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A B S T R A C T

Bacterial biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa pose significant challenges in 
treating cystic fibrosis (CF) airway infections due to their resistance to antibiotics. New therapeutic approaches 
are urgently needed to treat these chronic infections. This study aimed to investigate the antibiofilm potential of 
various plant extracts, specifically targeting mucoid and small colony variants of P. aeruginosa and S. aureus and 
strains. Moreover, it aimed to gain insights into the mechanisms of action and the potential phytochemicals 
responsible for antibiofilm activity. Solid-liquid extractions were performed on seven biomasses using water and 
ethanol (70 and 96 %) under controlled conditions, resulting in 21 distinct plant extracts. These extracts were 
evaluated for extraction yield, antioxidant activity, phenolic content, chemical composition by HPLC-TOF-MS, 
and antibiofilm activity using a 96-well plate assay, followed by crystal violet staining, bacterial adhesion 
assessment, and brightfield microscopy. Our findings revealed that aqueous extracts exhibited the highest in-
hibition of biofilm formation, with cinnamon bark and moringa seeds showing strong antibiofilm activity against 
both bacterial species. Brightfield microscopy confirmed that these extracts effectively inhibited biofilm for-
mation. Chemical analysis identified key bioactive compounds, including moringin, benzaldehyde, coumarin, 
and quinic acid, which likely contribute to the observed antibiofilm effects. Recognizing that the antibiofilm 
properties of moringin, a common compound in both moringa seed and cinnamon bark extracts, remain 
underexplored, we conducted potential target identification via PharmMapper and molecular docking analyses 
to provide a foundation for future research. Computational analyses indicated that moringin might inhibit 
aspartate-semialdehyde dehydrogenase in P. aeruginosa and potentially interact with an unknown target in 
S. aureus. In conclusion, moringa seed and cinnamon bark extracts demonstrated significant potential for 
developing new therapies targeting biofilm-associated infections in CF. Further studies are needed to validate the 
computational predictions, identify the bacterial targets, and elucidate the precise mechanisms behind mor-
ingin’s antibiofilm activity, which is likely the potential key contributor to the observed activity of the moringa 
and cinnamon bark extracts.

1. Introduction

Bacterial infections are a major contributor to the decline in lung 
function, respiratory failure, and premature death of cystic fibrosis (CF) 
patients. CF is a genetic disorder characterized by severe airway 

complications, leading to the accumulation of thick and viscous mucus, 
which creates a propitious environment for the development of respi-
ratory chronic infections [1,2]. Staphylococcus aureus is one of the first 
pathogens to colonize the airways of CF patients, with a prevalence 
reaching approximately 75 % in children aged 6–17 years [3]. Mean-
while, Pseudomonas aeruginosa is currently considered the most relevant 
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pathogenic agent responsible for chronic infection development, 
decreased quality of life, long hospitalizations, and ultimately the high 
number of deaths [4–6].

Biofilm formation plays a central role in the long-term persistence 
and resistance of both S. aureus and P. aeruginosa. Biofilms provide 
multifactorial mechanisms that contribute to antibiotic resistance, 
including restricted penetration of antibiotics through the matrix, slow 
growth of bacteria due to nutritional constraints and restricted oxygen 
penetration, quorum sensing (QS), expression of biofilm-specific genes, 
and the presence of persister cells [2,6,7]. Additionally, biofilms facili-
tate interactions between bacterial species in CF lungs, which can 
enhance resistance to antibiotics through coordinated activities [8,9]. 
Depending on the age, 40–95 % of CF patients are coinfected with 
P. aeruginosa and S. aureus [3], and these coinfections often result in 
more severe effects on lung function and poorer clinical prognosis 
compared to mono-infections, which explain the biofilm relevance in CF 
disease [10].

A particularly challenging aspect of CF-related infections is the 
presence of small colony variants (SCV) and the mucoid phenotype. SCV 
of S. aureus and P. aeruginosa are slow-growing populations that exhibit 
increased resistance to antibiotics and immune response due to their 
altered metabolism, ability to survive under the nutrient-depleted and 
anaerobic conditions of CF lungs, and intracellular survival [11–14]. 
These adaptations allow SCV to evade conventional therapies, contrib-
uting to chronic infection and the progressive decline in lung function 
[12,14]. Similarly, the mucoid phenotype of P. aeruginosa, which is 
characterized by excessive alginate production, an exopolysaccharide 
that creates a protective barrier around the bacteria, is strongly linked to 
chronic infections and antibiotic resistance. This alginate matrix en-
hances biofilm formation, complicating treatment and resulting in more 
severe lung damage [15–17].

Over the past decades, therapeutic advancements, such as Cystic 
Fibrosis Transmembrane Conductance Regulator (CFTR) modulators 
that target the CFTR protein responsible for regulating chloride and 
sodium ion transport across cell membranes, and mucoactive drugs have 
significantly increased the survival of CF patients, with a median age at 
death rising to 36.9 years in 2023 [18–21]. Although these drugs have 
notably improved disease management [19,20], they have no reported 
effect on bacterial infections. Antibiotics remain the cornerstone of CF 
treatment, however, they are not specifically designed to target biofilms, 
underscoring the pressing need for compounds in CF therapeutic re-
gimes that can alter the physiological state of antibiotic-tolerant biofilm 
cells to enhance antibiotic efficacy [22].

Plants have shown great potential as therapeutic agents, offering 
anti-inflammatory, anticancer, antioxidant, and antimicrobial proper-
ties. They have been a valuable source in providing chemical architec-
tures for the drug discovery pipeline of antibiofilm drugs [23–25]. For 

instance, Camellia sinensis (L.) Kuntze (tea plant) was shown to reduce 
P. aeruginosa biofilm biomass and weaken biofilm structure, while also 
reducing the expression of several virulence factors [26]. Also, the seeds 
of Capsicum baccatum var. pendulum (Willd.) Eshbaugh (red pepper) 
interfered with P. aeruginosa bacterial adhesion to the surface and only 
allowed the formation of smaller cell clusters without biofilm matrix 
[27]. Regarding S. aureus, both Melaleuca alternifolia (Maiden & Betche) 
Cheel (tea tree) and leaves of Duabanga grandiflora (Roxb. Ex DC.) Walp. 
(Lamphu Tree) reduced the bacterial attachment to the surface, leading 
to the formation of weak biofilms, with tea tree being able to target 
methicillin-resistant Staphylococcus aureus (MRSA) [28,29]. A water 
extract of Artemisia princeps Pamp. (mugwort) also showed activity 
against MRSA inhibiting biofilm formation and the expression of some 
virulence genes, including mecA, sea, agrA, and sarA involved in the 
biofilm formation [30].

