that can affect the comparison against no inundation cases, without affecting the hazard assessment. 
Consequently, all NNM-predicted flow depth values less than 5 cm were treated as zero. For completeness, the 
analysis will be carried out to compare network performance with both sampling rates to assess the impact of 
this on the performance of the networks.

A final data processing relevant for machine learning training, is to provide training data sets that show class 
balancing. This is understood as that the data sets ought to contain comparable number of cases for each of the 
categories that are to be discriminated. In the present case, the wide range of magnitudes used could induce 
that a disproportionate number of scenarios may not induce inundation. On the other hand, considering only 
large scenarios can imbalance the data set towards inundation. Table 1 shows the overall ratio of scenarios that 
inundate each buoy over the entire 6776 data sets. It can be noticed that the Coquimbo inland gauge CoB shows 
a larger tendency to be inundated, with 47% of the cases triggering inundation. La Serena, despite being close to 
Coquimbo, gets inundated only 25% of the time, which highlights the relevance of distinguishing between the 
hydrodynamics of neighboring points. Viña del Mar is twice as susceptible than Valparaíso, that gets inundated a 
mere 10% of the cases. This wide range of results poses a challenge for class balancing, as locations as Valparaíso 
might lead to over representing no inundation cases. To account for this, for each location of interest, the data 
sets of training, testing and validation were designed to retain each gauges’s overall percentage, without paying 
attention to other discrimination criteria.

Network architecture.  Machine learning techniques have gained significant attention over the last few 
years and multiple applications. Among these, sequence to sequence (Seq2Seq) aims at developing models that 
convert sequences in one domain, to corresponding sequences in another domain. In the present implementa-
tion, the goal is to find a network that can convert sequences (in this case time series) of simulated free surface 
elevation in coastal waters ηLR(t) , to sequences of flow depth dHR(t) on inland terrain. These are treated as differ-
ent domains, as the former are usually continuous series of real values (negative and positive), whereas the latter 
can be discontinuous occurrences of positive only values, if any.

Earlier Seq2Seq network architectures designed for signal processing, such as FeedForward or Multi Layer 
Perceptron (MLP)77, assume independence among variables. Hence, the presence of temporal or spatial depend-
encies degraded its performance78,79. To overcome this, recurrent links allow for transfer of information among 
different time steps80. However, these early Recurrent Neural Network architectures were computationally expen-
sive, and were subject to instabilities associated with fading and/or large gradients when long term processes 
were present81. Hochreiter and Schmidhuber82 proposed the Long Short-Term Memory (LSTM) model aimed 
to reduce fading for long term dependencies. Despite these advances in sequence to sequence models, the suc-
cess of Convolutional Neural Networks (CNN) in identifying complex patterns and objects in image and video 
processing, has prompted its use in signal processing with good results83. Among these, 1D CNN84 and their 
compact implementations show good results when data are limited. Moreover, they do not require high-end 
hardware and a single CPU can suffice for training83.

Both Seq2Seq and CNN architectures have been applied to tsunami inundation. Fauzi and Mizutami52 used 
a CNN to classify low resolution tsunami inundation maps, and MLP to model and map these low resolution 
series to the inundation map. Mulia et al.53 expanded on this, by incorporating a larger number of scenarios to 
calibrate a Feed Forward model with several hidden layers, aimed to characterize more complex attributes. Both 
works focus on inundation maps, whereas Makinoshima et al.56 use a deep 1D CNN to estimate tsunami inunda-
tion time series based on the input series obtained from a dense network of tsunameters deployed in Japan, as 
well as geodetic information. They used 49 offshore observation points coincident with actual bottom pressure 
sensor locations, and five geodetic points from the Global Navigation Satellite Systems network. The network was 
trained with 12,000 stochastic scenarios generated within the rupture domain of the 2011 Tohoku Earthquake. 
The network offered good performance under varied combinations of input data and observation times. For the 

Table 1.   Distribution of scenarios that do and do not inundate at each inland numerical sensor.

Buoy

Zone

Elev. Do Do Not

[m] above Inundate Inundate

Id MSL [%] [%]

CoB Coquimbo 1.96 47.0 53.0

LSB La Serena 2.69 25.2 74.8

VaB Valparaíso 4.56 11.2 88.8

ViB Viña del Mar 4.77 20.5 79.5
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case of predicting time series, Liu et al.50 also used a CNN coupled with a Denoising Auto Encoder (DAE) and a 
Variational Auto Decoder. An encoder (DAE) is used to denoise and correct noisy or gappy input data, whereas 
the decoder (VAD) estimates confidence bounds on the prediction of time series in coastal waters. While they 
did use sparse data, it could have been alleviated by the relatively simple configuration of their problem setting, 
that resembled a one dimensional channel. This is a difference from prior machine learning studies regarding 
tsunamis, that have focused on predicting time series in coastal waters or inundation TIMs maxima. Only 
Makinoshima et al.56 used time series of inundation, but with large magnitude events.

