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Abstract: Joint biomarker responses, oxidative stress and membrane systems, were determined
for nano-metal-oxides (nMeO, i.e., nCeO2, nMgO, and nFe3O4) and sulfadiazine (SDZ) exposed
at relevant low concentrations to two freshwater microalgae Scenedesmus obliquus and Chlorella
pyrenoidosa. The impacts of dissolved organic matter (DOM) on the joint biomarker responses were
also investigated. Results indicated that the presence of SDZ significantly decreased the level of
intercellular reactive oxygen species (ROS) in the algal cells exposed to each nMeO. Reduction of cell
membrane permeability (CMP) and mitochondrial membrane potential (MMP) in the algal cells was
observed when the algae were exposed to the mixture of SDZ and the nMeO. The degree of reduction
of the ROS level, CMP, and MMP significantly went down with the addition of DOM to a certain
extent. Changes in cellular oxidative stress and membrane function depended on the types of both
nMeO and algal species. This contribution provides an insight into the hazard assessment of a mixture
consisting of emerging contaminants and DOM, as they can coexist in the aquatic environment.
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1. Introduction

Environmental contaminants in the form of mixtures commonly exist in field-relevant conditions [1,2].
In recent years, the interaction between emerging pollutants, such as engineered nanoparticles
(ENPs) [3–5] and antibiotics [6,7], have drawn a lot of attention due to their potential ecological toxicity.
Upon release or emission, ENPs may interact with antibiotics in the environment, potentially resulting
in a co-exposure of organisms and the occurrence of mixture effects [8–10]. However, current knowledge
about the combined effects of ENPs and antibiotics on ecological species is extremely limited.

Dissolved organic matter (DOM), a ubiquitous abiotic factor, has been demonstrated to play a
vital role in the behavior and effect of ENPs in the aquatic environment [11–16]. Wang et al. [13]
found that DOM alleviated the toxicity of nano-silver to aquatic organisms of different trophic levels.
Zhang et al. [17] also observed that DOM reduced the toxicity of materials of the graphene family to
freshwater microalgae. However, Ye et al. [18] found that DOM and nano-Al2O3 synergistically caused
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cellular responses in freshwater microalgae. Therefore, it is important to take into account the presence
of DOM when co-exposure of ENPs and antibiotics is being studied.

nCeO2, nMgO, and nFe3O4 are versatile nano-metal-oxide (nMeO) ENPs that have been widely
utilized in many fields [19–21]. The importance of evaluating the toxicity of nCeO2 [22,23] and
nFe3O4 [24,25] to ecological species has received extensive attention, but aquatic toxicity data for
nMgO are comparably rare. Sulfadiazine (SDZ) is a frequently detected antibiotic [26]. Understanding
the fate and transport of sulfadiazine in the environment is imperative to its ecological and health
risk assessment [27]. The overall objective of this work was to elucidate the impacts of DOM on the
aquatic toxicity of the three nMeO and SDZ. Two commonly used freshwater algae species Scenedesmus
obliquus [28,29] and Chlorella pyrenoidosa [30,31] were selected as model organisms. The physicochemical
properties of the ENPs in single, binary, and ternary systems were characterized to evaluate their
stability in the test medium. Biochemical assays were performed to determine the algal cellular
oxidative stress and the membrane function responses, firstly by using one ENP and then mixtures, at
relevant low concentrations.