Plant extracts are complex mixtures of a variety of compounds, such 
as proteins, carbohydrates, lipids, and secondary metabolites. The 
antibiofilm activity of several plant extracts is often attributed to their 
secondary metabolites, or phytochemicals, including phenolics. Plant 
extracts rich in phenolic compounds have shown the ability to inhibit 
biofilms by different mechanisms; including reducing bacterial viru-
lence [31], interfering with quorum-sensing [32] or disrupting mature 
biofilms [33].

Despite extensive research into antibiofilm drug discovery, no 
effective treatment specifically targeting biofilms in CF lungs currently 
exists, and antibiofilm agents are not yet part of standard CF therapeutic 
regimes. Developing plant-based antibiofilm drugs to prevent biofilm 
formation remains a significant challenge, representing a novel and 
promising avenue in drug discovery and development. To the best of our 
knowledge, this study is the first to investigate the antibiofilm activity of 
plant extracts specifically against mucoid and SCV strains of 
P. aeruginosa, and S. aureus. The objective of this study is to identify 
potent candidate extracts, elucidate their mechanism of action and 
identify phytochemicals responsible for antibiofilm activity, with the 
potential to progress these findings into drug discovery and develop-
ment for CF treatment. The selected plants, eucalyptus (Eucalyptus 
globulus Labill.), broom flowers (Cytisus scoparius (L.) Link), pine (Pinus 
pinaster Aiton), moringa (Moringa oleifera Lam.), cinnamon (Cinnamo-
mum cassia (L.) J.Presl) and lemongrass (Cymbopogon citratus (DC.) 
Stapf), were chosen based on their documented antimicrobial and 
antioxidant properties, as well as their known antibiofilm activity 
against bacteria [25,34–36].

2. Materials and methods

2.1. Plant material

Eucalyptus leaves (Eucalyptus globulus Labill.) and broom flowers 
(Cytisus scoparius (L.) Link) were collected in Braga, Portugal, in 
September 2021 and in April 2022, respectively. Pine bark (Pinus 
pinaster Aiton) was collected in Ponte de Lima, Portugal, in April 2019. 
Moringa seeds and leaves (Moringa oleifera Lam.) were collected in 
Ceará, Brazil, in December 2017. Cinnamon bark (Cinnamomum cassia 
(L.) J.Presl) and lemongrass (Cymbopogon citratus (DC.) Stapf) were 
purchased from a local supermarket. The plant parts were washed, dried 
and milled to a fine powder.

2.2. Extractions

Solid-liquid extractions were performed in a water bath at 70 ◦C and 
150 rpm for 1 h, using different solvents aiming at obtaining extracts 
rich in compounds with different polarities: water, ethanol 70 % (v/v) 
(EtOH70) or ethanol 96 % (v/v) (EtOH96), in triplicate. The extractions 
used a solid load of 5 % (2 g of dry plant biomass in 40 mL of solvent). 
After the extraction process, the product was filtered under vacuum. 
Liquid extracts were then analysed to determine the extraction yield and 
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ASADH aspartate-semialdehyde dehydrogenase
CF Cystic fibrosis
CFU colony forming unit
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DMSO Dimethyl sulfoxide
DPPH 2,2-diphenyl-1-picrylhydrazyl
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FRAP Ferric Reducing Antioxidant Power
MRSA methicillin-resistant Staphylococcus aureus
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RMSD root-mean-square deviation
SEB Staphylococcus aureus enterotoxin B
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the extract concentration, antioxidant activity, and total phenolic con-
tent. The remaining extracts were stored at − 20 ◦C until further chem-
ical characterization and microbiology assays.

2.3. Extraction yield

The concentration of each extract was determined gravimetrically. 
Specifically, 1 mL of extract was dried overnight at 105 ◦C and the 
weight of the dry extract was measured. The test was made in triplicate. 
The extraction yield (expressed in %) was calculated as shown in 
Equation (1): 

Extraction yield (%) =
dried extract (g)

initial liquid extract (g)
× 100 (1) 

2.4. Antioxidant activity

2.4.1. Ferric Reducing Antioxidant Power
Antioxidant activity was determined using the Ferric Reducing 

Antioxidant Power (FRAP) assay [37]. 6-Hidroxy-2,5,7,8-tetra-methyl-
chromone-2-carboxylic acid (Trolox), prepared in methanol, was used 
as standard. The 2,4,6-Tripyridyl-s-Triazine solution (TPTZ) with 10 mM 
was prepared in 40 mM HCl and the ferric chloride solution at 20 mM 
was prepared in water. The FRAP working solution was prepared by 
mixing 10-vol of acetate buffer at 300 mM (pH 3.6) with 1-vol of TPTZ 
and 1-vol of ferric chloride. The mixture was composed of 20 μL of liquid 
extracts resulting from each extraction and 280 μL FRAP working so-
lution. The mixture was incubated at 37 ◦C for 30 min, protected from 
light, and the absorbance was measured at 595 nm. Antioxidant activity 
was expressed as milligrams of Trolox equivalent per milligram of dry 
extract (mg TEAC/mg extract). Analyses were performed in triplicate.

2.4.2. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity
Antioxidant activity was also determined by the 2,2-diphenyl-1-pic-

rylhydrazyl (DPPH) radical scavenging assay [38]. Trolox, prepared in 
methanol, was used as standard. The mixture was composed of 20 μL of 
liquid extracts resulting from each extraction and 180 μL DPPH solution 
(150 μM, dissolved in 80 % methanol). The mixture was incubated at 
room temperature for 30 min, protected from light, and the absorbance 
was measured at 515 nm. DPPH radical scavenger activity was calcu-
lated as shown in Equation (2): 

% inhibition =
Ac − As

Ac
× 100 (2) 

where Ac is absorbance of control and As is absorbance of sample. Re-
sults were expressed as milligrams of Trolox equivalent per milligram of 
dry extract (mg TEAC/mg extract). Analyses were performed in 
triplicate.

2.5. Total phenolic content

Total phenolic content was determined according to the Folin- 
Ciocalteu method [39]. The reaction mixture was composed of 20 μL 
of liquid extract resulting from each extraction, 100 μL Folin-Ciocalteu 
reagent 10 % (1:10 in water) and 80 μL of sodium carbonate 75 g/L. 
The mixture was incubated at 42 ◦C for 30 min, protected from light. The 
absorbance was measured at 750 nm using a microplate reader. Gallic 
acid was used as standard. Total phenolic content was expressed as 
milligrams of gallic acid equivalents per milligrams of extract (mg 
GAE/mg extract), and phenolic extraction yield was expressed as mil-
ligrams of gallic acid equivalents per gram of dry matrix (mg GAE/g 
matrix). Analyses were performed in triplicate.