Here, compact 1D CNN network architectures are designed, determining both their hyper-parameters and 
parameters, with the main focus of estimating the predictive ability for inland inundation. The methodology is 
implemented in Python 3.6, using the Keras API within TensorFlow, with an ADAM optimizer with a learning 
rate of 0.001, on a consumer-level portable computer.

In CNN terminology, “hyper-parameters” are understood as user-defined parameters that constrain the 
network architecture and its performance, whereas the term “parameters” refers to the actual weights of the 
neurons that optimize the network predictive ability. An initial set of 16 hyper-parameters was considered. 
However, upon early examination and sensitivity analyses, ten of these were fixed thereby leaving only six to be 
determined. These are shown in Table 2, where hyper-parameters that are being selected through validation are 
shown in bold. Reducing the number of hyper-parameters allows for reducing the computational training time. 
Although they are not hyper-parameters in the strict sense, the analysis also includes two experimental design 
variables. First, the use of time series with the original and reduced sampling rates (columns labeled 60 and 10 s 
in Table 2). Second, the choice of input time series located at either 200 or 50 m water depths (hyper-parameter 
Buoy Depth). L represents the length, in samples, of the target time series dHR(t) at inland gauges.

A schematic of the 1D CNN architecture is shown in Fig. 3. The leftmost panel represents one of the six buoy 
time series ηLR(t) that are located in offshore waters, at one of the tested depths. Each of these time series is 
represented as a sequence, ηℓ : {t(ℓ)1 , t

(ℓ)
2 , . . . , t(ℓ)α } → R

α with α ∈ N the number of input samples, and ℓ indexes 
the F = 6 different coastal buoy time series. All of these are fed into the first convolutional layer, where a kernel is 
applied. A kernel is a vector of fixed weights k(ℓ) : {k(ℓ)1 , k

(ℓ)
2 , . . . , k

(ℓ)
β } → R

β of length β ∈ N (a hyper-parameter) 
and where ℓ indexes the different dimensions of the kernel, which must be equal to the number of input dimen-
sions of F. This kernel is applied as an inner product, sweeping sequentially the series to obtain a feature map. 
The kernel covers the entire input sequence using a staggered stepping size (hyper-parameter kernel stride = γ ), 
hence the convolution. Formally, a neuron attribute (also called a feature in CNN terminology) is computed as

where n ∈ {1, . . . , ⌊
α−β
γ

⌋ + 1} and by convention when a sequence is evaluated out of its domain of definition 
the result is zero, thus not contributing to the sum. This sequence defines the feature map s associated to the 
kernel k . Padding the series was not considered.

A convolutional layer is defined by several kernel configurations, also denoted as filters. The input is processed 
simultaneously by all kernels, obtaining a sequence for each kernel. Thus the output of a convolutional layer is a 
filtered multidimensional sequence. Next, a non-linear activation function σ is applied to this sequence, obtain-
ing the output y of the convolutional layer:

(1)sn = (η ∗ k)(n) =

F
�

ℓ=1





∞
�

p=−∞

η(ℓ)[p] · k(ℓ)[p− n+ 1]



,

Table 2.   Space of hyper-parameters tested.

Hyperparameters Range of values

Variable 60 s 10 s

Kernel size β [9; 12] [18; 27]

Kernel stride γ [3; 4] [15; 21]

Neurons D1 [L/4; L/2; L; 2L] [L/4; L/2; L; 2L]

Neurons D2 [L/4; L/2; L; 2L] [L/4; L/2; L; 2L]

Buoy Depth (m) [50; 200] [50; 200]

Constant

Dense layers 2

Convolutional layers 3

Patience 10

Dense layers activation function Linear

Convolutional layers activation function ReLu

Filters 64-32-16

Dropout p% 10.0

Batch size 32

Learning rate 10
−3

Output layer activation function ReLu
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where b ∈ R is an intercept, one of the network trainable parameters, and σ : R → R . Here, a rectified lineal 
function85 is used through the network, defined as ReLu(x) = max{x, 0}.