2. Materials and Methods

2.1. Test Materials, Test Medium, and Test Species

nCeO2 (primary size <50 nm), SDZ (purity 98%), and DOM (fulvic acid ≥90%) were purchased
from Aladdin Industrial Co. (Shanghai, China). nMgO (primary size ca. 20 nm) and nFe3O4 (primary
size 3–8 nm) were purchased from PlasmaChem GmbH (Berlin, Germany). Ye et al. [18] described
the chemical structure of the DOM used in this work in a previous study. A total organic carbon
analyzer (Shimadzu Corporation, Kyoto, Japan) was employed to determine the dissolved organic
carbon content of the DOM stock solution. Stock suspensions (5 g/L) of the nMeO were freshly
prepared in ultra-pure water and sonicated for 30 min in a temperature controlled (25 ◦C) KH-3200DE
water-bath sonicator (Kunshan Hechuang Ultrasonic Instrument Co., Kunshan, China) operated at
150 W with 100% energy input. The stock solution of 0.1% v/v SDZ was prepared in analytical
grade dimethylsulfoxide (DMSO). S. obliquus and C. pyrenoidosa were obtained from the Institute of
Hydrobiology of the Chinese Academy of Sciences (Wuhan, China) and aliquots were prepared in the
algae medium [32]. The pH values of all the treatments were adjusted to 7.8 ± 0.2 prior to testing. For
the physicochemical characterizations and toxicity tests, 1 mg/L of nMeO (representing a relevant low
concentration [33,34]) or SDZ and 1 mgC/L of DOM was used.

2.2. Physicochemical Analysis

The particles in the algae medium were characterized by using a transmission electron microscope
(TEM, JOEL 2100f, JOEL Ltd., Tokyo, Japan). The suspensions of nMeO were characterized after being
allowed to settle for 0 and 96 h under the same conditions used in the toxicity tests. A ZetaSizer
(Nano ZS90, Malvern Instruments Ltd., Worcestershire, UK) was applied to measure the zeta-potential
(ZP) and the intensity averaged hydrodynamic diameter (DH) of the nMeO in the algae medium,
based on the phase analysis light scattering techniques and dynamic light scattering, respectively. The
concentration of the dissolved metal ions was measured using an inductively coupled plasma optical
emission spectrometer (Optima 7000DV Perkin Elmer, Waltham, MA, USA), where the detection limits
estimated by calculating the standard deviation of the blank were 20, 20, and 2 µg/L for the elements
Ce, Mg, and Fe, respectively. To obtain the ionic phase, the nMeO suspensions were centrifuged at
15,000 rpm for 30 min at 4 ◦C using a D3024 high-speed micro-centrifuge (Scilogex, Rocky Hill, CT,
USA), and then the supernatant was filtered using a 0.02 µm pore diameter syringe filter (Antop 25,
Whatman).
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2.3. Algae Growth, Reactive Oxygen Species, and Membrane Function Assays

Algal growth inhibition tests were conducted as described in our previous study [35]. Briefly,
the test solutions were inoculated with 3 × 105 (S. obliquus) and 4 × 105 (C. pyrenoidosa) algal cells
mL−1. The algae cells were examined under a microscope to check for culture density and normal
morphology. The algae used for toxicity tests were maintained at 24 ± 1.0 ◦C with a photoperiod of
12 h of light (3000–4000 L) and 12 h of dark in climatic chambers, and were shaken manually three
times a day. After 96 h (S. obliquus) and 72 h (C. pyrenoidosa), the algal cell density measure was used to
calculate the specific growth rate (%).

To measure the intracellular reactive oxygen species (ROS), the 96 h (S. obliquus) and 72 h
(C. pyrenoidosa) incubated algal cell suspensions were centrifuged by using the D3024 high-speed
micro-centrifuge for 10 min at 15,000 rpm and 4 ◦C. After discarding the supernatant, a fluorescent
probe 2’,7’-Dichlorodihydrofluorescein diacetate (DCFH-DA) purchased from Macklin Biochemical
Co., Ltd. (Shanghai, China) at 10 µM was added to incubate with the algal cells for 30 min in the dark at
25 ◦C. Subsequently, the samples were washed three times with the algae medium. When intracellular
ROS generate, the DCFH from the lipase decomposing of the DCFH-DA in the cells transforms into
2’,7’-dichlorofluorescein (DCF), the fluorescence intensity (FI) is then measured and it indicates the
extent of the ROS generation.