2.6. HPLC-TOF-MS

An exploratory identification of phytochemicals compounds 

recovered was performed using high-performance liquid chromatog-
raphy (HPLC) time-of-flight mass spectrometry (HPLC-TOF-MS). The 
plant extracts were injected into a ZORBAX Eclipse XDB-C18 fast reso-
lution HD (2.1 × 100 mm 1.8 μm de Agilent), and the HPLC separation 
was performed using an Elute HPLC from Bruker Daltonics. The mobile 
phases used were 0.1 % formic acid in water (solvent A) and acidified 
acetonitrile with 0.1 % formic acid (solvent B), with a flow rate of 0.4 
mL/min. The linear gradient was as follows: 2 % solvent B over 2 min, 2 
%–30 % solvent B over 13 min, 30 %–100 % solvent B over 2 min, 100 % 
solvent B over 4 min, 100 %–2 % solvent B over 1 min, and 2 % solvent B 
isocratically for 2 min. An ESI source created ions in negative and pos-
itive ion mode. The operating circumstances were as follows: 3000 V 
capillary voltage, 500 V end plate offset, 8.0 L/min dry gas, 2 bar 
nebulizer pressure, and a dry heater set to 220 ◦C. Metabolite identifi-
cation was based on reliable mass data, isotopic pattern matching 
(mSigma value), retention duration (where a standard was provided), 
and substances reported in literature.

2.7. Bacterial strains and culture conditions

The antibiofilm activity of the extracts was determined using two 
strains of S. aureus including ATCC 25923 and a CF clinical isolate with 
SCV phenotype, named SA-1 and SA-SCV, respectively. Additionally, 
three P. aeruginosa strains were included: two CF clinical isolates, rep-
resenting a mucoid phenotype and a SCV phenotype, named PA-Muc 
and PA-SCV respectively, and a non-CF isolate named PAI. The clinical 
isolates used in this study were generously provided by various Portu-
guese Hospitals. These strains were selected based on their phenotypic 
characteristics to represent the variety of strains commonly isolated 
from CF patients. Bacteria were routinely cultured on Tryptic Soy Broth 
(TSB, Liofilchem) or Tryptic Soy Agar (TSA, Liofilchem) at 37 ◦C. All 
strains were preserved in cryovials (Nalgene) at − 80 ± 2 ◦C. Prior to 
each experiment, bacterial cells were grown on TSA plates overnight at 
37 ◦C.

2.8. Biofilm formation inhibition assay

Serial concentrations of plant extracts were tested in 96-well mi-
crotiter plates with flat bottoms (Orange) using TSB, with 100 μL of 
extracts in each well. For the ethanolic and hydroethanolic extracts, 
before the serial dilutions, the solvent was first evaporated using ni-
trogen and then the extract was dissolved in 5 % of dimethyl sulfoxide 
(DMSO). Overnight inocula of each bacteria strain were washed twice in 
sterile water by centrifugation (9000 g, 5 min) and further serial diluted 
in sterile water. The cell suspensions were added to 96-well microtiter 
plates (100 μL per well) to obtain a final concentration of 1 × 107 CFU/ 
mL. The plate was then incubated for 24 h at 37 ◦C and 120 rpm to allow 
biofilm formation. After 24 h of growth, planktonic cells (liquid content 
of the wells) were removed, and each well was washed twice with 
distilled water. Biofilm formation was determined using the crystal vi-
olet (CV) method [40]. 200 μL of methanol was added to each well to fix 
the biofilm for 15 min. After the wells dried out, CV (1 %) was added to 
dye biofilms for 5 min and washed twice with distilled water. 200 μL of 
glacial acetic acid (33 %) was added and mixed (pipette up and down) 
with CV retained by biofilm biomass. The absorbance was measured at 
570 nm using a microplate reader. Biofilm inhibition was calculated as 
shown in Equation (3)

% inhibition =
Au − Ae

Au
× 100 (3) 

where Au is the absorbance of untreated biofilm and Ae is the absor-
bance of biofilm treated with extract. Analyses were performed, at least 
three times and the results are expressed in percentage of biofilm 
inhibition.
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2.9. Assessment of bacterial adhesion

The viability of P. aeruginosa and S. aureus cells adhered after the 
application of plant extracts was determined through colony-forming 
unit (CFU). The formation of biofilm was performed in 96-well plates 
flat bottom (Orange) as described in section 2.8. After 24 h of growth, 
planktonic cells were removed, and each well was washed twice with 
distilled water. 200 μL of distilled water was added to each well and the 
plate placed on an ultrasonic water bath for 10 min to release the biofilm 
cells from the well surface as previously optimized [41]. The content of 
five wells was transferred to a microcentrifuge tube to make up a volume 
of 1 mL and vortexed to homogenise the cell suspensions. Afterwards, 
the cell suspensions were serially diluted and plated on TSA to deter-
mine the number of culturable cells adhered to the wells. After overnight 
growth at 37 ◦C, CFUs were counted. Analyses were performed in trip-
licate and the results were expressed as log10 CFU per volume (mL).

2.10. Assessment of antibiofilm activity by brightfield microscopy

Brightfield microscopic assessment of all bacterial biofilms was 
accomplished to investigate the antibiofilm activity. The methodology 
described in section 2.8 was slightly altered to allow the biofilm for-
mation on a coverslip. Briefly, a plastic coverslip (Thermanox) was 
placed on the bottom of wells in a 24-well plate and 1 mL of the selected 
concentration of each extract was added to the well on top of the 
coverslip. Further, 1 mL of bacterial suspension from overnight inocula 
was added to the wells to make a total volume of 2 mL and a final 
concentration of 1 × 107 CFU/mL. The plate was incubated for 24 h at 
37 ◦C and 120 rpm to allow biofilm formation. After 24 h growth, the 
well liquid content was removed, leaving the coverslip in place, and 
each well was washed twice with distilled water. The coverslip was 
stained using the CV method as described previously with slight alter-
ations. 500 μL of methanol was added to each well to fix the biofilm to 
the coverslip and after 15 min, methanol was removed. After the cov-
erslips dried out, 500 μL of CV reagent (1 %) was added to dye the 
biofilm for 5 min. The excess stain was washed off using distilled water, 
and the coverslip was placed on a microscope glass slide to observe the 
biofilms under a brightfield microscope (10× magnification) (Olympus 
BX51TF).

2.11. Targets prediction

Putative targets of the most abundant phytochemical, moringin, 
were predicted using PharmMapper [42]. The parameters set in 
PharmMapper included a Maximum of 300 Generated Conformations 
and selecting ‘all targets’ option [43,44]. The results were ranked by 
normalized fit-score.

