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What is the gut mycobiota and why should we care?

Throughout our lives, humans are exposed to diverse microbes that impact the development

and function of our immune system. As an immense and absorptive mucosal surface exposed

to the external environment, the gastrointestinal (GI) tract is a major interface in which these

immunogenic interactions occur. Human subject studies have linked disruption of the intesti-

nal bacterial community to a variety of disease conditions, and experimental models have

helped us interpret these findings by elucidating mechanisms by which bacteria evoke pro- or

anti-inflammatory responses through host cells and receptors. More recent studies are begin-

ning to define the impact of nonbacterial agents in the gut such as fungi.

The collection of fungi present in the GI tract is referred to as the gut mycobiota and can be

considered part of the larger community of microbiota and meiofauna inhabitants consisting

of bacteria, archaea, viruses, protozoa, and helminths. Although relatively low in abundance

compared with bacteria, fungi are ubiquitous colonizers with a large role in the developmental

succession of the infant microbiota [1]. Genera of fungi in the human gut include Candida,

Saccharomyces, Aspergillus, and Malassezia. However, at least some of the fungi routinely

detected in the human gut are transient passengers ingested with food [2]. Stable colonization

may require adaptation to the host GI tract, such as evasion of antibody responses and the abil-

ity to switch between yeast and hyphal cell morphology [3–5].

Early-life exposure to fungi is associated with reduced prevalence of wheezing and asthma

later in childhood [6]. Also, alterations in the abundance of fungi and colonization by particu-

lar strains, such as those that produce toxins at high levels, are linked with susceptibility to

immune-mediated disorders, most notably inflammatory bowel disease (IBD) [7–10]. Medical

interventions that disrupt the balanced coexistence of intestinal fungi and bacteria, such as

allogeneic hematopoietic cell transplantation, can lead to disastrous health consequences for

the host [11]. These observations reveal the existence of a consequential symbiotic relationship

with a community of intestinal fungi.

What local responses are triggered during intestinal colonization

by fungi?

Numerous mechanisms restrict the ability of fungi to establish invasive infections or diseases

in the GI tract. In addition to Toll-like receptors (TLRs) and nucleotide oligomerization
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domain (NODAU : PleasenotethatNODhasbeenfullyspelledasnucleotideoligomerizationdomainatitsfirstmentioninthesentenceNumerousmechanismsrestricttheabilityoffungitoestablishinvasive:::Pleasecorrectifnecessary:)-like receptors (NLRs) well known in the innate immunity field, pattern-recog-

nition C-type lectin receptors (CLRs) play a central role in fungal recognition. CLRs Dectin-1,

Dectin-2, and Mincle activate Spleen tyrosine kinase (Syk) upon binding carbohydrate poly-

mers of the fungal cell wall such as β-glucan, mannans, and chitin, trigger signaling pathways

leading to cytokine production, phagocytosis, and other effector functions. In the gut,

CX3CR1+ mononuclear phagocytes (MNPs) highly express CLRs and downstream signaling

mediators and, following recognition of fungi, migrate to the draining lymph nodes to induce

the differentiation of naïve T cells into T helper 17 (Th17) cells and production of antifungal

antibodies [12]. Some fungi produce gliotoxin and other metabolic by-products that are toxic

to host cells. Macrophages in the colon extend balloon-like protrusions into the lumen that

absorb fluids containing these mycotoxins to prevent their hazardous uptake by the epithelium

[13]. These processes act in concert to limit fungal overgrowth, avoid mycobiota dysbiosis, and

prevent inflammatory damage.

Does colonization by intestinal fungi contribute to the normal

development of the immune system?

Laboratory mice are broadly used for studying how the microbiota contributes to the matura-

tion and function of the immune system. However, there is growing evidence that the limited

microbial exposure experienced by laboratory mice kept in ultra-hygienic specific pathogen-

free (SPF) facilities leads to a less mature immune system when compared with free-living

mammals such as humans. Laboratory mice exposed to feral or pet store mice, also referred to

as “dirty” mice, better recapitulate observations made in humans in models of infectious dis-

ease, colorectal cancer, and pharmaceutical interventions [14–17]. In these experiments,

immune maturation is associated with exposure to disease-causing transmissible agents (i.e.,

pathogens), especially viruses and parasites. Do fungi contribute to maturation of the immune

system?