Following this, the resulting sequence y(n) is fed into the following convolutional layer, where the process 
is repeated with different kernels. The consecutive application of the process highlights relevant features in the 
series. The total number of convolutional layers can be treated as a hyper-parameter, but here only three layers 
were considered. Moreover, the number of filters in each convolutional layer is also treated as a constant (cf. 
Table 2).

After the process of convolution, a batch normalization is applied86, aimed to minimize the risk of generating 
values drastically different to the learned distribution, and propagating errors down the layers. The resulting flat-
tened layer, is then fed into two dense layers. These follow the scheme of fully connected layers, similar to MLP, 
where all the attributes a(l) of a previous layer l, are subject to a vector of weights w(l)

u : {w
(l)
1u ,w

(l)
2u , . . . ,w

(l)
Iu } ∈ R

I . 
Hence, the output of the attribute u of the layer l + 1 is defined as

To reduce the risk of overfitting, a Dropout87 layer is applied after each dense layer, where a fraction p of neu-
rons are randomly discarded during training. Finally, the length of the dense layers was also considered as a 
hyper-parameter, defined as different fractions of the total number of samples L in the target time series. While 

(2)y(n) = σ(b+ sn),

(3)

a(l+1)
u = σ

(

w
(l)T
u a

(l) + b(l)u

)

= σ

(

I
∑

i=1

w
(l)
ui a

(l)
i + w

(l)
u0

)

Figure 3.   Schematic of the network architecture. Top panel shows all steps using the nomenclature specified in 
the text. Bottom panel shows represents the feature extraction from a convolutional layer.
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in general applications α and L are not required to be identical, in the present implementation the number of 
samples in the input and target series are equal, i.e. α = L.

After the last layer, the ReLu activation function is used again. The rationale behind this is that the inundation 
time series can take values equal to zero (no inundation) or positive when inundation occurs, and that the shape 
of the series is relevant. ReLu allows for positive values only and hence appears to be best suited for this task.

Validation and training data sets.  The objective is to design a NNM at each of the four target locations 
following a multiple step process. First, validation, understood as the process aimed to determine the hyper-
parameters of the NNM. Next, training, where the parameters (weights and intercepts) of the hyper-combination 
of choice are determined. Finally, testing involves assessing the best model performance for scenarios the NNM 
has not seen before. In this case, the total of 6776 scenarios are divided in two independent sets of about 1017 
scenarios each (15%) used for validation and testing, and a third set of 4742 (70%) for training. Selection of the 
scenarios was done by randomly selecting scenarios, but retaining the relative percentages of inundating and 
non inundating scenarios (cf. Table 1). The procedure is done independently at each of the four target locations. 
In Fig. 4a, the histograms of maximum flow depth of the testing, training and validation sets are shown for ViB 
(plots for the remainder inland gauges are shown in the Fig. S6 of the Supplemental Material). The distribution of 
maximum flow depths are similar among data sets, with slight differences in their extrema (symbols). However, 
these differences are well in excess of the maximum hazard threshold and the training set has the largest value, 
thereby during training the worst condition is considered. Figure 4b shows the distribution of the scenarios in 
terms of magnitude, both in bars and as a cumulative function (lines). The three data sets show a similar distri-
bution, hence the scenario space is well distributed among sets.

Owing to the large number of hyper-parameters, an exploratory assessment was done only in Viña del Mar 
to determine the hyper-parameters that were treated as constant. Upon this selection, 256 combinations of the 
remainder hyper-parameters were run with the validation data set. The end result are NNMs that take the input 
sequences ηLR(ℓ)(t) ≈ ηℓ = t1, t2, . . . , tα , aimed to map Fj(t1, t2, . . . , tα) → Y1,Y2, . . . ,YL . Fj represents the j-th 
NNM (a combination of hyper-parameters and parameters), and Yi the time series dHR(t) at each inland gauge. 
To select the NNM that yields the best overall performance, the Mean Squared Error is estimated

where NS is the number of scenarios used in the analysis. However, the MSE statistics can be subject to bias due 
to a large number of small values, especially for the case of no inundation. As an additional metric, a normalized 
least-squares is also estimated as88,89

where the formulation without weights has been used89. Gj ranges [0,1], with lower values indicating better accu-
racy. However, for the case of no inundation, Yi = 0 at all times, leading to Gj =1 regardless of the value of Fj,i(ηℓ) , 
thereby biasing the estimate. Hence, a filter was imposed, such that if the maximum value max{Fj,i(ηℓ)} ≤ 0.05 
m, then Gj = 0 , thus representing perfect agreement for non inundating cases. The 5 cm threshold is arbitrary 
but small enough not to affect results significantly. The filter was applied a total of 613 times over an accumulate 
of 3067 non-inundating cases among all four inland gauges, representing a 20% .