2.12. Molecular docking

RCSB-Protein Data Bank [45] was used to obtain the 
three-dimensional (3D) structure of proteins from P. aeruginosa and 
S. aureus indicated by PharmMapper. The 3D structure of the moringin 
was obtained from PubChem (ID 153557) [46] in.sdf format. The pro-
tein structure was pre-processed using the protein preparation wizard, 
which involved adding the missing residues in the crystal structure and 
removing the water molecules surrounding the receptor. Moringin was 
individually docked with the two proteins using the molecular docking 
software AutoDock 4.2.6 [47]. The docking procedure followed previ-
ously established protocols, with a grid size configured for blind dock-
ing. The grid box was set to 126 x 126 x 126 for x, y and z axis, 
respectively, using Autogrid program in such a way that encompass the 
entire molecule of moringin. Docking simulation were carried out using 
the Lamarckian genetic algorithm with default parameters. The docking 
protocol included 100 different runs (RMSD tolerance of 2.0 Å) with a 
population size of 150 and a maximum number of evaluations of 25 000 

000 (set to ‘long’). After each docking calculation, the generated docked 
conformations were ranked based on predicted binding energy. The best 
energy conformation of the moringin (ligand)-protein complex and 
orientation of the ligand at the binding site were analysed using USCF 
Chimera 1.8 (RBVI, USA) and Biovia Discovery Studio [48].

2.13. Statistical analysis

All data was analysed using GraphPad Prism software package 
(GraphPad Software version 8). Statistical analysis was carried out by 
ANOVA with Tukey’s multiple comparison. Differences were considered 
statistically significant at p < 0.05.

3. Results

3.1. Extraction yield, antioxidant activity and phenolic content

This study was designed to obtain a diverse range of extracts from six 
plants, using solvents with varying polarities (water > EtOH70 >
EtOH96) to maximize the potential for identifying a potent antibiofilm 
plant extract. Extracts with higher phenolic content often exhibit greater 
antioxidant activity, which can correlate with enhanced antibiofilm ef-
fects. Before evaluating antibiofilm activity, the effects of the extraction 
procedures on extraction yield, antioxidant activity, and phenolic con-
tent were analysed (Table 1).

Eucalyptus leaf extracts showed the highest phenolic yields when 
extracted with water and EtOH70, but lower yields with EtOH96. 
Despite the lower total phenolic content of the EtOH96 extract, its 
antioxidant activity was highest along with water and EtOH70 extracts.

Moringa seed extracts showed extremely low phenolic extraction 
yield and content, along with no notable antioxidant activity. Likewise, 
moringa leaf extracts showed low phenolic content and antioxidant 
activity, despite having moderate phenolic yield when extracted with 
water.

Cinnamon bark extracts showed the lowest values across all pa-
rameters when using EtOH96 and showed moderate values of antioxi-
dant activity with the other two solvents. Pine bark extracts displayed 
higher values across all parameters tested when extracted with EtOH70. 
Both broom flower and lemongrass extracts showed low phenolic yield 
and content and antioxidant activity across all solvents, with EtOH70 
performing slightly better in extracting phenolic compounds and anti-
oxidant activity, and overall extraction yield. For lemongrass, though 
the extraction yield was higher when using water or EtOH70, the highest 
phenolic content was obtained when using EtOH96.

Overall, our results indicated that a high phenolic content generally 
corresponds to a high antioxidant activity across all biomasses. How-
ever, some exceptions were observed, suggesting that other components 
in the extracts may be responsible for the antioxidant activity. Addi-
tionally, there was no specific correlation between the antioxidant ac-
tivity and the solvent polarity, as it depended on the biomass being 
extracted.

3.2. Assessment of antibiofilm activity and chemical composition of the 
extracts

The antibiofilm effect of the plant extracts was determined, revealing 
significant variations among the extracts and also between the solvents 
used for extraction. Antibiofilm activity was considered promising if an 
extract inhibited, at least, 75 % of biofilm formation.

Aqueous extracts (Fig. 1) showed superior inhibition rates of biofilm 
formation for all biomasses tested compared to the ethanolic extracts 
(Supplemental material, Figs. S1 and S2). With a few exceptions, 
aqueous extracts showed a dose-dependent inhibitory effect on the 
biofilm formation, achieving higher inhibition rates at the highest con-
centrations. The antibiofilm effect also depended on the strain tested for 
both species.
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The extracts from eucalyptus showed the strongest reduction of 
biofilm formation of S. aureus with approximately 100 % inhibition rate 
at a concentration of 3.9 mg/L (Fig. 1A). The extracts from moringa 
seeds and cinnamon showed the strongest reduction of biofilm forma-
tion in both P. aeruginosa and S. aureus at 3.3 and 1.6 mg/mL, respec-
tively (Fig. 1B and D). Weak biofilm inhibition was observed for the 
extracts of moringa leaves, pine bark, broom flower and lemongrass 
(Fig. 1C–E, F and G).

In an attempt to identify the compounds responsible for the anti-
biofilm activity in aqueous extracts, a HPLC-TOF-MS analysis focused on 
phenolic compounds was conducted. Detailed mass spectra data, 
absorbance spectra, and retention times were compared with the 
available literature. The names, molecular weight, molecular formula, 
mass-to-charge ratio and mSigma of each component in the extracts are 
presented in Table 2.

The moringa seed and leaf extracts were rich in moringin and 
benzaldehyde, with adenosine, hydrocinnamic acid and citric acid also 
in abundance in the extracts. In the extracts from cinnamon bark, 
coumarin, quinic acid, and moringin were the most abundant com-
pounds. A strong presence of moringin was also found in lemongrass 
extract, but kaempherol was the most abundant. The broom flower 
extract was constituted mostly by chrysin, anhydroglycinol and kaem-
pherol, while the eucalyptus extract contained several abundant com-
pounds, including quinic acid, citric acid, 3,4-dihydroxybenzoic acid, 
azelaic acid, kaempherol and pyrogallol. Notably, 6-gingerol was found 
in all extracts analysed.

3.3. Effect on bacterial adhesion and biofilm formation

Based on significant antibiofilm activity against both species, 
aqueous extracts of moringa seeds and cinnamon were selected for 
further investigation to elucidate their potential mechanism of action. 
Their activity against both species is particularly pertinent for CF 
management disease and the reason for their drug discovery studies.

Quantitative assessment of bacterial adhesion to the surface was 
initially performed by CFU counting. Obtained results revealed that the 
surfaces were populated by an increased number of bacterial cells, with 
no differences observed in P. aeruginosa with respect to the control group 
(untreated biofilms) (Fig. 2). However, extracts from moringa seeds and 
cinnamon bark reduced the adhered bacterial load of S. aureus by 3 log.