Fluorescein diacetate (FDA) and the cationic fluorescent dye rhodamine 123 (Aladdin Industrial Co.)
were employed as fluorescent probes to measure cell membrane permeability (CMP) and mitochondrial
membrane potential (MMP), respectively. Briefly, 96 h (S. obliquus) and 72 h (C. pyrenoidosa) algal cell
suspensions were centrifuged at 15,000 rpm for 10 min at 4 ◦C and were incubated with 10 µM FDA or
10 µM rhodamine 123 in the dark at 25 ◦C for 30 min, followed by three washes with algae medium.
The FI was measured by a fluorescence spectrophotometer (F96PRO, Shanghai Kingdak Scientific
Instrument Co., Ltd., Zhejiang, China) with an excitation wavelength of 485 nm and an emission
wavelength of 530 nm.

All data are expressed as mean ± standard deviation (SD). Statistically significant differences were
determined by the student’s t-test (significance level p < 0.05).

3. Results and Discussion

3.1. Physicochemical Characterizations

The TEM images show the morphology of the studied particles in the single and combined
mixture systems in the algae medium (Figure 1). Analysis of the TEM images indicates that nCeO2

agglomerated intensely and formed irregular shapes. Moreover, nCeO2 showed greater tendency to
agglomerate than the other two particles. nMgO in the single and combined systems were spherical
particles with dispersion uniformity. Compared with nMgO in the single systems, the particles in the
combined systems showed smaller size and increased density. nFe3O4 showed spherical structure
and also agglomerated in the test medium. Furthermore, the presence of SDZ and DOM obviously
alleviated the extent of agglomeration of nFe3O4. Wang et al. [36] also demonstrated that DOM
promoted the suspension of nFe3O4 by hydrophobic interactions.

The changes in ZP and DH for nCeO2, nMgO, and nFe3O4 with time in the algae medium were
measured and the results are shown in Figure 2. The ZP values of the three nMeO were found to be <0,
indicating a negative surface charge upon the particles, which could mean that the nMeO particles were
stabilized by a surface layer of anions from the test medium. It can be observed that the nMeO showed
no obvious changes in the ZP when the particles were suspended in the presence of DMSO and SDZ.
However, the ZP of the nMeO particles in the presence of DOM was more negative than when DOM
was absent. Moreover, the ZP values of the DOM alone treatments were found to be −10.2 ± 0.8 (0 h)
and −11.1 ± 0.8 (96 h), which were generally more positive than the ZP values of the ternary mixtures.
This implies that the DOM effects can be explained by the interaction between DOM and the particles
rather than the DOM only. The enhanced surface charges might induce adsorption of DOM onto
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the surface of the particles [11], suggesting that electrostatic repulsion may be the mechanism for
dispersion stability. Note that the ZP values of nMgO + SDZ + DOM, nFe3O4, nFe3O4 + DMSO, and
nFe3O4 + SDZ systems at 96 h were more positive than their corresponding ZP values at 0 h. This
could mean that Mg2+- or Fe3+-ions released and could have neutralized the negative charges at the
surface of the particles.

Figure 1. TEM images of the particles in the single and combined systems in the algae medium.

It was also found that the presence of DMSO and SDZ had no obvious influence on the DH values
of the nMeO particles (Figure 2). However, the DH values of the particles in the binary mixtures
of nMeO and SDZ decreased to some extent in the presence of DOM. Furthermore, the DH values
decreased when DOM was present in the order nCeO2 > nMgO > nFe3O4, regardless of the time of
incubation. The results of the DH values were in agreement with the TEM analysis. The adsorbed
DOM could act as a polyelectrolyte or surfactant and thus provide steric repulsion [37]. Together,
these findings suggest that the nMeO particles were relatively stable in the single, binary, and ternary
mixtures during the incubation.