Each of these 256 combinations were repeated using five different seeds, and the average value of MSEj ,Gj 
among seeds was used as the metric of comparison. For each target inland gauge, the optimal hyper-parameter 
combination was used in training, from which the resulting NNM were obtained. These were then evaluated in 
testing and with the historical events.

Even though the procedure above leads to a NNM that minimizes the error among the modeled and target 
time series, it is relevant to assess performance with metrics that are relevant for a TEWS. Especially, whether 
the peak inundation flow depth, the arrival time, or time of the peak are reproduced satisfactorily. Each of these 
quantities are assessed by means of the error between observed data and model predictions. In the case of the 

(4)MSEj =
1

NS

NS
∑

i=1

L
∑

k=1

(

Fj,i(ηℓ)k − Yi,k

)2
,

(5)Gj =
1

NS

NS
∑

i=1

[

1− 2

∑L
k=1 Fj,i(ηℓ)k ∗ Yi,k

∑L
k=1 F

2
j,i(ηℓ)k +

∑L
k=1 Y

2
i,k)

]

,

Figure 4.   Statistics of the distribution of scenarios among validation, training and test data sets for ViB. (a) 
Distribution as function of moment magnitude (bars) and normalized cumulative frequency. (b) Frequency 
distribution in terms of maximum flow depth max{dHR} . Symbols denote the extrema of each set. Additional 
plots for other inland gauges can be found in Supplemental Material.
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maximum flow depth, the comparison is between the maximum flow depth in the Tsunami-HySEA series, and 
the predicted value by the NNM at the same time in the series. This is akin to assess how well the timing and the 
value of the maximum flow depth are predicted

and the difference in arrival time, ta

Note the index j has been dropped because these are the final NNM evaluated at each i− th scenario.
However, it is known that TEWS can be less susceptible to absolute errors in these quantities as long as the 

hazard is categorized properly. That means that, even though an error of 50 cm in peak flow depth might be 
considered significant, it is not necessarily relevant if both values lead to the same hazard category. Consequently, 
it is also evaluated whether hazard predictions are consistent between the NNM and data. The focus is set in two 
relevant cases: (i) whether the NNM overpredicts the hazard (a false alarm), or (ii) whether the NNM underpre-
dicts the hazard (a missed alarm). Both are equally relevant for a TEWS although, arguably, the latter can have 
more serious consequences. The evaluation is based on the total number of instances where the NNM prediction 
falls into either category, from the total data set. These results are classified depending on the hazard assessment 
used in the Chilean TEWS21. It is noted that this hazard assessment was devised using as TIM the peak coastal 
amplitude (PCA), but here the values are retained for reference, as no TEWS uses inundation metrics to date. The 
most hazardous category is denoted Category C, when the flow depth dmax > 1.0 m, prompting full evacuation. 
Category B is when 0.30 m < dmax ≤ 1.0 m, prompting evacuation of beaches, and Category A is when dmax ≤ 
0.30 m, when no action is necessary.

The overarching goal of this work is to assess the applicability of a machine learning implementation within 
the context of a TEWS, especially regarding the capability to distinguish between situations that do inundate 
from those that do not.Therefore, a final assessment step is to compare NMM predictions against historical data. 
In particular, data from the recent Maule 2010 and Illapel 2015 earthquakes and their tsunamis can be used for 
NMM prediction, and the results compared with actual outcomes. Fritz et al.58, Aránguiz et al.60 and Contreras-
López et al.90 provide actual inundation data close to the inland gauges of interest, for a reasonable comparison. 
During both events, ViB and VaB did not suffer inundation, whereas CoB and LSB were inundated only in 2015.

The sources of the two historical events were simulated using Tsunami-HySEA using only the coarsest grid, 
and the low resolution time series of free surface elevation were obtained at the location of the six offshore buoys, 
ηLR(ℓ) . These time series were then passed on to each of the previously obtained NNMs, to estimate whether inunda-
tion would occur or not, and to categorize it. To better understand possible sources of error, tsunami modeling 
using the high-resolution nested grids was also performed. This allows contrasting between the simplified hazard 
assessment flow using the 1D CNN models, and a high resolution modeling similar to what can be expected in 
Near Real Time modeling.