In situ visualization of surfaces by brightfield microscopy confirmed 
an increased number of bacteria adhered to surfaces and the absence of 
biofilm formation or aggregates. Bacterial cells treated with extracts of 
moringa seeds (Fig. 3F, G, H, I, J) and cinnamon bark (K, L, M, N, O) 
were scattered across the surface, in opposite to the densely packed 
biofilm structures observed in the control group (Fig. 3A–E). It should be 
noted that both extracts, especially moringa, left residues after 24 h that 
deposited on surfaces and were stained by CV (indicated by red arrows 
in Fig. 3), which may be mistaken for biofilms or cell aggregates in 
brightfield microscopy images (Supplemental material, Fig. S3).

3.4. Target prediction and molecular docking

The compound moringin, abundant in both moringa seed and cin-
namon extracts, is likely a key contributor to the antibiofilm properties 
of these extracts. Given the limited research on the antibiofilm proper-
ties of moringin and to lay the groundwork for future research in this 
compound, we sought to identify its potential targets in P. aeruginosa and 
S. aureus and perform molecular docking to assess the plausibility of the 
proposed targets and their interaction with moringin.

To explore its potential molecular targets, the PharmMapper web 
server was used for reverse pharmacophore mapping. PharmMapper 
compared the pharmacophores of the moringin against an in-built 
database of pharmacophore models, providing target information for 
300 proteins along with their fit-score and number of pharmacophoric 
features. Target selection by PharmMapper was further refined using 
protein data retrieved from the RCSB-Protein Data Bank [45] with a 
focus on the proteins relevant to P. aeruginosa and S. aureus. Table 3

Table 1 
Characterization of plant extracts: extraction yield, phenolic yield, phenolic content, FRAP, and DPPH. Values represent mean ± standard deviation of three inde-
pendent experiments. Statistical analysis was performed for the three extracts for each biomass. Identical letters within the same biomass indicate no statistically 
significant differences between extracts. Different letters indicate statistically significant differences (p < 0.05).

Plant 
Solvent

Extraction yield 
(%)

Phenolic yield (mg GAE/g 
matrix)

Total Phenolic Content (mg GAE/mg 
extract)

FRAP (mg TEAC/mg 
extract)

DPPH (mg TEAC/mg 
extract)

Eucalyptus leaves
Water 15.80 ± 0.40a 56.16 ± 9.15a 0.36 ± 0.06a 0.41 ± 0.01a 0.78 ± 0.02a

EtOH70 22.40 ± 1.60 b 60.29 ± 0.67a 0.27 ± 0.01 b 0.16 ± 0.02 b 0.58 ± 0.03 b

EtOH96 9.00 ± 0.40c 8.31 ± 0.57 b 0.09 ± 0.01c 0.31 ± 0.03c 0.78 ± 0.01a

Moringa seeds
Water 13.10 ± 0.70a 1.95 ± 0.16a 0.02 ± 0.001a 0.01 ± 0.001a 0.01 ± 0.001a

EtOH70 9.00 ± 1.00 b 2.03 ± 0.09a 0.02 ± 0.001a 0.01 ± 0.001a 0.01 ± 0.002a

EtOH96 7.50 ± 0.10 b 2.43 ± 0.22a 0.03 ± 0.003a 0.01 ± 0.001a 0.02 ± 0.003a

Moringa leaves
Water 39.67 ± 7.84a 31.15 ± 0.75a 0.08 ± 0.007a 0.12 ± 0.00a 0.07 ± 0.004a

EtOH70 25.00 ± 1.00 b 13.90 ± 0.80 b 0.06 ± 0.004a 0.10 ± 0.01 ab 0.05 ± 0.004a

EtOH96 11.60 ± 1.00c 6.48 ± 0.18c 0.05 ± 0.001a 0.08 ± 0.01 b 0.04 ± 0.006a

Cinnamon bark
Water 6.30 ± 2.70a 11.69 ± 0.36a 0.19 ± 0.01a 0.33 ± 0.03a 0.32 ± 0.05a

EtOH70 14.60 ± 1.41 b 25.30 ± 0.77 b 0.17 ± 0.01a 0.15 ± 0.01 b 0.53 ± 0.001 b

EtOH96 7.00 ± 1.50a 3.91 ± 0.18c 0.06 ± 0.003 b 0.02 ± 0.002c 0.19 ± 0.03c

Pine bark
Water 4.83 ± 1.19a 10.37 ± 0.34a 0.21 ± 0.007a 0.54 ± 0.00a 0.48 ± 0.02a

EtOH70 10.4 ± 0.60 b 28.90 ± 0.51 b 0.29 ± 0.01 b 0.75 ± 0.02 b 0.63 ± 0.21 b

EtOH96 11.8 ± 1.20 b 19.31 ± 0.36c 0.18 ± 0.003a 0.51 ± 0.01c 0.38 ± 0.04c

Broom flowers
Water 18.80 ± 1.20a 5.63 ± 0.08a 0.03 ± 0.001a 0.05 ± 0.001a 0.03 ± 0.003a

EtOH70 25.6 ± 1.40 b 16.35 ± 0.32 b 0.06 ± 0.002 b 0.13 ± 0.01 b 0.07 ± 0.05 b

EtOH96 14.70 ± 0.30a 6.34 ± 0.04a 0.04 ± 0.001 ab 0.11 ± 0.005 b 0.05 ± 0.004 ab

Lemongrass
Water 18.30 ± 2.12a 6.06 ± 0.20a 0.03 ± 0.001a 0.08 ± 0.002a 0.05 ± 0.002 ab

EtOH70 17.15 ± 0.35a 7.75 ± 1.08 ab 0.05 ± 0.002a 0.14 ± 0.004 b 0.07 ± 0.05a

EtOH96 7.50 ± 0.10 b 10.93 ± 2.27 b 0.14 ± 0.03 b 0.08 ± 0.007a 0.03 ± 0.004 b

DPPH: 2,2-diphenyl-1-picrylhydrazyl; FRAP: Ferric Reducing Antioxidant Power; GAE: gallic acid equivalent; TEA: Trolox equivalent.
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shows the potential targets for moringin after filtering for proteins 
associated with these bacterial species. Aspartate-semialdehyde dehy-
drogenase (ASADH, PDB ID: 2HJS) was identified as a potential target 
for P. aeruginosa, while the HLA-DR4 complexed with peptide and SEB 
(Staphylococcus aureus enterotoxin B) (PDB ID: 1D5M) was associated to 
S. aureus. HLA-DR4 is a human MHC class II receptor that binds bacterial 

enterotoxins to mediate immune responses [49,50]. However, as our 
experiments were conducted in vitro using bacterial biofilms without a 
host immune component, the relevance of this complex in our study was 
not supported. Consequently, further computational investigations 
involving HLA-DR4 are presented in the supplemental material.