In nanotoxicological testing, sonication time affecting the dissolution of nMeO particles should be
considered [38,39]. In the present study, we investigated the dissolution amount of nMeO particles at
the stock suspension concentrations before (0 min) and after 30 min sonication. As shown in Table 1,
there was no significant difference in the dissolved fraction of nMeO between the treatments before
and after sonication. This means that the concentration of dissolved metal species was stable during
the sonication under this study. Pradhan et al. [38] also observed that increasing the sonication time
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had no effect on the fraction passing through the 20 nm filter for nCu. In addition, note that the
dissolved fraction of nFe3O4 in the stock suspension before the sonication was 38.41%, implying that
the dissolved fraction can influence the aquatic behavior and toxicity of nFe3O4.

Figure 2. Zeta-potential (ZP) and hydrodynamic diameter (DH) of the particles in the single and
combined systems in the algae medium (pH = 7.8). Data are means ± SD (n = 3).

Table 1. Dissolved fraction of the nano-metal-oxide (nMeO) particles in the stock suspension
concentrations before (0 min) and after 30 min sonication a.

nMeO
Fraction (%)

0 min 30 min

nCeO2 0.02 ± 0.00 0.03 ± 0.01
nMgO 0.69 ± 0.04 0.81 ± 0.16
nFe3O4 38.41 ± 3.02 34.34 ± 2.75

a Data are means ± SD (n = 2).

3.2. Algal Growth Inhibition Toxicity

Figure 3 depicts the growth rate of S. obliquus after 96 h and C. pyrenoidosa after 72 h of incubation
for all the treatments at the relevant low concentrations used. The treatments with DMSO and SDZ
on their own had no significant inhibition effects on the growth of S. obliquus, while the treatments
with DMSO and SDZ on their own had significant inhibition effects on the growth of C. pyrenoidosa.
Moreover, the DOM alone treatment showed no obvious growth inhibition toxicity to the two algae.

For nCeO2, the single, binary, and ternary mixtures had no significant inhibition effects on the
growth of S. obliquus. The growth rate of C. pyrenoidosa exposed to the nCeO2 alone treatment was
lower than the control, while the growth rates of C. pyrenoidosa exposed to the nCeO2 in the binary
and ternary mixtures were higher than the control. The difference of sensitivity to nCeO2 might
be species-dependent. Moreover, there is no significant difference between the binary and ternary
mixtures. That is to say that the presence of SDZ decreased the growth inhibition toxicity of nCeO2 to
C. pyrenoidosa. A previous study indicated the protective role of nCeO2 in Chlamydomonas reinhardtii
and Phaeodactylum tricornutum preventing the toxicity of antibiotic erythromycin [40].

For the single, binary, and ternary mixtures of nMgO, no significant inhibition of the algal growth
rate was observed. Moreover, the dissolved fractions of nMgO (65 µg/L) showed no growth inhibition
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toxicity to the algae. Aruoja et al. [41] also reported the nontoxic effect of nMgO on a green alga
Pseudokirchneriella subcapitata with a median effect concentration >100 mg/L. For nFe3O4, the treatment
with the particles alone inhibited the growth of the two algae, which was consistent with the study by
Lei et al. [42] on the algal (C. pyrenoidosa) growth inhibition of the particles. Moreover, the dissolved
fractions of nFe3O4 (13 µg/L) showed equivalent growth inhibition toxicity to C. pyrenoidosa, implying
that the dissolved fractions of nFe3O4 might contribute to the toxicity to C. pyrenoidosa. Similar to
nCeO2, the binary and ternary mixtures showed no growth inhibition toxicity to the two algae. Note
that there is a significant difference between the growth inhibition rates of the binary and ternary
mixtures to C. pyrenoidosa. This implies that DOM played an important role in modulating the growth
of C. pyrenoidosa exposed to the binary mixtures of nFe3O4 and SDZ.

Figure 3. Growth rates of S. obliquus and C. pyrenoidosa exposed to the treatments. The different letters
for each species after exposure to the different treatments indicate the significant differences in growth
rates, p < 0.05. Data are means ± SD (n = 3).