Results
The procedure described above was applied to find eight NNM: one for each of the four inland gauges, with a 
choice of two depths for the offshore buoys (50 and 200 m). The use of two offshore buoy depths was considered 
to evaluate whether the assumption of wave linearity is relevant for model performance. For each of these NNM, 
each hyper-parameter combination yields a MSE, G pair. From these, the top five giving the best performance 
(minimum MSE) were initially selected using a grid search. These are presented in Table 3 for CoB, for refer-
ence, classified by the sampling rate. Typical MSE values fluctuate in the range 0.01-0.016 m 2 (10-12 cm), with 
differences among cases that can be considered minimal. Hence, to select the best hyper-parameter set, an 
arbitrary selection was performed, where for each hyper-parameter, the value that was more frequent within the 

(6)Ed,i = Fi(t = tmax{Yi})−max{Yi},

(7)Et,i = taFi − ta{Yi}.

Table 3.   Ranking of the best performing hyper-parameter combinations in validation.

Hyperparameters

MSE

Eq. (4)

Sampl. Prof. Neurons Neurons Kern. Kern. Validation Training

Rate, s m Layer 1 Layer 2 size stride

10 200 L/4 L/4 27 15 0.01270 0.00792

10 200 L L/2 27 21 0.01279 0.00808

10 50 L/4 L/2 18 21 0.01280 0.009269

10 200 L/2 L/2 27 21 0.01290 0.00758

10 200 L/4 L/2 18 21 0.01301 0.008312

60 50 L/2 L 12 3 0.01479 0.00941

60 50 L/2 L 9 3 0.01504 0.00891

60 50 L/2 L/2 9 4 0.01478 0.00979

60 50 L L/2 9 3 0.01487 0.01090

60 50 L L/4 9 4 0.01496 0.00836
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five top-ranking combinations was selected. For instance, for the hyper-parameter number of neurons in Dense 
Layer 2 (Neurons Layer 2 , fourth column), the value L/2 was present four out of five times when the sampling 
rate was 10 s, hence is used as the final parameter. Repeating the procedure leads to the preferred network model, 
which are highlighted in bold for each sampling rate.

As expected, the shorter sampling rate yields smaller errors, although just marginally, suggesting that using 
subsampled series could have suffice. However, the longer sampling rate is compensated by smaller kernel sizes 
and stride, thus smaller neurons to perform feature identification. The reduced number of input data also results 
in fewer neurons, i.e., less overall parameters to be determined. Interestingly, the longer sampling rate favors 
the shallower offshore buoys, which can be indicative of these carrying more information than the deeper ones.

The hyper-parameter combinations of choice, shown in bold, are then used during training, where the actual 
network parameters are found. As before, the MSE is used as the primary metric to assess performance as shown 
in the last column of Table 3. The MSE training results improve upon those of validation.

It is of note that these results encompass all validation and training data, that were designed to have a class 
balance between inundating and non inundating scenarios. To investigate further how the networks are perform-
ing, the same metrics are computed separately distinguishing between scenarios that do and do not inundate in 
Table 4, which can be considered the case of maximum class imbalance. For the non inundating cases, typical 
MSE error values again range 1-2 cm, globally, and the G values are very small, indicating good correspond-
ence between target and predicting time series. This shows that non inundating cases are well recovered, and 
that most of the overall error comes from the inundating cases, which can now reach up to MSE = 0.0595 m 2 
(24 cm), while errors in the case of no inundation are of the order 10−5 m 2 . G also shows an increase but the 
maximum value is G = 0.2547 , indicating good predictions. For the case of inundating scenarios, the error for 
the maximum flow depth reaches up to Ed,i = 63 cm, whereas the arrival time can be offset up to Et,i ∼ 13 min.

Finally, the best performing networks (shown in bold in Table 4) are used to model the test data set, that is, 
cases not used before. The results of testing are summarized in Table 5. The performance of the networks is similar 
during validation, training and testing in terms of MSE and G values, and errors in amplitude and arrival time.

Even though the absolute value of the errors seems large, the effect on the hazard categorization is minimal, 
even during testing when the NNM are used with data not seen before (Table 5, last two columns). Indeed, for 
inland gauge CoB, only three scenarios of the 1017 used in testing triggered false alarms, and these were only for 
the lower hazard level A . On the other hand, no scenario caused missed alarms and only six cases were missed 
alarm during validation (Table 4). As before, the errors were found only for the lower hazard level. The worst 
performing inland gauge on this regard was ViB for false alarms, where up to 21 scenarios showed false alarms 
during testing (2 %) and 93 during validation (9%), and LSB, for missed alarms. For the latter, up to 29 missed 
alarm ocurred during validation (3%) and 17 during testing (2%) The most critical hazard levels, B and C, that in 
case of the Chilean system are associated to evacuation, caused no more than 2 errors for missed alarms (0.02%). 