Molecular docking simulations were conducted to predict the 

Fig. 1. Inhibition of biofilm formation by the aqueous extracts of (A) Eucalyptus leaves, (B) Moringa seeds, (C) Moringa leaves, (D) Cinnamon bark, (E) Pine Bark, 
(F) Broom flowers, (G) Lemongrass. Values represent mean ± standard deviation of, at least, 3 independent experiments. Inhibition of biofilm formation expressed in 
percentage (%) and extracts concentration in mg/mL. Dashed line represents the minimum value for promising antibiofilm activity (75 % of inhibition rate).
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binding modes and affinities of moringin with ASADH and HLA-DR4 
complexed with peptide and SEB, separately. Moringin demonstrated 
varying degrees of interaction with the target proteins (Supplemental 
material, Fig. S4). Cluster analysis indicated that optimal binding con-
formations were obtained in the 33rd and 55th runs, which correspond 
to the lowest binding energy (Table 4), with 2 and 4 conformations 
identified for moringin-ASADH and moringin-HLA-DR4 complexes, 
respectively.

The estimated inhibition constant (Ki) provided further insights into 
the compounds’ inhibitory potency, with lower Ki values indicating 
stronger inhibitory potential. Moringin exhibited significantly low Ki 
values of 8.97 and 99.70 μM, for ASADH and HL4-DR4 complex, 
respectively, suggesting potent inhibitory activity. The docking results 
are visually depicted in Fig. 4 and Fig. S5, illustrating the interactions 

between the moringin and ASADH and HLA-DR4 complex, respectively. 
Moringin formed several hydrogen bonds with the active sites, including 
Ala12, Ala50, Asp25 in ASADH and Thr130, Thr129 in the HLA-DR4 
complex.

4. Discussion

The efficacy of plant-based antibiofilm extracts, fractions or com-
pounds have been extensively studied, however, research focused on 
their effectiveness against mucoid and SCV biofilms formed by 
P. aeruginosa and S. aureus remains limited. Therefore, this study aimed 
to address this gap by evaluating the potential of 21 plant extracts of 
seven different biomasses to inhibit bacterial biofilm formation, chem-
ically characterizing their composition, identifying promising extracts, 
and gaining insights into their mechanism of action. This work paves the 
way for further studies on developing drugs to combat biofilms present 
in CF lungs.

The results indicated substantial variability in antioxidant activity 
across different extracts varying with the solvent and the biomass used. 
Extractions with ethanol 96 % generally yielded lower antioxidant ac-
tivities because phenolic compounds, which are well-known for their 
potential for scavenging free radicals, are typically better extracted with 
hydroethanolic solvents with intermediate ethanol concentration 
(50–80 %) [51]. The antioxidant activity of the phenolic compounds is 
due to the availability of their phenolic hydroxyl groups that can donate 
their electron or hydrogen, thereby forming stable end products [52,53]. 
In this study, a higher extraction yield of phenolic compounds did not 
constantly correspond to a higher content of phenolic compounds in the 
extract, suggesting that other compounds were also co-extracted.

Given different solvents produced extracts with distinct chemical 
compositions, it is not surprising that varying levels of biofilm inhibition 
were observed. Our screening first systematically compared the anti-
biofilm activity of ethanolic versus aqueous extracts. In general, etha-
nolic extracts are described as excellent antibiofilm agents, in opposite 
to the weak activity of aqueous extracts [51,54]. For instance, Alam 
et al. (2020) reported superior antibiofilm activity of ethanolic and 
methanolic extracts of Bergenia ciliata compared to the aqueous extract 
that showed the lowest activity [55]. The increased activity of ethanolic 

Table 2 
Extracts’ composition identified by HPLC-TOF-MS. Values presented as signal intensity: , absent; +, present (<50000); ++, abundant (50000–1000000); +++, highly 
abundant (>1000000).

RT [min] m/z measure mSigma Compound Molecular Formula Mw EL MS ML CB PB LG BF

0.73 191.05577 2.1 Quinic acid C7H12O6 192.06 ++ – ++ +++ ++ ++ +

0.78 191.01942 2.5 Citric acid C6H8O7 192.03 ++ ++ ++ ++ ++ + ++

0.82 153.01873 6.3 3,4-Dihydroxybenzoic acid C7H6O4 154.03 ++ – – + ++ + +

0.83 137.02389 12.4 2,5-Dihydroxybenzaldehyde C7H6O3 138.03 + + + ++ ++ ++ ++

0.83 125.02411 4.6 Pyrogallol C6H6O3 126.03 ++ + – + ++ + +

0.84 109.0294 3.6 1,2-Benzenediol C6H6O2 110.04 + + – + + + +

0.94 187.09729 10.6 Azelaic acid C9H16O4 188.10 ++ ++ + + + ++ ++

20.2 285.0413 13.6 Kaempherol C15H10O6 286.05 ++ – + – + +++ +++

21.53 356.08044 4.6 Moringin C14H17NO5S 311.08 + +++ +++ +++ – ++ +

22.81 193.08657 16.7 Deoxyarbutin C11H14O3 194.09 + + + + + + +

23.06 253.05036 12.8 Anhydroglycinol C15H10O4 254.06 – ++ – + ++ – +++

23.67 293.17572 5.2 6-Gingerol C17H26O4 294.18 ++ ++ ++ ++ ++ ++ ++

24.3 375.13955 17 Erianin C18H22O5 318.15 + + + + + + +

0.77 268.10381 19.6 Adenosine C10H13N5O4 267.10 – ++ ++ + + ++ –
0.81 133.06371 3.8 Hydrocinnamic acid C9H10O2 150.07 + ++ ++ ++ + + +

13.93 147.04363 5.6 Coumarin C9H6O2 146.04 + ++ – +++ + + +

15.32 303.04927 5.8 Quercetin C15H10O7 302.04 + – ++ – – – +

21.53 107.04889 5.6 Benzaldehyde C7H6O 106.04 + +++ +++ ++ + ++ –
21.79 271.05926 10.2 Galangin C15H10O5 270.05 + + – – + + ++

21.96 301.07021 16.7 Kaempferide C16H12O6 300.06 + – + – + + ++

22.67 233.15271 11 Isoalantolactone C15H20O2 232.15 ++ – + + + + +

22.86 203.1791 42.3 alpha-curcumene C15H22 202.17 ++ + – + ++ – ++

23.01 279.23147 15.4 a-Linoleic acid (NMR) C18H30O2 278.22 + + + + ++ + +

23.06 255.06464 7.6 Chrysin C15H10O4 254.06 – + – + + – +++

BF: Broom flowers; CB: Cinnamon bark; EL: Eucalyptus leaves; LG: Lemongrass; ML: Moringa leaves; MS: Moringa seeds; PB: Pine bark.
Mw: molecular weight, m/z: mass to charge ratio, RT: retention time.