3.3. Algal Cellular Oxidative Stress Modulation

Figure 4 shows the relative levels of the ROS generated in the S. obliquus and C. pyrenoidosa cells
exposed to the different treatments. Compared to the control, the DMSO and DOM alone showed no
effect in the levels of ROS in the two algal cells, while the SDZ alone resulted in an observable decrease.
It was observed that nFe3O4 induced a significant increase in the ROS levels of the two algae, which
agrees with the results from Lei et al. [42], where iron-based ENP-induced oxidative stress was the
main toxic mechanism to algal toxicity. The consistent trend indicated that the mixtures of SDZ and
nMeO decreased the ROS levels, irrespective of the particle types. However, the degree of reduction
was comparatively reduced with the addition of DOM. The dissolved fractions of nMgO and nFe3O4

showed no effects on the levels of ROS, which means that no toxicity or oxidative stress was induced
by the dissolved ions. Leung et al. [43] also demonstrated the toxicity of nMgO towards Escherichia
coli bacterial cells without ROS production for partial nMgO samples. We found that SDZ displayed
a protective effect on the algal cells against oxidative stress induced by the particles. Furthermore,
the interaction of the nMeO with co-exposed SDZ and DOM reduced the production of ROS. It is
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undeniable that there are several known limitations of using the fluorescence probe (DCFH-DA),
including failure to detect a specific kind of ROS [44,45]. Further studies are needed to expand and
confirm the definitive ROS using enzyme-based assays.

Figure 4. Relative levels of reactive oxygen species in S. obliquus and C. pyrenoidosa exposed to the
treatments. The different letters for each species after exposure to the different treatments indicate the
significant differences in fluorescence intensity, p < 0.05. Data are means ± SD (n = 3).

3.4. Membrane Function Modulation

The stability of CMP and MMP is beneficial to maintain the normal physiological function of
algal cells [46]. As shown in Figure 5, compared to the control, the DMSO showed no obvious effects
on the CMP, while the SDZ alone significantly decreased the CMP of S. obliquus, and the DOM alone
significantly increased the CMP of S. obliquus. The increase in CMP in the algal cells exposed to DOM
indicates potential increased risks in the uptake of pollutants, while the decrease observed for the SDZ
can be associated with the opposite effect.

For the nCeO2, the ternary mixtures remarkably decreased the CMP of S. obliquus compared to the
individual particles and the binary mixtures, suggesting that the DOM in the ternary mixtures exhibited
a distinct effect compared to the DOM alone. The nCeO2 alone increased the CMP of C. pyrenoidosa,
while the binary and ternary mixtures significantly decreased the CMP of C. pyrenoidosa in comparison
with the control and the alone treatment. Bellio et al. [47] also found that in Escherichia coli the outer
membrane permeability coefficient increases in presence of nCeO2.

For nMgO, the binary mixtures significantly decreased the CMP of S. obliquus compared to
the control, while the ternary mixtures exhibited no effects on S. obliquus. The binary and ternary
mixtures containing the nMgO obviously decreased the CMP of C. pyrenoidosa compared with the
alone treatment. Furthermore, the ternary mixtures contributed more to this decrease in the CMP
of C. pyrenoidosa. This was similarly observed in the CMP of C. pyrenoidosa exposed to the systems
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containing nFe3O4. This indicates that DOM plays an important role in modulating the CMP in the
algal cells exposed to nMeO. In the case of the nFe3O4 alone, the CMP increased more than the control.
The dissolved fraction of nFe3O4 affected the CMP of S. obliquus less than the nFe3O4, implying that
the nFe3O4 particles might contribute to the enhancement of the CMP of S. obliquus. However, there is
no significant difference in the CMP of C. pyrenoidosa between the dissolved fraction of nFe3O4 and the
nFe3O4 alone, suggesting that the dissolved fraction might contribute to the toxicity of the nFe3O4 to
C. pyrenoidosa via disturbing the function of CMP.