Table 4.   Perfomance metrics for the best NNM at each location and sampling rate. Data highlighted in gray 
are the final NNM of each target buoy.

Network

MSE Val. G Val.

Validation

False Alarm
Missed 
Alarm

Eq. (4) Eq. (5)

Inund. No Inund. Inund. No Inund. Ed,i Et,i

Model [m2] [m2] [−] [−] [m] [min] A B C A B C

CoB-200-10 0.0159 2.79 E-05 0.1817 0.0112 0.35 12.54 6 0 0 0 0 0

CoB-50-60 0.0179 1.96 E-06 0.2154 0.0056 0.33 8.03 3 0 0 12 0 0

LSB-200-10 0.0108 1.63E-06 0.2449 0.0026 0.20 8.4 2 0 0 29 1 0

LSB-50-60 0.0111 1.84E-06 0.2381 0.0039 0.25 9.36 3 0 0 12 1 0

ViB-200-10 0.0346 1.75E-04 0.1021 0.1131 0.36 3.19 90 3 0 0 0 0

ViB-50-60 0.0226 4.99E-05 0.0908 0.0207 0.20 2.05 16 1 0 3 0 0

VaB-200-10 0.0595 4.95E-05 0.2547 0.0175 0.63 5.68 15 1 0 7 1 0

VaB-50-60 0.0337 6.17E-05 0.2382 0.0087 0.37 5.46 7 1 0 7 2 0

Table 5.   Perfomance metrics test set.

Network

MSE Test G Test

Test

False Alarm
Missed 
Alarm

Eq. (4) Eq. (5)

Inund. No Inund. Inund. No Inund. Ed,i Et,i

Model [m2] [m2] [−] [−] [m] [min] A B C A B C

CoB-200-10 0.017 2.58 E-05 0.1645 0.0053 0.35 12.39 3 0 0 0 0 0

LSB-50-60 0.007 8.01E-07 0.2525 0.0065 0.19 9.75 5 0 0 17 0 0

ViB-50-60 0.017 1.38E-04 0.0730 0.0258 0.22 1.57 16 5 0 0 1 0

VaB-50-60 0.044 2.95E-05 0.2126 0.0098 0.38 6.36 8 1 0 4 3 0
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Figure 5.   Error in arrival time Et (left column) and maximum flow depth Ed for Coquimbo (CoB, top row) y 
Viña del Mar (ViB, second row). In (a–d) warmer colors indicate the NNM under estimates the hazard. (e, f) 
The histograms of each error among all cases. (g, h) The time series that lead to the maximum error, where the 
full forward model using Tsunami-HySEA is shown as dashed blue lines, and the NNM prediction in light red. 
(g) ViB, h) CoB.
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The reason for this behavior is illustrated in Fig. 5. In the top panels, the joint distribution of the errors in arrival 
time Et , i and flow depth Ed , i are shown as circles, whereas the color scale indicates the value of the error. The 
colorscale has been intentionally made symmetric, hence actual data do not span the overall extent of it. The 
third row shows the corresponding histogram of the errors. While the error in arrival time Et can be large for 
relatively late arrivals (later than 60 min) in Coquimbo, most of the scenarios concentrate arrivals within a few 
minutes. The error Et is biased negative, meaning earlier arrival in the NNM. While less than ideal, this can be an 
unintended conservative feature within the context of early warning. The reason for these early arrivals is shown 
in the sample time series in the bottom row, where data with the worst Ed are shown. Small scale fluctuations 
are predicted by the NNM, which trigger early detection and drive errors in Et . Errors in flow depth Ed are also 
biased negative and can reach up to 2.5 m. Despite the large value, these occur typically when actual flow depths 
exceed 3–4 m (see how data clusters towards high flow depth in Fig. 5b,d, noting that the horizontal scale is 
logarithmic). Hence, these errors do not change the hazard categorization. Second, the timing of the maximum 
value is retained in Eq. (6) which could affect a few cases, as shown in Fig. 5h, which shows the wave with larg-
est error ( Ed,i ≈ −2.5 m, see Fig. 5f). This is an extreme situation where the maximum flow depth ( max{dHR}) 
occurs nearly 3 h after first arrival and is concurrent with a poor NNM prediction. However, the hazard level was 
characterized by three large waves earlier in the time series which were well predicted. Even in cases like these, 
the overall temporal structure is well recovered by the NNM up until that point, even when several inundation 
phases occur. This is sustained by the low values of G. In Fig. S7 of the Supplemental Material, histograms of MSE 
and G are shown. The low values suggest that the NNMs perform well in predicting the time series.