Fig. 2. Adhesion of bacterial cells to the surface after treatment with aqueous 
extracts of moringa seeds (3.3 mg/mL) and cinnamon bark (1.6 mg/mL). Values 
represent mean ± standard deviation of 3 independent experiments. The dif-
ferences in log10 CFU/mL of the bacterial growth after the application of the 
extracts were compared to the untreated populations using two-way ANOVA 
followed by Tukey’s multiple comparison. Significant differences are indicated 
by asterisks: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

E. Silva et al.                                                                                                                                                                                                                                    Bioϧlm 9 (2025) 100250 

7 



extracts is often associated with the higher solubility of phenolic com-
pounds in hydroethanolic mixtures, as previously mentioned [56–58]. 
However, our findings did not support this general reported trend. For 
the assayed plants, aqueous extracts outperformed ethanolic extracts in 
antibiofilm activity. Water-based extracts are particularly attractive for 
clinical applications due to the lower toxicity of water compared to 
organic solvents. Similar to our findings, several studies have been 

Fig. 3. Micrographs of bacterial biofilms formed by P. aeruginosa (PAI, PA-Muc and PA-SCV) and S. aureus strains (SA-1 and SA-SCV) on a plastic coverslip visualized 
by brightfield microscopy (at 10× magnification). (A, B, C, D, E) Untreated control, (F, G, H, I, J) treated with 3.3 mg/mL of moringa seeds aqueous extract and (K, 
L, M, N, O) treated with 1.6 mg/mL of cinnamon bark aqueous extract. Red arrows indicate some of the residues left by the extracts. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 3 
Potential P. aeruginosa and S. aureus-related targets of moringin predicted by 
PharmMapper.

PDB 
ID

Protein name Organism No. of 
pharmacophore

Fit- 
score

2HJS aspartate- 
semialdehyde 
dehydrogenase

Pseudomonas 
aeruginosa PAO1

5 2.949

1D5M HLA-DR4 complexed 
with peptide and 
SEBa

Staphylococcus 
aureus

5 2.847

a Staphylococcus aureus enterotoxin B.

Table 4 
Binding energy and interacting active site residues of target proteins with 
moringin.

Ligand Binding 
energy 
(kcal 
mol− 1)

Inhibition 
constant (Ki, 
μM)

Active site 
aminoacids

Interaction 
type

aspartate- 
semialdehyde 
dehydrogenase

− 6.89 8.97 A/ALA.12, A/ 
ALA.50, A/ 
ASP.25 
A/GLY.48, A/ 
PHE.49 
A/GLU.18 
A/VAL.21

Hydrogen 
bond 
Carbon 
hydrogen 
bond 
Pi-anion 
Pi-Alkyl

HLA-DR4 
complexed with 
peptide and 
SEBa

− 5.46 99.70 A/THR.130, 
A/THR.129 
A/ARG.123, 
A/PRO.127 
A/VAL.128

Hydrogen 
bond 
Carbon 
hydrogen 
bond 
Pi-Alkyl

a Staphylococcus aureus enterotoxin B.
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previously reported higher antibiofilm activity for aqueous extracts [27,
59]. For instance, the aqueous extract of the Cochlospermum regium 
flowers showed higher antibiofilm activity against S. aureus than the 
ethanolic extract [59]. The high extraction yield of water can be 
attributed to the solvent capability to dissolve polar molecules, such as 
anthocyanins, tannins, saponins, lectins and polypeptides, which may 
contribute to the extract’s superior antibiofilm activity [60,61].

Among the aqueous extracts tested, moringa seed and cinnamon 
extracts exhibited notable antibiofilm activity against P. aeruginosa and 
S. aureus. This is particularly significant in CF, as these two species are 
frequently co-isolated and their interactions can exacerbate infections 
by increasing biofilm pathogenesis and persistence [41,62]. The ability 
of these extracts to inhibit biofilm formation in both species highlights 
their potential clinical relevance.

Both moringa seeds and cinnamon extracts allowed bacterial adhe-
sion but seemed to discourage the formation of biofilms as no aggregates 
were observed. This finding led to hypothesize that extracts might act on 
inhibition of EPS production and/or QS. Similar mechanisms have been 
reported in other studies, such as downregulation of QS genes and 
reduction of EPS production in P. aeruginosa by Agrimonia pilosa Ledeb. 
[63], and reduction of bacterial attachment to the surface and decreased 
expression of virulence factors that are regulated by QS, such as pyo-
cyanin, pyoverdine and swimming mobility by Camelia sinensis (L.) 
Kuntze [26].

Moringa is a member of the Moringaceae family and most of its parts 
including roots, leaves, seeds have been historically used in folk medi-
cine to help cure several diseases. Various studies have confirmed the 
therapeutic proprieties of moringa, including its antibiofilm activity 
[64–68]. For instance, an aqueous extract of moringa seeds showed 
antibiofilm activity against S. aureus by destroying the structure of 
mature biofilms formed in polyvinyl chloride surfaces [69]. Although 
the moringa extract and the culture medium (milk) used in that study 
differ from our study, similar activity with the aqueous extract of mor-
inga seeds against mucoid and SCV P. aeruginosa and S. aureus was 
found.

Given the promising antibiofilm potential of moringa extract, some 
studies have isolated and tested compounds from moringa seeds. For 
instance, Onsare et al. (2015) reported the antibiofilm activity of fla-
vonoids isolated from the seed coat of moringa against S. aureus, 
P. aeruginosa and Candida albicans [70]. Likewise, a lectin isolated from 
these seeds inhibited biofilm formation in other Gram-negative bacteria 

such as Serratia marcescens and Bacillus spp [71]. In our study, 
HPLC-TOF-MS identified benzaldehyde and moringin as the most 
abundant compounds in the moringa seed extract. The presence of these 
compounds aligns with previous reports [72,73]. Benzaldehyde, an ar-
omatic aldehyde with a benzene ring, has shown both antimicrobial and 
antibiofilm activity against S. aureus, E. coli and P. aeruginosa [74]. 
Leitão et al. (2024) demonstrated that benzaldehyde blocked QS in 
P. aeruginosa and increased its susceptibility to ciprofloxacin [75]. 
Moringin (or [4-(alpha-L-rhamnosyloxy) benzyl isothiocyanate]), an 
isothiocyanate compound derived from glucosinolates, has also shown 
antibacterial activity against S. aureus [76,77] and Listeria mono-
cytogenes [78]. Despite moringin’s higher solubility in ethanol, our 
aqueous extract showed a strong presence of this compound, likely due 
to co-extraction with other compounds. Further, isothiocyanates 
(including moringin) are highly reactive compounds that result from the 
hydrolysis of glucosinolates (e.g., glucomoringin) and can easily bound 
to other molecules that have nucleophiles such as hydroxyl, amino or 
thyol groups. Although moringin is more soluble in ethanol in its free 
form, its extraction from moringa by-products may be possible using 
water under certain conditions. This may be due to various complexes 
formed between various compounds present in this biomass, such as 
polysaccharides and proteins. For instance, Leone et al. reported 18.4 
g/100 g dry weight of carbohydrates and 31 g/100 g dry weight of 
protein [79]. Moringin can easily bound both to polysaccharides and/or 
to proteins and be extracted as a complex. Additionally, moringin seeds 
have a high amount of saponins, that usually mat act as natural sur-
factant and facilitate the extraction of moringin [80]. This may explain 
the strong antibiofilm activity of the aqueous extract of moringa seeds.