Figure 5. Cellular membrane permeability of S. obliquus and C. pyrenoidosa exposed to the treatments.
The different letters for each species after exposure to the different treatments indicate the significant
differences in fluorescence intensity, p < 0.05. Data are means ± SD (n = 3).

As shown in Figure 6, compared to the control, a significant decrease in the MMP of S. obliquus
cells was observed after 96 h of exposure to the SDZ alone, while the MMP of S. obliquus cells was
increased by the presence of DOM alone. The changes of the MMP also indicated damage to the
mitochondrial function. For the nCeO2, the alone treatment posed a completely different effect on
the MMP of S. obliquus and C. pyrenoidosa. Moreover, the presence of DOM decreased the MMP of
S. obliquus more than the single and binary mixtures of the nCeO2. The binary and ternary mixtures
significantly decreased the MMP of C. pyrenoidosa in comparison with the individual nCeO2. Compared
to the control, the nMgO only significantly increased the MMP of S. obliquus. Leung et al. [43] also
demonstrated that the primary mechanism of the death of E. coli induced by nMgO was related to cell
membrane damage. The binary and ternary mixtures with nMgO significantly decreased the MMP of
the two algae compared to the nMgO alone, while the ternary mixtures had less of an effect on the
MMP of S. obliquus than the binary mixtures. In addition, the dissolved ions shed from the nMgO
showed no effect on the MMP. The degree of reduction of the MMP in the algal cells exposed to the
nFe3O4 significantly went down with the addition of SDZ and DOM.
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Figure 6. Mitochondrial membrane potential of S. obliquus and C. pyrenoidosa exposed to the treatments.
The different letters for each species after exposure to the different treatments indicate the significant
differences in fluorescence intensity, p < 0.05. Data are means ± SD (n = 3).

Similar to the results of CMP, there is no significant difference in the MMP of C. pyrenoidosa
between the dissolved fraction of nFe3O4 and the nFe3O4 alone, suggesting that the dissolved fraction
might contribute to the toxicity of the nFe3O4 to C. pyrenoidosa via disturbing the mitochondrial
function. Compared with the single and binary mixtures, the MMP of C. pyrenoidosa decreased more
when the DOM was present. This decrease in the MMP might be caused by the depolarization of the
mitochondria in the algal cells exposed to the treatments. Together, it is reasonable to believe that
changes in the membrane function could be a sensitive cellular indicator to indicate the toxicological
effect of xenobiotics.

In the present study, DOM displayed different degrees of impact on the behavior of the three
nMeO (nCeO2, nMgO, and nFe3O4) in the test medium, and modulated the cellular oxidative stress
and membrane system responses of the two freshwater algae (S. obliquus and C. pyrenoidosa) to the
nMeO when SDZ co-existed. The role of DOM was mainly associated with the types of nMeO and the
species of algae. Furthermore, the mechanism of the effects of DOM on the algal cellular responses
to the binary mixtures may be associated with their binding with mixture components [48,49]. It is
likely that the complexation of DOM to SDZ or the dissolved fraction of the nMeO made them less
bioavailable, and the adsorption of DOM upon the nMeO limited the interactions of particles with the
algal cells.

4. Conclusions

In summary, the presence of SDZ significantly decreased the level of intercellular ROS in S. obliquus
and C. pyrenoidosa induced by the three nMeO. SDZ decreased CMP and MMP levels of S. obliquus



Nanomaterials 2019, 9, 712 10 of 12

exposed to the nMeO to some extent. Furthermore, the degree of reduction of ROS, CMP, and MMP
significantly went down with the addition of DOM. The results we presented here confirmed that
SDZ and DOM helped protect against oxidative stress responses in the algal cells exposed to nMeO,
and interrupted the algal cell membrane functions. Our findings demonstrated that DOM played an
important role and should not be omitted when evaluating the combined risk of ENPs and antibiotics.
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