Figures 6 and 7 show the results of using the NMMs to predict the outcome of the historical tsunamis. For 
the Maule 2010 event, most of TIMs and hazard assessments match the in situ observations, when no inundation 
was observed in either LSB, ViB nor VaB. Hence, the NNMs of these locations are able to reproduce successfully 
the case of no alarm. However, the situation is different for CoB, where the NNM predicts inundation of up to 
2 m, which would have prompted evacuation, whereas no actual inundation did occur, thus a false alarm. It is 
of note, that this happened only for the Benavente and Cummins72 source solution, whereas the median model 
of Cienfuegos et al.13 predicts a small inundation that did not exceed the lowest threshold (hence no alarm), 
and the Hayes (NEIC 2010)71 source yields zero inundation. In the case of the Illapel 2015 event, again ViB 
and VaB perform well, successfully predicting no inundation. However, the situation is more complex for the 
Coquimbo-La Serena region. While the CoB NNM predicts inundation at a level large enough to have prompted 
evacuation (hazard properly categorized), none of the network models is capable to predict the measured flow 
depth of nearly 6 m60,62,90. Notably, the Hayes model75 for the Illapel event forecasts very small flow depths (a 
missed alarm). LSB, on the other hand, is a case of missed alarm as none of the models predicts flow depths that 
match the observed 3 m.

Discussion
From the results from testing, it can be seen that the NNMs do a good job in predicting the outcomes of possible 
inundation among the synthetic data set. The overall design of a network requires short computational times. 
For example, considering the same hyperparameters, training of the 2,234,213 parameters requiered for CoB at 
10 s required approximately 10 min, whereas for the 242,613 parameters of CoB at 60 s, took 3.5 min, roughly 
a 3X speed up. This could enable scaling up the process to multiple gauges at minimal cost, yet allowing for 
differences in the NMMs. Moreover, the time required to make a prediction is of about 1 s in an off-the-shelf 
Quadcore laptop with Intel Core i7-6600U CPU at 2.60 GHz, running Ubuntu 18.04.5, making it suitable for 
TEWS temporal requirements. For comparison, full forward modeling of inundation using Tsunami-HySEA 
with two Nvidia Tesla V100/16GB-HBM2 GPU cards took up to 10 min.

The final NNM varied among the target locations. Notably, some of the locations yield better performance 
using the subsampled time series and with offshore buoys located at 50 m water depths. This was the case of 
ViB,VaB, and LSB. In contrast, CoB worked best with inputs at 200 m but the higher sampling rate, which is an 
apparent trade off between the sampling rate and the possible non linearity of the tsunami wave in shallower 
water. CoB has some characteristics that set it apart from the others. First, it is located on a zone where actual 
tsunamis have inundated in the past, and a larger fraction of the modeled tsunamis produced inundation. This 
could mean that the inundation characteristics varied among scenarios enough to require denser input data to 
distinguish among them. Alternatively, non linear processes such as resonance have been identified in the area, 
and it can be speculated that the deeper water buoys were more stable in terms of input. Regardless of the actual 
explanation, what is relevant for the purposes of this implementation, is that the use of distinct target inland 
gauges even for neighboring locations can be recommended, because they could be trained with smaller data 
sets and leaner NNM than a more complex, one-for-all inundation mapping network.

Regarding the predictive capability of the NMMs, the results appear to indicate that at times, large mismatch 
with in situ data could occur. While this could have been seen as a failure of the proposed approach, this is not 
the case. Careful inspection of results shows that even the high-resolution modeling using Tsunami-HySEA is 
not capable of matching the observations, as shown by the dashed lines in Figs. 6 and 7. Moreover, the hazard 
assessment is essentially the same that would have been obtained if the full forward modeling runs were used 
instead. This suggests that the problem lies in either the initial conditions and/or the boundary conditions, and 
not in the NNM capability.