Laboratory mice that experience a seminatural environment through release into an out-

door enclosure facility, a process referred to as “rewilding,” display >100-fold increases in fun-

gal burden [18]. In this outdoor enclosure, the zinced iron walls with electric fencing excludes

predators and rodents harboring pathogens, while allowing exposure to natural soil, vegeta-

tion, insects, and weather (Fig 1). As such, rewilded laboratory mice are exposed to environ-

mental microbes (i.e., microbes acquired from the environment rather than through

horizontal transfer from another rodent) but remain seronegative for pathogens excluded

from SPF facilities. The fungal mycobiota of rewilded mice resembles wild mice [16] and is

characterized by increased diversity and acquisition of Ascomycota phylum members, espe-

cially Aspergillus species. In addition to exhibiting hallmarks of increased lymphocyte differen-

tiation and cytokine production, rewilded mice display a striking expansion of granulocytes, a

group of myeloid lineage white blood cells such as neutrophils [18,19]. Granulocyte numbers

in the blood correlate with fungal burden, and transferring fungi isolated from the feces of

rewilded mice into laboratory mice reproduces the increase in peripheral granulocytes. Simi-

larly, colonizing the intestines of laboratory mice with Candida albicans leads to an increase in

circulating granulocytes, and reducing fungal burden with the antifungal drug fluconazole

leads to a corresponding decrease in granulocytes. Hence, fungi in the natural environment

contribute to the composition of circulating immune cells.

It is possible that rewilded mice represent an intermediary condition of microbial exposure

occupying a state in between SPF and feral mice. Rather than a binary status of “clean versus

dirty” or “naïve versus exposed,” immune maturation induced by microbes likely exists in a

continuum. Humans display interindividual differences in their history of infections.
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Incorporating mouse models with different degrees of microbial exposure including fungi

may help capture some of this diversity.

In what other ways does intestinal colonization by fungi affect

physiology?

Human Th17 cells reactive to gut-resident C. albicans are cross-reactive with airborne fungi

[20], and in mice, this Th17 response protects against invasive bacterial and fungal infections

[21,22]. However, C. albicans strains recovered from the intestines of IBD patients display

high cytotoxicity and induce greater production of the inflammatory cytokine IL-1β from

macrophages compared with non-IBD isolates [7], highlighting the fine line between beneficial

and adverse immune reactions to fungal colonization. Adverse consequences of an altered gut

mycobiota are not limited to the GI tract. In mouse models of allergic airway inflammation,

administration of antimicrobials that cause overgrowth of intestinal fungi can exacerbate dis-

ease through multiple mechanisms, including increasing prostaglandin E2 (PGE2) levels that

alter the polarity of lung macrophages and local activation of CX3CR1+ MNPs that promote

long-distance eosinophil infiltration [23,24]. Alteration of gut mycobiota composition and

burden are also linked to alcoholic hepatitis through the translocation of β-glucan into sys-

temic circulation [25]. Another study found a positive correlation between alcoholic hepatitis

and fecal candidalysin, an exotoxin secreted by C. albicans [26]. Lastly, systemic IL-17A

induced by mucosal fungi acts on neurons to regulate social behavior in mice, demonstrating

how the gut mycobiota can contribute to the gut–brain axis [27].

Can we improve disease models by incorporating intestinal fungi?

How the gut mycobiota influences the host may be useful to consider when attempting to

model disease events in laboratory mice because intestinal fungi are generally low in abun-

dance or undetectable by culturing methods in mice bred in SPF facilities. For example, blood

neutrophil levels are lower in laboratory mice than in humans. As a major phagocyte

Fig 1. Free-range laboratory mice. (A) A close-up view of a wedge in the Stony Ford outdoor enclosure facility.

Individual wedges contain 2 watering stations and a feeding station (yellow star) supplied with the same mouse chow

that laboratory mice receive in the institutional vivarium. (B) During the process of rewilding, adult C57BL/6J mice

raised in a specific pathogen-free (SPF) facility are introduced into the enclosure where they are exposed to fungi in the

environment as they explore their surroundings. Photo courtesy of Christina B. Hansen and Andrea Graham, Princeton
University.

https://doi.org/10.1371/journal.ppat.1010841.g001
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population and first line defenders during infections, this discrepancy may confound attempts

to fully utilize the mouse model to study immunity. Recent evidence highlights a previously

unappreciated heterogeneity of neutrophils, especially mature neutrophils in the periphery,

which may be key for their function during chronic conditions, such as cardiovascular inflam-

mation [28]. The diversity of neutrophils was revealed by single-cell RNA sequencing analysis,

which identified an expanded subset enriched in the expression of interferon (IFNAU : PleasenotethatIFNhasbeenfullyspelledasinterferonatitsfirstmentioninthesentenceThediversityofneutrophilswasrevealedbysingle � cellRNA:::Pleasecorrectifnecessary:)-stimulated

genes during bacterial infection [29]. In addition to increasing the number of circulating neu-

trophils, does GI colonization by fungi impact neutrophil maturation and function?

While colonizing laboratory mice with a genetically tractable model fungus represents an

accessible reductionist approach to address these types of questions, it would be highly infor-

mative to fully characterize rewilded mice, which display alterations in abundance and compo-

sition of both the gut mycobiota and bacterial microbiota. Other experimental systems add

another level of complexity by introducing viruses, which have broad effects on the mucosal

immune system [30,31]. Knowledge gained from comparing different gradations of microbial

exposure will better define the relative contribution of intestinal fungi to immunity and may

help us improve the mouse model for investigating the biology of free-living mammals.
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