Cinnamon, also known as Chinese cinnamon, is an evergreen tree 
commonly found in China and one of the oldest spices in the world. In 
addition to its role as a culinary spice, it has been traditionally used in 
various cultures as a remedy for colds and gastrointestinal problems 
[81]. Cinnamon bark has shown antibiofilm activity against 
Gram-negative bacteria, such as P. aeruginosa, E. coli, Acinetobacter 
baumannii and periodontal pathogens [82–85]. For instance, cinnamon 
oil inhibited biofilm formation in P. aeruginosa, making the bacterial 
cells appear scattered on the surface [84]. Similarly, an ethanolic extract 
reduced EPS and disrupted E. coli biofilm structure, only allowing to 
form scattered microcolonies [85]. However, in our study, antibiofilm 
activity was associated with the aqueous extract of cinnamon rather 
than the ethanolic extract, which may be a result of the extraction 

Fig. 4. Molecular interaction between moringin and aspartate-semialdehyde dehydrogenase type of bonds between the proteins and moringin captured by USCF 
Chimera and Biovia Discovery Studio.
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process. Several bioactive compounds from cinnamon extracts with 
described antibiofilm activity were found in our HPLC-TOF-MS analysis. 
Quinic acid and coumarin were the most abundant compounds, con-
firming the composition found in the literature [86]. Quinic acid has 
been shown to reduce biofilm formation in P. aeruginosa by down-
regulating the QS system [87], while coumarin has been reported as an 
inhibitor of several virulence factors involved in biofilm formation in 
P. aeruginosa [88,89]. Moringin was also detected in the aqueous extract 
of cinnamon. Its increased abundance in the most effective antibiofilm 
extracts, moringa seeds and cinnamon, against both P. aeruginosa and 
S. aureus suggest moringin may play a central role in their antibiofilm 
activity. However, the aqueous extract of moringa leaves, despite having 
a high concentration of moringin, did not show antibiofilm activity. 
These distinct activities among extracts with high moringin content 
might be attributed to moringin interaction with diverse compounds 
present in each of the extracts. For instance, compounds in lower pro-
portions in the moringa leaf extract might exert an antagonistic effect 
inhibiting the antibiofilm activity of moringin. Likewise, compounds 
unique to the extracts of moringa seeds and cinnamon, and absent in 
moringa leaf extract, might be enhancing moringin activity through 
synergistic or additive interactions. Additionally, other components not 
identified in this study, such as proteins or carbohydrates, might also 
influence the moringin bioavailability [90].

To explore if moringin could be responsible for the antibiofilm ac-
tivity, we used PharmMapper to identify potential bacterial targets of 
this compound. PharmMapper is an open web server that employs 
reverse pharmacophore mapping to identify potential drug targets [42]. 
It automatically identifies the optimal mapping poses of the query 
molecule against all pharmacophore models in PharmTargetDB, 
providing a list of the top N best-fitted hits along with target annotations 
and the aligned poses of the respective molecules. In this study, 
PharmMapper identified ASADH and HLA-DR4 complexed with peptide 
and SEB as the main targets in P. aeruginosa and S. aureus, respectively.

ASADH is a crucial enzyme involved in the biosynthesis of essential 
amino acids and metabolites in microorganisms [91,92]. Inhibition of 
ASADH has been proposed as a potential strategy for developing drugs to 
combat multidrug-resistant organisms [93–95]. Since humans and other 
mammals lack a homolog of ASADH and do not rely on the aspartate 
biosynthetic pathway, ASADH represents a particularly promising target 
in microorganisms. However, when microorganisms are deprived of 
essential amino acids, they often activate alternative transport mecha-
nisms to obtain the amino acid from the environment [92], which may 
explain the P. aeruginosa viability after exposure to moringa and cin-
namon extracts. The potential of distinct phytochemicals, such as ros-
marinic acid and curcumin, to inhibit ASADH has been previously 
reported [96].

Molecular docking analysis supported moringin binding to ASADH. 
Notably, proper intermolecular hydrogen bonding interactions were 
observed, which is crucial for stable binding and effective inhibition. 
Moreover, the docking results showed a lower inhibition constant, 
suggesting that moringin exhibits potent inhibitory effects on this target 
protein.

The identification of HLA-DR4 complexed with peptide and SEB as a 
potential target of moringin by PharmMapper suggests a possible 
immunomodulatory activity, which could be particularly relevant in 
complex diseases such CF. However, as our experiments were conducted 
in vitro without host immune components, it is likely that moringin also 
interacts with other bacterial targets that remain unidentified. This 
finding highlights the importance of further investigating moringin’s 
activity against biofilm-associated bacteria to better understand its 
mechanisms of action and therapeutic potential.

In conclusion, our study demonstrated that aqueous extracts from 
moringa seeds and cinnamon bark have significant potential as in-
hibitors of biofilm formation in S. aureus and P. aeruginosa clinical iso-
lates with diversified phenotypes, including SCV and mucoid phenotype. 
The strong antibiofilm activity observed may be attributed to 

compounds in higher proportions such as coumarin, quinic acid, and 
moringin in cinnamon, and benzaldehyde and moringin in moringa 
seeds, based on literature reports. Notably, moringin, a compound 
highly prevalent in both extracts, might play a central role in the 
observed antibiofilm activity. Computational analyses suggested that 
moringin could be a potential inhibitor of aspartate-semialdehyde de-
hydrogenase in P. aeruginosa and potentially interact with an unknown 
target in S. aureus.

Although our findings highlighted that moringin is a promising 
antibiofilm agent against mucoid and SCV P. aeruginosa and S. aureus, 
the current study is limited to computational predictions and in vitro 
screening. Further experimental studies are necessary to validate the 
identified target in P. aeruginosa and identify the specific target in 
S. aureus, elucidate the mechanisms of action, and assess the therapeutic 
potential of moringin in treating biofilm-associated infections. Addi-
tionally, future work should focus on investigating potential synergistic 
or antagonistic interactions among extract components to better un-
derstand the key contributors of plant-based antibiofilm activity.
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