This highlights the challenges of accurately predicting inundation rather than shortcomings in the predictive 
capability of the proposed NNM. For instance, the CoB buoy is located near the area of maximum inundation 
and amplification of the tsunami due to resonance in Coquimbo bay which may not be well reproduced even with 
the full forward modeling. In addition, the variability of results among the sources tested also suggest a source 
dependency. These effects imply a significant challenge for a TEWS, because it would force it to consider source 
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Figure 6.   Hazard assessment for the Maule 2010 event. (a, d) The offshore tsunami time series at each of the 
six input buoys when modeled using as source condition that of Benavente and Cummins72 (blue lines), Hayes 
(NEIC, 2010) taken from the SRCMOD database71 (green lines) and the median model of Cienfuegos et al.13. 
The black line shows the nearest tide gauge record. Dashed lines correspond to the high-resolution tsunami 
HySEA model at the location of the tide gauge. (b, c) and (e, f) The time series of inundation as predicted by the 
corresponding network models and tsunami HySEA (dashed). Top panels are for Coquimbo-La Serena, and 
bottom panels correspond to Valparaíso-Viña del Mar.
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variability and a large number of source scenarios and their corresponding assessments to develop a measure 
of the uncertainty13,15. The use of 1D CNN networks can aid on this regard, as these surrogate models can offer 
similar predictive capabilities at a minimal computational cost. Of course, this still requires very fast propaga-
tion modeling to feed the network. However, this already can be achieved in times adequate for early warning15.

Another explanation is that the NNM were overfitting their response to the high resolution models. However 
this is considered not to be the case, as neither the Illapel 2015 nor Maule 2010 source models were used in train-
ing or testing. Moreover, the Maule 2010 main rupture zone is located south from the scenario generation zone 

Figure 7.   Results for the Illapel 2015 event. Same key as Fig. 6, with the exception of blue lines corresponding 
to Shrivastava et al.74, green lines to Okuwaki et al.73, and red lines correspond to Hayes75 finite fault model 
(SRCMOD71 and reference therein).
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used in training, meaning that they could not have been seen at all by the network beforehand. Hence, rather 
than limiting the applicability of the NNM to events generated only in this region, these results suggest it could 
be applied to other regional sources even if they were not included in the network design phase. However, more 
testing should be done on this regard.

These results also indicate that the methodology can capture different hydrodynamic behavior. It was found 
that most inundating tsunamis in the region of Valparaíso-Viña del Mar had a temporal structure characterized 
by a large first inundating wave (cf. time series in Fig. 2), followed by trailing waves that often did not exceed 
the first. Hence, this region appears to be more susceptible to inundation to the first packet of tsunami energy. 
Coquimbo-La Serena are susceptible to resonance, where larger waves can develop later and even after smaller 
early inundation phases. Overall, the NNMs were able to reproduce these behaviors with small errors in both 
mean statistics, and hazard assessments.

Conclusions
The present work aims to assess the possibility and capabilities of learn 1D CNN networks to be used in Tsunami 
Early Warning. Rather than attempting to estimate a unique network that could map inundation at a large num-
ber of points, the focus was set on neural network models (NNM) designed to reproduce time series of tsunami 
inundation at specific locations. The procedure can be applied to several independent locations to increase 
coverage, if needed, at small computational cost.

In addition, the design of the NNM considered the analysis of the tsunami inundation characteristics using 
high resolution data, which allowed to perform a pre-processing of the time series that contributed to reduce the 
training burden. For generality, the method was tested at four specific locations on two bays that differ in their 
hydrodynamic response. The results showed a high level of success in predicting the inundation characteristics, 
with the ability to distinguish among scenarios that inundate and those that do not, an essential feature for 
TEWS. This was true when compared with synthetic data not seen by the network before. However, when tested 
against actual tsunamis, one case of a false alarm and one case of a missed alarm were found. Careful inspection 
showed that the network models were capable of matching high resolution modeling results, suggesting the 
origin of error was elsewhere. These errors would affect any modeling exercise, and were not associated to the 
methodology presented here.

With these considerations, the proposed approach offers a cost-efficient alternative to provide a surrogate for 
inundation time series within the context of Tsunami Early Warning time windows. While accurate Near Real 
Time modeling still appears to be the most reliable choice, the presence of significant uncertainties in source 
characterization, bathymetry and other sources of uncertainty may require a large number of simulations that 
can exceed the allocated times. The use of surrogate models may allow to provide multiple assessments within 
reasonable times, with a small trade-off in accuracy. It is proposed that these simple NNMs can be up to this task. 
More work needs to be done, however, to ensure that these type of surrogate models do not introduce excessive 
uncertainty into an already uncertain predictive scheme. This will be a subject of subsequent work.
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